Løsningsforslag til eksamen i TFY4170 Fysikk august 2004
|
|
- Vigdis Espeland
- 1 år siden
- Visninger:
Transkript
1 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk 1. august 004 Oppgave 1. Interferens a) Amplituden i avstand r fra en kule-bølge er y(r, t) = A r exp i(kr ωt + φ). (1) Den totale effekten som brer seg gjennom et kule-skall er bevart. Arealet av et kule-skall er 4πr. Intensiteten i avstand r fra høytaler nummer er derfor I (r) = P 4πr = y (r, t). () Vi velger dermed A = P /(4π). Vi setter inn P =1W og r = 100m og får I(r) = P 4πr = Wm. (3) Nedre hørselsgrense er I 0 =10 1 Wm. Lydstyrken i desibel er dermed β = 10 log I I 0 = 10 log = 69dB. (4) b) Her er avstanden d mellom høytalerne mye mindre enn avstanden r. Avstands-forskjellen mellom høytaler 1 og høytaler og mellom høytaler og høytaler 3 er r = dsinθ. (5) Det resulterer i en relative fase-forskjell p.g.a. gang-avstanden som er α = k r. (6) Den resulterende amplituden fra de tre høytalerne blir dermed y(r, t) = y 1 (r, t)+y (r, t)+y 3 (r, t) (7) [ ] P3 = y (r, t) 1+ e i(φ 3 φ +α) P1 + e i(φ 1 φ α) (8) P P [ P 1 = 1+4e i(φ 3 φ +kd sin θ) + 1 ] 4π r 4 ei(φ 1 φ kd sin θ). (9)
2 Løsning TFY4170 Fysikk, 1. august 004 Side av7 Intensiteten er dermed gitt ved I = P 4πr 1+4ei(φ 3 φ +kd sin θ) ei(φ 1 φ kd sin θ) (10) I = P 4πr [ cos (φ 3 φ + kd sin θ)+ 1 cos (φ 1 φ kd sin θ)+cos(φ 3 φ 1 +kd sin θ)]. (11) Vi setter nå fasene like hverandre. Intensiteten forenkles dermed til I = P 4πr [ cos (kd sin θ) + cos (kd sin θ)] (1) I = Wm [ cos (kd sin θ) + cos (kd sin θ)]. (13) Vi finner dessuten kd = πf v d = π = (14) Maksima/minima opptrer når I/( θ) = 0. Derivasjon gir et maksima for θ =0og θ = π og når [ sin (kd sin θ) ] cos (kd sin θ) = 0 17 (15) det vil si når kd sin θ = nπ, (16) der n er et heltall. Insetting gir når n er et like hel-tall maksimums-intensiteten I = Wm [ ]. (17) Maksimums-retningene er θ max = 0 grader, 50 grader, 130 grader, 180 grader, 30 grader og 310 grader. (18) Minimums-intensiteten finnes når n er et odde tall: I = Wm [ ]. (19) De lokale minimums-retningene er θ min = 3 grader, 90 grader, 157 grader, 03 grader, 70 grader og 337 grader. (0) c) Intensiteten er størst i dette punktet når alle fasene er like, φ 1 = φ = φ 3. d) Intensiteten er gitt ved I = P 4πr [ cos (φ 3 φ + kd sin θ)+ 1 cos (φ 1 φ kd sin θ)+cos(φ 3 φ 1 +kd sin θ)]. (1)
