MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
|
|
- Jakob Brekke
- 10 måneder siden
- Visninger:
Transkript
1 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen. Oppgaven vil bli vurdert i henhold til gjeldende reglement: Videre vil det ved rettingen gis 0-5 poeng på hver deloppgave. Oppgaven vil bli godkjent når alle deloppgaver er forsøkt løst og det er oppnådd mer enn 0 poeng. a) En harmonisk svingning er gitt som en sum av to delsvingninger H(x) = cos ( π 4 x) + sin ( π 4 x). Skriv H(x) på formen A cos (ω(x x 0 )). Løsning: Vi har A = ( ) + ( ) =, som gir φ = π 4. Dermed har vi cos(φ) = sin(φ) =,, b) For c R har vi differenslikningen H(x) = cos( π (x )). 4 x n+ x n+ + c x n = 0. Beskriv hva slags løsninger vi får for varierende verdier av c. En verdi for c gir oss kun én rot i det karakteristiske polynomet. Skriv opp den generelle løsningen av likningen i dette tilfellet.
2 Løsning: Differenslikningen har karakteristisk likning r r + c = 0. Røttene er r = ( ) ± ( ) 4c = ± c. Det vil si at for c < har vi to reelle røtter og løsningene x n = Cr n + Dr n. For c > har vi to komplekse røtter og løsninger på formen x n = Er n + Ē rn. Vi kan selvsagt også skrive løsningene på reell form; r = ρe iθ, x n = ρ n (C cos(θn) + D sin(θn)). For c = har vi bare en reell rot, og løsningen c) Vi har differenslikningen x n = C + Dn. x n+ x n+ + x n = n + n. Finn løsningen av denne likningen som tilfredsstiller x 0 = 0 og x =. (Hint: Bruk reell form.) Løsning: Vi finner først løsningen av den assosierte homogene likningen x h n+ x h n+ + xh n = 0. Dens karakteristiske likning har to komplekse røtter r = + i og r = i. Roten r kan vi skrive på eksponentialform ved å finne ρ og θ. ρ = + =. cos(θ) = =, sin(θ) = =, som gir θ = π 4. Den generelle løsningen til den assosierte homogene likningen er x h n = ( ( ) n C cos( π ) 4 n) + D sin(π 4 n), C, D R Den spesielle løsningen x s n finner vi ved å gjette på løsningen x s n = Rn + Sn + T.
3 Vi får R(n + ) + S(n + ) + T (R(n + ) + S(n + ) + T ) + (Rn + Sn + T ) = n + n R(n + 4n + 4) + Sn + S + T (R(n + n + ) + Sn + S + T ) + Rn + Sn + T = n + n 3Rn + 4Rn + 4R + 3Sn + S + 3T Rn 4Rn R Sn S T = n + n Rn + R + Sn + T = n + n. Dette gir oss Rn = n Sn = n R + T = 0. Dette gir oss Dermed har vi R =, S =, T =. x s n = n + n. Den generelle løsningen til den inhomogene differenslikningen er dermed n (C cos( π 4 n) + D sin(π 4 n)) + n + n, C, D R. Vi bruker initialbetingelsene for å finne den spesielle løsningen som oppfyller både initialbetingelsene og differenslikningen. x 0 = 0 = 0 (C cos( π ) 4 0) + D sin(π 4 0) = C C = x = = ( cos( π ) 4 ) + D sin(π 4 ) + + = ( ) + D = + D D = 0 Den spesielle løsningen til differenslikningen er n ( cos( π ) 4 n) + n + n. d) Finn alle de antideriverte til funksjonen h(x), h(x) = 3 3x + 4x
4 Løsning: Nevneren til h(x) har røtter og 3. Vi kan faktorisere og forkorte h(x) 3 h(x) = 3(x )(x + 3 ) = (x )(x + 3 ). Når vi skal finne alle de antideriverte, har vi h(x)dx = (x )(x + 3 )dx. Vi ser at vi må bruke delbrøksoppspaltning som integrasjonsteknikk. For A, B R, kan vi skrive (x )(x + 3 ) = A (x ) + B (x + 3 ) = A(x + 3 ) + B(x ) (x )(x + 3 ) Sammenlikner vi tellerne på begge sider av likningen, får vi = Ax + A + Bx B 3 Sammenlikner vi koeffisentene på begge sider av likningen, får vi Vi får A = 3 og B = 3. Dermed får vi h(x)dx = 3 = 3 = 3 A B 0 = A + B (x ) (x ) dx + 3 (x + 3 )dx (x + 3 )dx Disse integralene kan løses ved hjelp av substitusjonene u = x du = dx u = x + 3 du = dx. 4
