1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?"

Transkript

1 FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OPPGAVER MED LØSNINGSFORSLAG OPPGAVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt skråplan ed helningsvinkel 30? A) g/4 B) g/3 C) g/2 D) g a = F / = gsin30 / = g/2. Riktig svar: C. 2) Hva blir akselerasjonen til en kloss so glir oppover et skråplan ed helningsvinkel 30 når kinetisk friksjonskoeffisient ello kloss og skråplan er 1/ 3? A) g/4 B) g/3 C) g/2 D) g a = F / = (f+gsin30 )/ = (µ k N+g/2)/ = (µ k gcos30 +g/2)/ = (1/ 3) g 3/2+g/2 = g. Riktig svar: D. 3) En tynn ring, ei kopakt kule og et tynt kuleskall, alle ed asse M og radius R, ruller o kapp, uten å gli (slure), nedover et skråplan. Hvordan ser seierspallen ut? A) 1. Kopakt kule. 2. Tynn ring. 3. Tynt kuleskall. B) 1. Tynn ring. 2. Kopakt kule. 3. Tynt kuleskall. C) 1. Tynt kuleskall. 2. Tynn ring. 3. Kopakt kule. D) 1. Kopakt kule. 2. Tynt kuleskall. 3. Tynn ring. Legeet ed inst treghetsoent (hp CM) får inst rotasjonsenergi, og dered størst translasjonsenergi, og dered størst hastighet og akselerasjon. Tynn ring har all asse på periferien, og dered størst treghetsoent. Tynt kuleskall har all asse i avstand R fra CM, og dered større treghetsoent enn kopakt kule. Dered vinner den kopakte kula, foran kuleskallet, ed ringen på tredjeplass. Riktig svar: D. 1

2 4) En sylinder ed asse M = 1 kg og radius R = 0.1 slurer (roterer og glir; ω > V/R) oppover et skråplan ed helningsvinkel 30. Kinetisk friksjonskoeffisient ello kloss og skråplan er 1/(2 3). Hva er (otrent) netto ytre dreieoent på sylinderen, ed sylinderens assesenter (CM) so referansepunkt? V A CM ω M, R A) 1/4 N B) 1/2 N C) 3/4 N D) 1 N τ CM = fr = µ k NR = µ k Mgcos30 R = (1/2 3) ( 3/2) 0.1 1/4 N. Riktig svar: A. 5) For sae situasjon so i oppgave 4, hva er (otrent) netto ytre dreieoent på sylinderen, ed kontaktpunktet (A) so referansepunkt? A) 1/4 N B) 1/2 N C) 3/4 N D) 1 N τ A = Mgsin30 R = (1/2) 0.1 1/2 N. Riktig svar: B. Før: Etter: v 0 v 1 6) En asse har hastighet v 0 (v 0 c) og kolliderer fullstendig uelastisk ed en annen asse so ligger i ro. Etter kollisjonen henger de to assene saen og har felles hastighet v 1. Hvor ye kinetisk energi gikk tapt i kollisjonen? 2 A) v 2 0 /8 B) v2 0 /6 C) v2 0 /4 D) v2 0 /2 p 1 = p 0 2v 1 = v 0 v 1 = v 0 /2 K 1 = (1/2) 2 v 2 1 = v2 0 /4 K = v2 0 /2 v2 0 /4 = v2 0 /4. Riktig svar: C. P CM 7) En tynn ring har treghetsoent 1.0 kg 2 ed hensyn på en akse gjenno ringens assesenter (CM). Hva er da ringens treghetsoent ed hensyn på en akse gjenno et punkt (P) på ringens periferi? (Begge akser står noralt på ringens plan.) A) 1.0 kg 2 B) 1.5 kg 2 C) 2.0 kg 2 D) 2.5 kg 2 Steiners sats gir I P = I 0 +MR 2 = MR 2 +MR 2 = 2I 0 = 2 kg 2. Riktig svar: C. 2