3 Løsning TFY4170 Fysikk, 1. august 004 Side 3av7 Vi setter inn φ 1 =0=φ 3, θ = π/ og bruker P /(4πr )= Wm får I = [ cos (ωt)] I = [ cos ωt] 10 4 Wm () Oppgave. Elektromagnetiske bølger Maxwells ligninger for det elektriske feltet, E ( r, t ), og det magnetisk feltet, B ( r, t), i posisjonen r ved tiden t i tomt rom er E = 0, B = 0, E = B t, B = E µ 0 ε 0 t, der ε 0 er dielektrisitetskonstanten og µ 0 er den magnetiske permeabiliteten i vakuum. a) Vi operer med på den tredje av Maxwell s ligninger: ( E = ) B t. Vi bruker E = E E som ved hjelp av den første av Maxwell s ligninger, E = 0, blir E = E. Tilsvarende kan vi ved å bruke den fjerde Maxwell ligningen finne ( ) B t = t B = µ 0 ε 0 E t. Dermed finner vi E = ε0 µ 0 t E. Tilsvarende kan vi finne ved å operere med på den fjerde av Maxwell s ligninger: B = ε 0 µ 0 E t ( B B = ε0 µ 0 ) B t t
4 Løsning TFY4170 Fysikk, 1. august 004 Side 4av7 og ved hjelp av B = 0 har vi B = ε0 µ 0 t B som vi skulle vise. Bølgehastigheten kan finnes ved å se på en planbølge som forplanter seg i en retning, f.eks. x-retningen. Innsatt i bølgeligningen gir dette E = E 0 cos (kx ωt). k = ε 0 µ 0 ω, slik at bølgehastigheten er b) Det elektriske feltet er v = ω k = 1 ε0 µ 0. E ( r, t )= E 0 cos k r ωt + ϕ, der E 0 er amplituden, k er bølgevektoren, r er posisjonen, ω er vinkelfrekvensen, t er tiden og ϕ er en fasekonstant. 1. Forholdet mellom amplituden og bølgevektoren: Maxwell s første ligning ovenfor gir E = 0, k E 0 sin k r ωt + ϕ = 0. Dette betyr at bølgevektoren og amplituden må være ortogonale. Det elektriske feltet er transversalt forplantningsretningen: k E0 =0.. Forholdet mellom bølgevektoren og vinkelfrekvensen: En lignende beregning som ovenfor gir forholdet mellom bølgevektoren og vinkelfrekvensen: v = ω k = 1 ε0 µ Polariseringen til den elektromagnetiske bølgen har: Utslaget til det elektriske feltet er alltid langs E 0, slik at bølgen er lineær-polarisert.
5 Løsning TFY4170 Fysikk, 1. august 004 Side 5av7 c) Det magnetiske feltet beskrives ved B ( r, t) = B 0 cos kb r ω B t + ϕ B. Maxwell s tredje ligning ovenfor gir E = B t k E 0 sin k r ωt + ϕ = ω BB0 sin kb r ω B t + ϕ B. Vi ser dermed at vi kan uttrykke ω B = ω, ϕ B = ϕ, kb = k, B 0 = 1 ω k E 0. Oppgave 3. Materialfysikk a) Med degenerasjon menes at flere forskjellige sett med kvante-tall gir den samme energien. Fermioner kan ikke befinner seg i samme kvante-tilstand. Egenenergien er gitt ved E n1,n,n 3 = E 0 ( n 1 + n + n 3), (3) Energi-nivåene og degenerasjons-graden for mange-partikkel-systemet blir Tilstand Energi (E 0 ) Degenerasjon Ved null temperatur er de laveste energi-nivåene fylt. Vi ser dermed at vi fyller de fire nederste energi-nivåene med 6 partikler. Total-energien blir E = E 0 ( ) = 33E 0. (4) Bosoner kan være i samme kvantetilstand. Ved null temperatur vil da alle partiklene befinne seg i den samme laveste energi-tilstanden, E 1,1,1 =3E 0. Total-energien er da 6 E 1,1,1 =18E 0.