5 Dermed er, for C R, h(x)dx = 3 = 3 (x ) dx + 3 u du + 3 (x + 3 )dx u du = 3 ln u + 3 ln u + C = 3 ln u u + C = 3 ln x + 3 x + C. e) For en funksjon y(t) har vi differensiallikningen y = (P y) t, der P er en konstant forskjellig fra 0. Finn et uttrykk for y(t) når du får oppgitt at y(0) = 0. Beregn også lim t y(t). Løsning: Dette er en separabel difflikning, som separeres til dy (P y) dt = t Vi integrerer med hensyn på t på begge sider og får (P y) dy = tdt Vi behandler først integralet på venstre side. Her må vi bruke substitusjonen (Det er kanskje fristende å bruke delbrøksoppspaltning, men vi har en multippel rot i nevner, så vår metode vil ikke fungere.); u = P y du = dy, (P y) dy = u du = u + + = u = P y. 5
6 Integralet på høyre side er elementært, C R, tdt = t + C. Tilsammen får vi P y = t + C. Vi må rydde opp i dette for å finne y(t); P y = t + C. y(t) = P t + C. Vi bruker initialbetingelsen for å finne verdien av C som gjør at funksjonen y(t) oppfyller initialbetingelsen y(0) = 0. Vi får funksjonen y(0) = 0 = P 0 + C 0 = P C C = P. y(t) = P t + P Når vi lar t vokse vil det andre leddet i funksjonen gå mot 0. Det er fordi nevneren går mot uendelig. Vi har derfor f) En funksjon y(x) oppfyller lim y(t) = P. t y y = x og y() = e. Finn denne funksjonen og bestem lim x y(x). Løsning: Dette er en separabel difflikning, og vi får de elementære integralene som til slutt gir oss et uttrykk for y(x) y dy = x dx ln y = x + C, e ln y = y = e x +C = e C e x y(x) = Ke x,. C R K R 6
7 Vi bruker deretter initialbetingelsen, y() = e, y() = e = Ke e = Ke K = Vi får Siden har vi at y(x) = e x. lim x x = 0, lim y(x) = x e0 =. g) En første ordens differensiallikning er på formen y + αy = e αx, der α er en reell konstant. Med initialbetingelsen y(0) = α, finn et uttrykk for y(x). Deriver dette uttrykket og sjekk at det passer i differensiallikningen. La så α variere og beskriv hvordan lim y(x) avhenger av α. (Hint: La α være negativ, null og positiv.) Løsning: Vi finner først integrerende faktor. f(x) = α F (x) = αx e F (x) = e αx x Når vi ganger likningen med integrerende faktor får vi e αx y + αe αx y = e αx e αx. Vi gjenkjenner venstre side av likningen som (ye αx ) og høyre side som, (ye αx ) =. Så integrerer vi mhp x på begge sider. Vi får da, C R, ye αx = x + C y(x) = x + C e αx 7
8 Vi har initialbetingelsen y(0) = α, og får y(0) = α = 0 + C e α0 C = α. Totalt får vi y(x) = (x + α)e αx. Vi deriverer ved hjelp av produktregelen og kjerneregelen; Setter inn dette i likningen og får y (x) = e αx + (x + α)( α)e αx = e αx ( αx α ). e αx ( αx α ) + α(x + α)e αx = e αx. Likningen holder, og vi har kommet fram til riktig svar! Lar så α < 0. Siden vi har e αx som faktor i y(x), vil dette gå mot uendelig når x går mot uendelig. Vi får Lar så α = 0. Da er y(x) = x og lim y(x) =. x lim y(x) =. x Lar så α > 0. Siden vi har e αx som faktor i y(x), vil dette gå mot 0 når x går mot uendelig. Vi får lim y(x) = 0. x h) For x som oppfyller sin x > 0 har vi differensiallikningen y tan x y = tan x. Denne likningen kan betraktes enten som en første ordens likning, eller som en separabel likning, Løs likningen med begge metoder. y = (y + ). tan x