3 A L B L/4 CM 8) En tynn, jevntykk stav (fysisk pendel) har asse M, lengde L og treghetsoent I 0 = ML 2 /12 hp en akse gjenno stavens assesenter (CM). Når staven svinger (friksjonsfritt) ed så utsving fra likevekt o en akse helt øverst på staven (A), er perioden T A. Derso aksen forskyves ed L/4, til idt ello stavens ende og dens assesenter (B), er perioden T B. Hva er forholdet T B /T A? (Oppgitt: ω 0 = Mgd/I) A) 4/5 B) 5/6 C) 6/7 D) 7/8 (T B /T A ) 2 = I B d A /I A d B. Vi har d A = L/2, d B = L/4. Steiners sats gir da: I A = ML 2 /12 + M(L/2) 2 = ML 2 /3 og I B = ML 2 /12 + M(L/4) 2 = 7ML 2 /48. Dered: (T B /T A ) 2 = (7/48) (1/2)/((1/3) (1/4)) = (7/96)/(1/12) = 7/8. Riktig svar: D. 9) Ei tynn stang lokalisert på x-aksen ello x = 0 og x = L har assetetthet (asse pr lengdeenhet) µ(x) = µ 0 x/l. Her er µ 0 en konstant. Hvor er stavens assesenter x CM? (Oppgitt: d = µdx) A) x CM = L/2 B) x CM = 2L/3 C) x CM = 3L/4 D) x CM = 4L/5 x CM = L 0 x (µ 0x/L)dx L 0 (µ 0x/L)dx = L 0 x2 dx L 0 xdx = L3 /3 L 2 /2 = 2L/3. Riktig svar: B. 10) To satellitter går i hver sin sirkulære bane rundt jorda, den ene i bane ed dobbelt så stor radius so den andre. Hva er da forholdet ello oløpstida (perioden) til de to satellittene? A) 2 B) 2 C) 2 2 D) 4 GM/R 2 = v 2 /R = Rω 2 = 4π 2 R/T 2, dvs T R 3/2, slik at periodeforholdet blir 2 3/2 = 2 2. Riktig svar: C. 3

4 11) I jakten på foren på ei klessnor har du endt opp ed å åtte løse ligningen x = (7/8 x/2) 1+3x 2. Du satser på en enkel iterativ løsningsetode, der en startverdi for x innsatt på høyre side av ligningen gir en oppdatert verdi av x, og dered det iterative (repeterte) skjeaet Med startverdien x 1 = 1.0, hva blir x 3? x i+1 = ( 7 8 x ) i 1+3x 2 i 2. A) x B) x C) x D) x x 2 = (7/8 1/2) 1+3 = (3/8) 2 = 3/4, x 3 = (7/8 3/8) 1+3 9/16 = (4/8) 43/16 = 43/ Riktig svar: D. 12) E-strengen på en kontrabass skal stees slik at grunntonen har frekvens 41 Hz. Strengen er fastspent i begge ender, har lengde 110 c, og asse pr lengdeenhet 33 g/. Straingen i strengen å da tilsvare en strekk-kraft A) 68.5 N B) N C) N D) N Fra oppgave 18: f 1 = S/µ/2L, dvs S = 4L 2 f 2 1 µ = = N. Riktig svar: C. 13) En streng ed asse pr lengdeenhet 9 g/ er skjøtt saen ed en streng ed asse pr lengdeenhet 25 g/. En haronisk transversal bølge koer inn ot skjøten. Hvor stor andel av bølgens energi blir reflektert i skjøten? A) 6% B) 26% C) 46% D) 66% R = ( µ 1 µ 2 ) 2 /( µ 1 + µ 2 ) 2 = (3 5) 2 /(3+5) 2 = 4/64 = 1/16 6%. Riktig svar: A. 14) En kuleforet lydkilde sender ut lyd slik at lydtrykksnivået er 100 db i avstand 1 fra sentru av lydkilden. I hvilken avstand fra lydkildens sentru er lydtrykksnivået redusert til 50 db? A) 93 B) 207 C) 316 D) 542 I(r) 1/r 2 for kuleforet kilde. Dered: 100/10 = log(i(1)/i 0 ), 50/10 = log(i(r)/i 0 ), dvs 10 = logi(1) logi 0, 5 = logi(r) logi 0, dvs 5 = log(i(1)/i(r)) = log(r 2 /1 2 ), dvs r 2 = , dvs r 316. Riktig svar: C. 4