6 Løsning TFY4170 Fysikk, 1. august 004 Side 6av7 b) Ett elektron er beskrevet ved den stasjonære tilstanden ( π ) 1/4 ( a ψ(x) = exp a (x b)) (5) der a og b er to konstanter. Forventningsverdien til posisjonen er gitt ved x = dxψ (x)xψ(x). Vi ser at bølgefunksjonen er sentrert rundt x = b og velger derfor en ny integrasjonsvariabel x = u + b: x = duψ (u + b)(u + b) ψ(u + b). Siden bølgefunksjonen er normert og sentret rundt origo i koordinatsystemet bestem av u finner vi x = b. Tilsvarende kan vi nå finne for forventningsverdien til impulsen: p = dxψ d (x) ψ(x) i dx = dxψ d (u + b) ψ(u + b) i du = 0 siden ψ(u + b) er symmetrisk rundt u = 0, slik at dψ(u + b)/du er antisymmetrisk rundt u =0. c) Frie elektroner i metaller blir beskrevet som elektroner i en tre-dimensjonal kube med lengde L og elektron-tetthet N. Hva menes med Fermi-energien til systemet? Uttrykk Fermi-energien ved elektronets masse og elektron-tettheten. Fermi-energien er maksimal-energien til en partikkel ved det absolutte null-punkt for et mange-fermion system. For en tre-dimensjonal partikkel i boks-system er energi-nivåene gitt ved E nx,n y,n z = ( π ) (n m L x + n y + ) n z, hvor n x, n y og n z er positive diskrete heltall. Det er to spinn-tilstander. Antall parikler innenfor en radius n F med positive heltall (1/8 av en hel kule) er dermed N = 1 8 4π 3 n3 F = π 3 n3 F Fermi-energien er dermed gitt ved E F = ( π ) n m L F, = ( ( π 3N m L) π ).
7 Løsning TFY4170 Fysikk, 1. august 004 Side 7av7 Vi vet også at antall partikler er N = n e L 3, der n e er elektron-tettheten. Dermed blir E F = m (3n eπ ) /3. (6) d) Normale metaller Et normalt metall er en god leder av elektrisk strøm. I en leder ligger Fermi-energien i et område der tettheten av tilstander er stor og dermed blir ledningsevnen god fordi det er mange elektroner som kan forflytte seg. Halvleder En halvleder er en mellomting mellom en leder og en isolator der Fermienergien ligger i et gap mellom et fylt og et ikke fylt energi-bånd, men gapet er ikke like stort som for en isolator og halvlederen kan lede strøm ved høyere temperaturer eller hvis halvlederen dopes med urenheter. Ferromagnet En ferromagnet er et ledende metall som har et makroskopisk magnetisk moment. Det makroskopiske magnetiske moment skyldes at flere tilstander med spinn i en bestemt retning er okkupert enn tilstander med spinn i den motsatte retningen. Superleder En superleder har null motstand ved lave temperaturer og den har en Meissner effekt som betyr at et eksternt magnetfelt ikke kan trenge inn i superlederen.
Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004
NTNU Side 1 v 7 Institutt for fysikk Fkultet for nturvitenskp og teknologi Dette løsningsforslget er på 7 sider. Løsningsforslg til eksmen i TFY417 Fysikk Fysikk Torsdg. desember 4 Oppgve 1. Kvntemeknikk
Enkel introduksjon til kvantemekanikken
Kapittel Enkel introduksjon til kvantemekanikken. Kort oppsummering. Elektromagnetiske bølger med bølgelengde og frekvens f opptrer også som partikler eller fotoner med energi E = hf, der h er Plancks
Mandag 04.09.06. Institutt for fysikk, NTNU TFY4160/FY1002: Bølgefysikk Høsten 2006, uke 36
Institutt for fsikk, NTNU TFY4160/FY1002: Bølgefsikk Høsten 2006, uke 36 Mandag 04.09.06 Del II: BØLGER Innledning Bølger er forplantning av svingninger. Når en bølge forplanter seg i et materielt medium,
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form
Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske
Øving 9. Oppgave 1. E t0 = 2. Her er
FY00/TFY460 Bølgefysi. Institutt for fysi, NTNU. Høsten 03. Veiledning: Mandag. og 8 og fredag 6. otober. Innleveringsfrist: tirsdag 9. otober l :00. Øving 9 Tema: Dipol-Ståling, reflesjon og transmisjon
EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
Mandag 21.08.06. Mange senere emner i studiet bygger på kunnskap i bølgefysikk. Eksempler: Optikk, Kvantefysikk, Faststoff-fysikk etc. etc.