9 Løsning: Husk at betyr at tan x = sin x cos x tan x = cos x sin x. Løser likningen som første ordens likning: Finner integrerende faktor Her må vi bruke substitusjon; Det gir oss f(x) = tan x = cos x sin x F (x) = cos x sin x dx. u = sin x du = cos xdx F (x) = u dx = ln u = ln sin x = ln(sin x). Den siste likheten skyldes at vi i oppgaveteksten antar at sin x > 0. Integrerende faktor er dermed e F (x) ln(sin x) = e ln(sin x) = e = (sin x) = sin x. Når vi ganger likningen med integrerende faktor får vi sin x y tan x sin x y = sin x tan x ( sin x y) = cos x sin x 9
10 Vi integrerer mhp x på begge sider og får cos x sin x y = sin x dx Vi må bruke substitusjon igjen; u = sin x du = cos xdx Dermed har vi, med C R, sin x y = u du = u + C = sin x + C Løser vi likningen for y ved å dele på sin x, får vi y(x) = + C sin x Løser likningen som separabel likning: Separerer, innfører notasjon y = dy dx og integrerer. y = (y + ) tan x dy y + dx = tan x dy y + dx = cos x sin x dy cos x y + dx dx = sin x dx cos x y + dy = sin x dx Integralet på venstre side løses ved substitusjon. (Vi tar integrasjonskonstanten med i integralet på høyre side.) u = y + du = dy y + dy = u du = ln u = ln y +. 0
11 Integralet på høyre side er løst ved substitusjon tidligere i oppgaven (bare et fortegn i forskjell), C R, cos x dx = ln(sin x) + C sin x Vi må rydde opp i uttrykket vi får, med K R, ln y + = ln(sin x) + C e ln y+ ln(sin x)+c = e y + = e C ln(sin x) e y + = K sin x y(x) = + K sin x. Vi ser at vi får samme svar med begge metoder!
LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
Løsningsforslag til utvalgte oppgaver i kapittel 10
Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men
MAT 1001, høsten 2015 Oblig 2
MAT 1001, høsten 2015 Oblig 2 Innleveringsfrist: Torsdag 5. november kl. 14:30 Det er lov til å samarbeide om løsning av oppgavene, men alle skal levere inn sin egen versjon. Husk å skrive på navn og kurskode
Difflikninger med løsningsforslag.
Repetisjon i Matematikk : Difflikninger med løsningsforslag. Høgskolen i Gjøvik Avdeling TØL Eksamensrepetisjon REA4 Matematikk Difflikninger med løsningsforslag. Difflikninger med løsningsforslag. Dette
Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
Kapittel 2. Antiderivering. 2.1 Derivasjon
Kapittel 2 Antiderivering I dette og neste kapittel skal vi bli kjent med noen typer difflikninger og lære hvordan disse kan løses. Til dette trenger vi derivering og antiderivering. 2.1 Derivasjon I Kapittel
Løsningsforslag til Eksamen i MAT111
Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse
3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)
Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.
IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
Løsningsforslag Eksamen M001 Våren 2002
Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:
Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11
Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x
Løsningsskisser til oppgaver i Kapittel Integrerende faktor
Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6
Differensialligninger
Oslo, 30. januar, 2009 (http://folk.uio.no/lindstro/diffoslonyprint.pdf) Vanlige ligninger og differensialligninger En vanlig (algebraisk) ligning uttrykker en sammenheng mellom det ukjente tallet x og
Differensiallikninger definisjoner, eksempler og litt om løsning
Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning
TMA4100 Matematikk1 Høst 2009
TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +
d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =
Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si
Løsningsforslag Eksamen M100 Våren 2002
Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.