5 15) To lydkilder sender ut haroniske lydbølger ed frekvens henholdsvis 440 Hz og 450 Hz. Hva hører du? A) En tone på 445 Hz ed en lydintensitet so varierer ello sterkt og svakt ti ganger pr sekund. B) En tone på 445 Hz ed konstant lydintensitet. C) En tone på 890 Hz ed konstant lydintensitet. D) Ingenting, på grunn av destruktiv interferens. f = (f 1 +f 2 )/2 = 445 Hz. T s = 1/(f 1 f 2 ) = (1/10) s. Riktig svar: A. 16) Et jordskjelv på havbunnen skaper en forstyrrelse (bølgepakke) på havoverflaten ed bølgelengder okring 50 k. Vanndybden er D = 1 k. Otrent hvor lang tid bruker bølgepakken på å vandre 1800 k (en avstand litt større enn Norge på langs i luftlinje)? Oppgitt: ω(k) = gk tanh(kd), tanhx x når x 1, tanhx 1 når x 1. A) Fe tier B) Feten tier C) Feti tier D) Fehundre tier Her er kd = 2πD/λ = 2π 1/ , slik at ω 2 gk kd = gdk 2, dvs ω gdk. Gruppehastighet og fasehastighet er nå like store, og v g = gd = 99 /s, dvs ca 357 k/h. Da tar det ca 5 tier å tilbakelegge 1800 k. Riktig svar: A. 17) Et stort cruiseskip seiler forbi 475 fra land og lager en bølgepakke ed bølgelengder okring 10. Bølgene har retning rett ot land. Dybden er overalt er enn 50. Otrent hvor lang tid går det fra bølgepakken skapes til den slår ot land? A) 1 inutt B) 4 inutter C) 16 inutter D) 64 inutter Her er kd = 2πD/λ > 2π 50/ , slik at ω 2 gk 1, dvs ω gk. Da blir gruppehastigheten v g = dω/dk = (1/2) g/k = g/4k = gλ/8π 1.97 /s. Da tar det ca 240 sekunder å tilbakelegge 475, dvs ca 4 inutter. Riktig svar: B. 18) Frekvensene til stående bølger ( resonansfrekvensene ) på en streng so er fastspent i begge ender, er f n = n S/µ 2L (n = 1,2,3,...). Du anslår relative usikkerheter so følger: S/S = 0.03, µ/µ = 0.05 og L/L = Hva blir da relativ usikkerhet i frekvensene, f n /f n? A) 1% B) 3% C) 7% D) 9% Her er f n = (n/2) S 1/2 µ 1/2 L 1, slik at ( f n /f n ) 2 = ( S/2S) 2 +( µ/2µ) 2 +( L/L) 2 = = Dvs, f n /f n = 0.03 = 3%. Riktig svar: B. 5

6 Fasit for Oppgave 1 Deloppgave A B C D 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 12 x 13 x 14 x 15 x 16 x 17 x 18 x 6

7 OPPGAVE 2: Uelastisk kollisjon ello stav og kule (Teller 30%, 6% pr deloppgave) y x v d/2 A d y A B µ (ovenfra) B (fra siden) En stav ed lengde d og asse ligger i ro på et horisontalt bord. Staven kan rotere o en aksling gjenno sin ene ende (A). Staven er i kontakt ed bordet ved begge ender. Vi ser bort fra friksjon ved akslingen (A). I den andre enden (B) er kinetisk friksjonskoeffisient ello stav og bord lik µ. Ei kule ed asse og hastighet v = v ˆx kolliderer fullstendig uelastisk ed staven i avstand d/2 fra A (dvs idt på staven). Etter kollisjonen (so har neglisjerbar varighet) roterer stav og kule so ett legee okring akslingen gjenno A. a) Hva er systeets kinetiske energi K 0 før kollisjonen? Hva er systeets dreieipulslo A før kollisjonen? K 0 = v 2 /2. L = vd/2. b) Hva er treghetsoentet I til systeet stav + kule etter kollisjonen, hp aksen gjenno A? (Tips: Se flervalgsoppgave 8.) Steiners sats gir for staven d 2 /12 + (d/2) 2 = d 2 /3. For kula: (d/2) 2 = d 2 /4. For stav + kule: I = (1/3+1/4)d 2 = 7d 2 /12. c) Uiddelbart etter kollisjonen, før systeet (stav + kule) har begynt å rotere, er L bevart. Hva er da systeets vinkelhastighet ω uiddelbart etter kollisjonen? L = Iω ω = L/I. Innsetting av L fra a og I fra b gir ω = (vd/2)/(7d 2 /12) = 6v/7d. d) Hva er systeets kinetiske energi K 1 uiddelbart etter kollisjonen? Hva blir endringen i systeets kinetiske energi i kollisjonen, K = K 1 K 0? K 1 = Iω 2 /2.InnsettingavI frabogω fracgirk 1 = (7d 2 /12)(6v/7d) 2 /2 = (7 36/ )v 2 = 3v 2 /14. I den uelastiske kollisjonen er dered kinetisk energi endret ed K = K 1 K 0 = (3/14 1/2)v 2 = 2v 2 /7. e) På grunn av friksjon ello staven og bordet ved enden (B) reduseres systeets kinetiske energi gradvis. 7