Institutt for fysikk, NTNU TFY46/FY2: Bølgefysikk Høsten 26, uke 34 Mandag 2.8.6 Hvorfor bølgefysikk? Man støter på bølgefenoener overalt. Eksepler: overflatebølger på vann akustiske bølger (f.eks. lyd)
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Kapittel 4. Bølger, del 1. 4.1 Innledning* viser hvordan bølgen brer seg i rommet etter som tiden går For en harmonisk bølge (form som en sinuseller
Kapittel 4 Bølger, del 1 [Copyright 2009: A.I.Vistnes.] 4.1 Innledning* Bølger utgjør hovedparten av kurset vårt, og vi skal dvele med mange aspekter av bølger. I dette kapittelet skal vi først og fremst
Sammendrag, uke 13 (30. mars)
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2005 Sammendrag, uke 13 (30. mars) Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Spenningskilde
EKSAMENSOPPGAVE I FYS-1002
Side 1 av 5 sider EKSAMENSOPPGAVE I FYS-1002 Eksamen i : Fys-1002 Elektromagnetisme Eksamensdato : 29. september, 2011 Tid : 09:00 13:00 Sted : Administrasjonsbygget B154 Tillatte hjelpemidler : K. Rottmann:
Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 10. mai 2004, kl. 14.00-17.00 (3 timer)
1 NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Eksamen i: FYS145 - Kvantefysikk og relativitetsteori Eksamensdag: Mandag 1. mai 24, kl. 14.-17. (3 timer) Tillatte hjelpemidler:
KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK
BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE
Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.
Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 9. desember 2005 Tid: kl 09.00-13.
Bokmål Side 1 av 1 Studentnummer: Studieretning: NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK Fredag 9. desember 2005 Tid: kl 09.00-13.00 Faglig kontakt
Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
Elektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400.
Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høsten 2007 Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400. LØSNINGSFORSLAG 1) En masse er festet til ei fjær og utfører udempede
UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2
SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående
Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge.
Energibånd i faste stoffer. Et prosjekt i emnet FY1303 elektrisitet og magnetisme, skrevet av Tord Hompland og Sigbjørn Vindenes Egge. 1 Innholdsfortegnelse. Sammendrag...3 Innledning... 4 Hvorfor kvantemekanisk
EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt under eksamen: Navn: Helge E. Engan Tlf.: 9440 EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING
Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU
Side 1 av 8 Bokmål Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU TFY410 Fysikk Studentnr Studieretning. Faglig kontakt under eksamen: Navn: Ragnvald Mathiesen Tlf.: 7359 336
Eksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
Onsdag 04.03.09 og fredag 06.03.09
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 10 Onsdag 04.03.09 og fredag 06.03.09 Ohms lov [FGT 26.3; YF 25.2,25.3; TM 25.2; AF 24.3, LHL 21.2, DJG 7.1.1] Må ha
Mekaniske svingesystemer. Institutt for fysikk, NTNU
Oppgave 2 Lab TFY4120 Mekaniske svingesystemer Institutt for fysikk, NTNU 1.1 Innledning I denne oppgaven skal vi studere begrepene fri og tvungne svingninger i et enkelt svingesystem. Vi skal spesielt
Fysikkdag for Sørreisa sentralskole. Lys og elektronikk. Presentert av: Fysikk 1. Teknologi og forskningslære. Physics SL/HL (IB)
Fysikkdag for Sørreisa sentralskole Tema Lys og elektronikk Presentert av: Fysikk 1 Teknologi og forskningslære Og Physics SL/HL (IB) Innhold Tidsplan... 3 Post 1: Elektrisk motor... 4 Post 2: Diode...
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON
Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Helge E. Engan Tlf.: 94420 EKSAMEN I EMNE TFE4130 BØLGEFORPLANTNING
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
Fasehastighet: Gruppehastighet:
Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store
Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 17.03.2015
Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:
Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PRØVE 2 I FYS135 - ELEKTRO- MAGNETISME, 2004.