Fasit, Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. 3 Fasit, Separable differensiallikninger. a ) Denne er ferdig på formenf(y)y = g(x) medf(y) =3y 2 og g(x) =2x: 3y 2 dy dx =2x 3y2 dy
Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1
Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
Løsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
Anbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
Separable differensiallikninger.
Ukeoppgaver, uke 46, i Matematikk 0, Separable differensiallikninger. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 46 I løpet av uken blir løsningsforslag lagt ut på emnesiden
Løsningsforslag Eksamen M100 Høsten 1998
Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim
Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Løsningsforslag for Eksamen i MAT 100, H-03
Løsningsforslag for Eksamen i MAT, H- Del. Integralet cos( ) d er lik: Riktig svar: b) sin( ) + C. Begrunnelse: Vi setter u =, du = d og får: cos( ) d = cos u du = sin u + C = sin( ) + C. Integralet ln(
IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
differensiallikninger-oppsummering
Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.
Sammendrag R2. www.kalkulus.no. 31. mai 2009
Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være
MA1410: Analyse - Notat om differensiallikninger
Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde
LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
Emne 11 Differensiallikninger
Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi
OPPGAVE 1 LØSNINGSFORSLAG
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT - Grunnkurs i matematikk I torsdag 5.desember 20 kl. 09:00-4:00 OPPGAVE a Modulus: w = 2 + 3 2 = 2. Argument
Løsningsforslag til eksamen i MAT 1100, H06
Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430
MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil
EKSAMEN. 1. klassene, ingenørutdanning og Flexing. HansPetterHornæsogLarsNilsBakken. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 4 sider formelark)
KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO: 9. desember 0 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9.00 3.00. FAGANSVARLIG: HnsPetterHornæsogLrsNilsBkken
EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
Løsningsforslag eksamen R2
Løsningsforslag eksamen R Vår 010 Oppgave 1 a) f (x) = x cos(3x) f (x) = x cos(3x) + x ( sin(3x) 3) = x cos(3x) 3x sin(3x) b) 1. Bruker delvis integrasjon med u = 5x og v = 1 ex slik at u = 5 og v = e
SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag
SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et
Differensjalligninger av førsteorden
Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem
Prøve i R2. Innhold. Differensiallikninger. 29. november Oppgave Løsning a) b) c)...
Prøve i R2 Differensiallikninger 29. november 2010 Innhold 1 Oppgave 3 1.1 Løsning..................................... 3 1.1.1 a).................................... 3 1.1.2 b)....................................
FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310)
FORELESNINGER I OPTIMAL KONTROLLTEORI (MAT 2310) TERJE SUND Innledning I matematisk optimering søker en å bestemme maksimums- og minimumspukter for funksjoner som avhenger av reelle variable og av andre
e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),
Definisjoner og løsning i formel
Differensiallikninger Definisjoner og løsning i formel Forelesning uke 45, 2006 MAT-INF1100 Difflik. p. 1 Differensiallikninger Struktur i presentasjonen Lysarkene gjennomgår hovedpunkter fra Kalkulus
Løsningsforslag, eksamen MA1101/MA
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen
Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
UNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet
DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.
Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med
Repitisjon av Diverse Emner
NTNU December 15, 2012 Oversikt 1 2 3 4 5 Å substituere x med en trigonometrisk funksjon, gjør det mulig å evaluere integral av typen I = dx a 2 +x 2 I = dx a 2 +x 2 I = dx a 2 x 2 der a er en positiv
Differensiallikninger definisjoner, eksempler og litt om løsning
Differensiallikninger definisjoner, eksempler og litt om løsning MEK1100 Differensiallikninger Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning i formel 3-4 spesielle
Løsningsforslag til eksamen i fag MA1101/MA6101 Grunnkurs i analyse I Høst 2008
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Løsningsforslag til eksamen i fag MA111/MA611 Grunnkurs i analyse I Høst 2 Oppgave 1 Funksjonen g er definert ved
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,
UNIVERSITETET I OSLO. Løsningsforslag
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus
Figur 2: Fortegnsskjema for g (x)
Løsningsforslag Eksamen M00 Våren 998 Oppgave a) g) = e ) = e ) Figur : Fortegnsskjema for g) g) > 0 for < 0 og > og g) < 0 for 0 <
y = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved
Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både
Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
MA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Løsningsforslag Øving 1 Kapittel 7.1: Substitusjon Teorem 1. Hvis u = g() så er f(g())g
I løpet av uken blir løsningsforslag lagt ut på emnesiden Delvis integrasjon må brukes to ganger.
Ukeoppgaver, uke 45, i Matematikk, Delvis integrasjon. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk Ukeoppgaver uke 45 I løpet av uken blir løsningsforslag lagt ut på emnesiden http://www.hig.no/toel/allmennfag/emnesider/rea4
Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 2003
Løsningsforslag Prøveeksamen i MAT-INF 1100, Høsten 003 Denne prøveeksamenen har samme format som den virkelige eksamenen, og inneholder oppgaver av samme type og vanskelighetsgrad. Første del av eksamen
Prøve i Matte 1000 ELFE KJFE MAFE 1000 Dato: 02. desember 2015 Hjelpemiddel: Kalkulator og formelark
Prøve i Matte ELFE KJFE MAFE Dato: 2. desember 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Gitt matrisene A = 2 2 3 5 og B = [ 5 7 2 ] Regn
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100
Newtons metode - Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 20. september 2011 Kapittel 4.7. Newtons metode 3 Eksakt løsning Den eksakte løsningen av
6.8 Anvendelser av indreprodukter
6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner
I = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1
TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet
Løsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
Lineære differensiallikninger.
Ukeoppgaver, uke 47, i Matematikk 0, Lineære differensiallikninger. Høgskolen i Gjøvik Avdeling for teknologi, økonomi og ledelse Matematikk 0 Ukeoppgaver uke 47 Lineære differensiallikninger. Oppgave
EKSAMEN. Ingeniør- og Fleksibel ingeniørutdanning.
KANDIDATNUMMER: EKSAMEN EMNENAVN: Matematikk. EMNENUMMER: REA42/REA42F EKSAMENSDATO: Mandag 9. august 2 KLASSE: Ingeniør- og Fleksibel ingeniørutdanning. TID: kl. 9. 3.. FAGANSVARLIG: Hans Petter Hornæs
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
og variasjon av parameterene Oppsummering.
Inhomogene differensiallikninger av andre orden Ubestemte koeffisienters metode og variasjon av parameterene Oppsummering. MAT-INF1100 October 30, 2007 NYTT TEMA Innhomogene likninger: Oppdeling i partikulær
Anbefalte oppgaver - Løsningsforslag
Anbefalte oppgaver - Løsningsforslag Uke 6 12.6.4: Vi finner først lineariseringen i punktet (2, 2). Vi har at Lineariseringen er derfor 2x + y f x (x, y) = 24 (x 2 + xy + y 2 ) 2 2y + x f y (x, y) = 24
Institutt for Samfunnsøkonomi
Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter
MAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
EKSAMEN. Hans Petter Hornæs og Britt Rystad
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk. FAGNUMMER: F74A EKSAMENSDATO: Mandag. august 2 SENSURFRIST:. september 2 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 4.. FAGLÆRER: Hans Petter Hornæs og
EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
Oversikt over Matematikk 1
1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet
R2 - kapittel 5 EF og 6 ABCD
R2 - kapittel 5 EF og 6 ABCD Løsningsskisser Oppgave Løs differensialligningene: a) y x cosx b) y yx x c) y y x a) Eksakt DL, løses direkte: y cosx x y cosx x dx sin x 2 x2 C b) Lineær: y xy x (Kan løse
UNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
Løsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Løsning, Trippelintegraler
Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8
Oppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-