8 Finn et uttrykk for oløpt vinkel θ når kinetisk energi K er redusert til null. (Tips: Derso du ikke har bestet K 1 i punkt d, skriv K 1 på foren βv 2 /2, der β er en diensjonsløs konstant.) Med tallverdiene v = 10 /s, d = 15 c og µ = 0.11, hvor ange hele odreininger vil stav (ed kule) rotere før den stopper? (Har du ikke fastlagt β ovenfor, kan du bruke en tilnæret verdi β = 0.4.) Vi kan innledningsvis fastslå at β = 3/7. Den kinetiske energien rett etter kollisjonen, K 1 = 3v 2 /14, går tapt i for av et friksjonsarbeid W f = f s = µn B θ d. Her er s = θd buelengden (veien) når oløpt vinkel er θ og radien er d. Noralkraften fra bordet på stav (ed kule) å, siden kula sitter fast idt på, være like stor ved A og B, og til saen lik tyngden av stav + kule. Med andre ord, N B = N A = g. Dered er W f = µgθd, og når vi setter dette friksjonsarbeidet lik K 1, finner vi Innsetting av oppgitte tallverdier gir θ = en vinkel so tilsvarer θ/2π 21 hele odreininger. θ = 3v2 14µgd = , (Med den otrentlige verdien β = 0.4 i K 1 = βv 2 /2 blir θ = βv 2 /2µgd = / = , so tilsvarer ca 20 hele odreininger.) OPPGAVE 3: Uelastisk relativistisk kollisjon (Teller 15%, 6% for a og 9% for b) Før: v 0 = 4c/5 Etter: M v 1 En partikkel ed asse har hastighet v 0 = 4c/5 og kolliderer fullstendig uelastisk ed en tilsvarende partikkel ed asse so ligger i ro. (c er lyshastigheten) Etter kollisjonen består systeet av kun en partikkel ed asse M og hastighet v 1. a) Systeets relativistiske ipuls kan skrives på foren p = αc. Hva er α? Systeets relativistiske energi kan skrives på foren E = βc 2. Hva er β? 8

9 Vi har p = γ 0 v 0, og ed v 0 = 4c/5 er γ 0 = (1 16/25) 1/2 = 5/3, slik at p = (5/3) 4c/5 = (4/3)c. Dvs, α = 4/3. For partikkelen ed hastighet 4c/5 er energien γ 0 c 2 = (5/3)c 2, og for partikkelen so ligger i ro er energien c 2. I alt E = (8/3)c 2. Dvs, β = 8/3. Både α og β er diensjonsløse tall. Derso du ikke har fastlagt verdier for α og β, kan du bruke disse størrelsene i fortsettelsen, etter behov. b) Bruk prinsippene o bevaring av p og E til å bestee følgende størrelser i slutt-tilstanden (dvs etter kollisjonen): Hastigheten v 1 uttrykt ved c. Massen M uttrykt ved. Den kinetiske energien K uttrykt ved c 2. Etter kollisjonen er ipulsen γ 1 Mv 1, ed γ 1 = (1 v 2 1 /c2 ) 1/2. Energien etter kollisjonen er γ 1 Mc 2. Med andre ord, γ 1 Mv 1 = 4c/3 og γ 1 Mc 2 = 8c 2 /3. Når vi dividerer disse to ligningene ed hverandre, forkortes γ 1 M bort, og vi står igjen ed v 1 /c 2 = 1/2c, dvs v 1 = c/2. Dered er γ 1 = (1 1/4) 1/2 = 2/ 3, slik at assen i slutt-tilstanden blir M = 8/3γ 1 = 4/ 3. Og til slutt, kinetisk energi i slutt-tilstanden: K = (γ 1 1)Mc 2 = (2/ 3 1) 4c 2 / 3 = (8 4 3)c 2 /3. 9

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt

Detaljer

FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20

FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 1) Ei kule slippes (dvs med null starthastighet) fra en høyde 2.0 m over gulvet. Hva er kulas hastighet 0.5 s etter at den ble sluppet?

Detaljer

Fysikk-OL Norsk finale 2004

Fysikk-OL Norsk finale 2004 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK TFY445/FY00 8. des. 009 Side av 7 NORGS TKNISK-NTURVITNSKPLIG UNIVRSITT INSTITUTT FOR FYSIKK Kontakt under eksaen: Jon ndreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSMN I TFY445 OG FY00 MKNISK FYSIKK

Detaljer

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N = FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 6. aug. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksaen: Jon Andreas Støvneng, telefon: 45 45 55 33 EKSAMEN I FY1001 og TFY4145

Detaljer

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 1) Ei lita metallkule slippes (dvs med null starthastighet) fra fjerde etasje i Realfagbygget. Hvor lang tid tar det før kula

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Side 1 av 1 skal påføres studentnuer og innleveres Ark nuer: Studentnuer: Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Studieretning: EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001

Detaljer

TFY4109 Fysikk Eksamen 9. august Løsningsforslag

TFY4109 Fysikk Eksamen 9. august Løsningsforslag TFY4109 Fysikk ksamen 9. august 2016 Løsningsforslag 1) 1 TU = 1055 J; 200 cal = 837 J; 0.0004 kwh = 1440 J; 10 20 Ry = 218 J; 10 22 ev = 1600 J. Sistnevnte er altså mest energi. 2) Periode T = 1/500 minutt

Detaljer

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter.

EKSAMENSOPPGAVE. FYS-1001 Mekanikk. Fire A4-sider (to dobbeltsidige ark) med egne notater. Kalkulator ikke tillatt. Ruter. Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksaen i: FYS-1001 Mekanikk Dato: 1.12.2016 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpeidler: Fire A4-sider (to dobbeltsidige ark)

Detaljer

3) Kula i oppgave 2 slippes ut fra toppen av en skyskraper. Hva blir kulas maksimale hastighet?

3) Kula i oppgave 2 slippes ut fra toppen av en skyskraper. Hva blir kulas maksimale hastighet? TFY406 Fysikk Eksaen 7. deseber 04 BOKMÅL ) Du skal kjøpe stenderverk (planker) av gran, diensjon (tverrsnitt) 48 98 og assetetthet 400 kg/ 3. Du har en tilhenger so tåler et lass på 300 kg. Hvor ange

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

5) Tyngdens komponent langs skråplanet, mgsinβ, lik maksimal statisk friksjonskraft, f max = µ s N =

5) Tyngdens komponent langs skråplanet, mgsinβ, lik maksimal statisk friksjonskraft, f max = µ s N = FY1001/TFY4145 Mekanisk Fysikk ksamen 18. desember 2015 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: h = at 2 /2, med h = 14 m og a = g. ermed: t = 2h/a = 2 14/9.81 s = 1.7 s. 2)

Detaljer

Fysikkolympiaden 1. runde 28. oktober 8. november 2013

Fysikkolympiaden 1. runde 28. oktober 8. november 2013 Norsk Fysikklærerforening i saarbeid ed Skolelaboratoriet Universitetet i Oslo Fysikkolypiaden 1. runde 8. oktober 8. noveber 013 Hjelpeidler: Tabell og forelsalinger i fysikk og ateatikk Loeregner Tid:

Detaljer

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008 Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

Løsningsforslag Fysikk 2 V2016

Løsningsforslag Fysikk 2 V2016 Løsningsforslag Fysikk, Vår 016 Løsningsforslag Fysikk V016 Oppgave Svar Forklaring a) B Faradays induksjonslov: ε = Φ, so gir at Φ = ε t t Det betyr at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04

Detaljer

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.

Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc. Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t 1 Kortfattet løsningsforslag / fasit Eksaen i: FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF Konteeksaen: Fredag 18. august 2006 Det tas forbehold o at løsningsforslaget kan inneholde feil!

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

2) Hva er tykkelsen på kuleskallet av stål i ei hul petanquekule med diameter 80.0 mm og masse 800 g?

2) Hva er tykkelsen på kuleskallet av stål i ei hul petanquekule med diameter 80.0 mm og masse 800 g? TFY4106 Fysikk Eksamen 12. august 2016 Side 1 av 10 I petanque brukes hule stålkuler med diameter mellom 70.5 og 80.0 mm og masse mellom 650 og 800 g. Oppgavene 1 4 dreier seg om slike kuler. 1) Stål har

Detaljer

TFY4106 Fysikk Løsningsforslag til Eksamen 12. august M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4106 Fysikk Løsningsforslag til Eksamen 12. august M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4106 Fysikk Løsningsforslag til Eksamen 12. august 2016 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. E) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

Løsningsforslag. FY-ME 100 eksamen 2. september 2003

Løsningsforslag. FY-ME 100 eksamen 2. september 2003 Løsningsforslag FY-ME 00 eksaen. septeber 003 Oppgave Her følger først noen begrepsoppgaver / kvalitative oppgaver. Svarene å begrunnes (en gjør dette kort). a) En stein ed asse kg er festet til enden

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

TFY4106 Fysikk Eksamen August 2015

TFY4106 Fysikk Eksamen August 2015 TFY4106 Fysikk Eksamen August 2015 1) Hyttegulvet skal renoveres, og du trenger planker med dimensjon (tverrsnitt) 48 mm 148 mm og massetetthet 400 kg/m 3. Du har en tilhenger som tåler et lass på 600

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

3) Kula i oppgave 2 slippes ut fra toppen av en skyskraper. Hva blir kulas maksimale hastighet? a 2 +4bmg.

3) Kula i oppgave 2 slippes ut fra toppen av en skyskraper. Hva blir kulas maksimale hastighet? a 2 +4bmg. TFY4106 Fysikk Eksaen 17. deseber 2014 Oppgaver ed løsningsforslag 1) Du skal kjøpe stenderverk (planker) av gran, diensjon (tverrsnitt) 48 98 og assetetthet 400 kg/ 3. Du har en tilhenger so tåler et

Detaljer

Løsningsforslag til øving 6

Løsningsforslag til øving 6 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 6 Oppgave 1 a) Litt repetisjon: Generelt er hastigheten til mekaniske bølger gitt ved mediets elastiske modul

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

Sykloide (et punkt på felgen ved rulling)

Sykloide (et punkt på felgen ved rulling) Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 9. Oppgave 1 a) var C er korrekt. Fasehastigheten er gitt ved v ω k og vi ser fra figuren at dette forholdet er størst for små verdier

Detaljer

TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22

TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22 TFY4109 Fysikk Eksamen 14. desember 2015 Side 13 av 22 FORMLER: Fete symboler angir vektorer. Symboler med hatt over angir enhetsvektorer. Formlenes gyldighetsområde og de ulike symbolenes betydning antas

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK. Utarbeidet av: Jon Andreas Støvneng NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET, INSTITUTT FOR FYSIKK Utarbeidet av: Jon Andreas Støvneng (jon.stovneng@ntnu.no) LØSNINGSFORSLAG (7 SIDER) TIL EKSAMEN I FY12 og TFY416 BØLGEFYSIKK Torsdag

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:

Detaljer

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6.

Institutt for fysikk Fakultet for naturvitenskap og teknologi. Løsningsforslag til eksamen i TFY4170 Fysikk 2 Onsdag 6. NTNU Side 1 av 5 Institutt for fysikk Fakultet for naturvitenskap og teknologi Merk: Hver deloppgave teller like mye. Dette løsningsforslaget er på 5 sider. Løsningsforslag til eksamen i TFY417 Fysikk

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Oppgave 1 Svar KORTpå disse oppgavene:

Oppgave 1 Svar KORTpå disse oppgavene: Løsningsforslag eksaen FYS1 V11 Oppgave 1 Svar KORTpå disse oppgavene: a) Tversbølge: Svingebevegelsen til hvert punkt på bølgen går på tvers av forplantningsretningen til bølgen. Langsbølge: Svingebevegelsen

Detaljer

7) Newtons 2. lov for rotasjon (om fast akse): τ(t) = Iα(t). Her er τ(t) = rf(t) og α(t) = ω 2 0 exp( ω 0t), slik at F(t) = Iω 2 0 exp( ω 0t)/r.

7) Newtons 2. lov for rotasjon (om fast akse): τ(t) = Iα(t). Her er τ(t) = rf(t) og α(t) = ω 2 0 exp( ω 0t), slik at F(t) = Iω 2 0 exp( ω 0t)/r. TFY4109 Fysikk ksamen 14. desember 2015 Løsningsforslag 1) m = ρv = ρ 4πR 2 t = 1 4π (6370 10 3 ) 2 10 10 3 kg = 5.1 10 18 kg. 2) Periode T = 1/500 minutt tilsvarer vinkelhastighet ω = 2π/T = 2π/(60s/500)

Detaljer

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK

Detaljer

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad Ipuls og spinn balanse 4.0.005 Side av Spinn og Ipulsbalanse HIA Avd. teknologi Morten Ottestad. ynaikk rettlinjede bevegelser. Ipuls balansen Newtons I lov). Eleenter i ekaniske syste.. jær 3.. eper 4..3

Detaljer

FY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag:

FY1002/TFY4160 Bølgefysikk. Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl Oppgavene og et kortfattet løsningsforslag: Institutt for fysikk, NTNU FY1002/TFY4160 ølgefysikk Høst 2010 FY1002/TFY4160 ølgefysikk Løsningsforslag til Midtsemesterprøve fredag 15. oktober 2010 kl 08.15 09.45 Fasit på side 10. Oppgavene og et kortfattet

Detaljer

Materiebølger - Elektrondiffraksjon

Materiebølger - Elektrondiffraksjon FY100 Bølgefysikk Institutt for fysikk, NTNU FY100 Bølgefysikk, øst 007 Laboratorieøvelse 3 Materiebølger - Elektrondiffraksjon Oppgave Besteelse av Planck`s konstant ved elektrondiffraksjon. Forslag til

Detaljer

Bevegelsesmengde Kollisjoner

Bevegelsesmengde Kollisjoner eegelsesengde Kollisjoner 4.3.3 neste uke: ingen forelesning ingen gruppeunderisning ingen datalab på grunn a idteiseksaen FYS-MEK 4.3.3 Energibearing energi i systeet er beart: E tot = K +U + E T arbeid

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:

Detaljer

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er

Detaljer

F B L/2. d A. mg Mg F A. Løsningsforslag til øving 5. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014.

F B L/2. d A. mg Mg F A. Løsningsforslag til øving 5. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014. Løsningsforslag til øving 5 Oppgave 1 L/2 d A F A B F B L mg Mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at

Detaljer

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00

Institutt for fysikk. Eksamen i TFY4106 FYSIKK Torsdag 6. august :00 13:00 NTNU Side 1 av 5 Institutt for fysikk Faglig kontakt under eksamen: Professor Johan S. Høye/Professor Asle Sudbø Telefon: 91839082/40485727 Eksamen i TFY4106 FYSIKK Torsdag 6. august 2009 09:00 13:00 Tillatte

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Bevegelsesmengde og kollisjoner

Bevegelsesmengde og kollisjoner eegelsesengde og kollisjoner 4.4.6 Midteisealuering: https://nettskjea.uio.no/answer/7744.htl Oblig 4: nye initialbetingelser i oppgaedel i og j FYS-MEK 4.4.6 Konseratie krefter potensiell energi: U r

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FY 5 - Svingninger og bølger Eksamensdag: 5. januar 4 Tid for eksamen: Kl. 9-5 Tillatte hjelpemidler: Øgrim og Lian: Størrelser

Detaljer

EKSAMEN i TFY4108 FYSIKK

EKSAMEN i TFY4108 FYSIKK Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4108 FYSIKK Eksamensdato: Fredag 14 desember 01 Eksamenstid: 09:00-13:00 Faglig kontakt under eksamen:

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Fysikk-OL Norsk finale 2006

Fysikk-OL Norsk finale 2006 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 6 3. uttakingsrunde Fredag 7. april kl 9. til. Hjelpemidler: Tabell/formelsamling og lommeregner Oppgavesettet består av 6 oppgaver

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

Kap 10 Dynamikk av rotasjons-bevegelse

Kap 10 Dynamikk av rotasjons-bevegelse Kap Dynaikk av rotajon-bevegele. Bete kraftoentet (tørrele og retning) o en ake noralt på papirplanet gjenno O o kraften F i hver av ituajonene er årak til. Objektet o F virker på har i hvert av tilfellene

Detaljer

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall

FYS2130. Tillegg til kapittel 13. Harmonisk oscillator. Løsning med komplekse tall FYS130. Tillegg til kapittel 13 Haronisk oscillator. Løsning ed koplekse tall Differensialligningen for en udepet haronisk oscillator er && x+ ω x = 0 (1) so er en hoogen lineær differensialligning av.

Detaljer

TFY4109 Fysikk Eksamen 14. desember 2015 Side 1 av 22

TFY4109 Fysikk Eksamen 14. desember 2015 Side 1 av 22 TFY4109 Fysikk Eksamen 14. desember 2015 Side 1 av 22 1) Hva blir atmosfærens totale masse i en forenklet modell med uniform massetetthet 1 kg/m 3, atmosfæretykkelse 10 km, og kuleformet jordklode med

Detaljer

sk fysikk Støvneng Tlf.: 45 Andreas Eksamensdato: 7. august Rottmann, senest 28. august. Dato Sign

sk fysikk Støvneng Tlf.: 45 Andreas Eksamensdato: 7. august Rottmann, senest 28. august. Dato Sign Instituttt for fysikk Eksaensoppave i FY1001 ekaniskk fysikkk TFY4145 ekanis sk fysikk Fali kontakt under eksaen: Jon Andreas tøvnen Tlf.: 45 45 55 33 Eksaensdato: 7. auust 2013 Eksaenstid (fra-til): 0900-1300

Detaljer

6. Rotasjon. Løsning på blandede oppgaver.

6. Rotasjon. Løsning på blandede oppgaver. 6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde

Detaljer

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK [bokmål] Faglig kontakt under eksamen: Navn: Helge Redvald Skullerud Tlf: 73593625 EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7 mai 2001 Tid:

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

r+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag TFY45 Fysikk Eksamenstrening: Løsningsforslag ) I oljebransjen tilsvarer fat ca 0.59 m 3. I går var risen for WTI Crude Oil 97.44 US dollar r fat. Hva er dette i norske kroner r liter, når NOK tilsvarer

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007

FYSIKK-OLYMPIADEN Andre runde: 1/2 2007 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN 006 007 Andre runde: / 007 Skriv øverst: Navn, fødselsdato, e-postadresse, hjemmeadresse og skolens navn Varighet:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

2) Hva er tykkelsen på kuleskallet av stål i ei hul petanquekule med diameter 80.0 mm og masse 800 g?

2) Hva er tykkelsen på kuleskallet av stål i ei hul petanquekule med diameter 80.0 mm og masse 800 g? TFY4104 Fysikk Eksamen 17. august 2016 Side 1 av 10 I petanque brukes hule stålkuler med diameter mellom 70.5 og 80.0 mm og masse mellom 650 og 800 g. Oppgavene 1 4 dreier seg om slike kuler. 1) Stål har

Detaljer

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014 TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN NYNORSK TEKST UNIVERSITETET I BERGEN Det matematisk-naturvitskaplege fakultet, V. 2004. Eksamen i emnet MAT25 - Mekanikk. Måndag 7. juni 2004, kl 09.00-4.00. Tillatne hjelpemiddel: Ingen Oppgåver med svar

Detaljer

Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK

Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Institutt for fysikk Eksamensoppgave i TFY4145 MEKANISK FYSIKK FY1001 MEKANISK FYSIKK Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433 Eksamensdato: Mandag

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Bølgerenna p. Hensikt. varierende frekvens og amplitude kan genereres via en signalgenerator og

Bølgerenna p. Hensikt. varierende frekvens og amplitude kan genereres via en signalgenerator og Bølgerenna Hensikt Bølgerenna p a bildet ovenfor brukes til a studere vannbølger. Bølger med varierende frekvens og amplitude kan genereres via en signalgenerator og en motor. Det er blant annet mulig

Detaljer

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.

EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 05 06 Andre runde:. februar 06 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:

Detaljer