NOGES LANDBUKSHØGSKOLE Institutt for matematiske realfag og teknologi LØSNING TIL PØVE 2 I FYS3 - ELEKTO- MAGNETISME, 2004. Dato: 20. oktober 2004. Prøvens varighet: 08:4-09:4 ( time) Informasjon: Alle
Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og
EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
Basis dokument. 1 Solcelle teori. Jon Skarpeteig. 23. oktober 2009
Basis dokument Jon Skarpeteig 23. oktober 2009 1 Solcelle teori De este solceller er krystallinske, det betyr at strukturen er ordnet, eller periodisk. I praksis vil krystallene inneholde feil av forskjellige
EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Eksamen i FYS-0100. Oppgavesettet, inklusiv ark med formler, er på 8 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 23. februar, 2012 Tid for eksamen : kl. 9.00-13.00 Sted : Administrasjonsbygget, Rom B154 Hjelpemidler : K. Rottmann: Matematisk Formelsamling,
Kvantemekanisk sammenfiltring
Kvantemekanisk sammenfiltring Sammenfiltring av fotoner Jon Magne Leinaas Fysisk institutt, Universitetet i Oslo Landskonferansen om fysikkundervisning Gol, 12. august 2008 Hva er kvantemekanisk sammenfiltring?
NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK
Studentnummer: Studieretning: Bokmål Side 1 av 1 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Jon Otto Fossum,
Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag
E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste
Brytning av strøm. - Hvordan brytes strøm? - Hvordan lages brytere? Den elektriske lysbuen, koblingsoverspenninger etc.
Brytning av strøm - Hvordan brytes strøm? Den elektriske lysbuen, koblingsoverspenninger etc. - Hvordan lages brytere? Teknologi, materialer, design, etc. Magne Runde SINTEF Energiforskning og NTNU Strømmen
EKSAMEN VÅREN 2007 SENSORTEORI. Klasse OM2
SJØKRIGSSKOLEN Tirsdag 29.05.07 EKSAMEN VÅREN 2007 Klasse OM2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0
Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0
Energiband i krystallar. Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi
Energiband i krystallar Halvleiarar (intrinsikke og ekstrinsikke) Litt om halvleiarteknologi Energibandstrukturen til eit material avgjer om det er ein leiar (metall), halvleiar, eller isolator Energiband
Løysingsframlegg eksamen TFY4215/FY1006 Innføring i Kvantemekanikk vår 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg eksamen TFY45/FY6 Innføring i Kvantemekanikk vår 3 Oppgåve Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU
+ - 2.1 ELEKTRISK STRØM 2.1 ELEKTRISK STRØM ATOMER
1 2.1 ELEKTRISK STRØM ATOMER Molekyler er den minste delen av et stoff som har alt som kjennetegner det enkelte stoffet. Vannmolekylet H 2 O består av 2 hydrogenatomer og et oksygenatom. Deles molekylet,
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
Fasehastighet: Gruppehastighet:
Hjelpeark, FYS4 Fra kompendiet. Fotoelektrisk eekt Lys innfallende på en metallplate, elektroner rives løs. Observeres med elektrisk krets gitt ved gur. V > : Frigjorte elektroner dratt mot anoden. Store
KONTINUASJONSEKSAMEN TFY4102 FYSIKK Fredag 12. august 2011 kl. 0900-1300
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 8 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 45 45 55 33 KONTINUASJONSEKSAMEN TFY4102 FYSIKK Fredag 12. august 2011
Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I
FY2045/TFY4250 Kvantemekanikk I, kursopplegg 1 Kursopplegg for FY2045 og TFY4250 KVANTEMEKANIKK I Pensum-litteratur PC Hemmers Kvantemekanikk er et must. En annen god bok er Quantum Mechanics, av B.H.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert
Statiske magnetfelt. Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 19. mars 2012
Statiske magnetfelt Thomas Grønli og Lars A. Kristiansen Institutt for fysikk, NTNU, N-79 Trondheim, Norge 9. mars Sammendrag I dette eksperimentet målte vi med en aksial halleffektprobe de statiske magnetfeltene
EKSAMEN VÅREN 2009 SENSORTEORI. Klasse OM2 og ON1
SJØKRIGSSKOLEN Tirsdag 02.06.09 EKSAMEN VÅREN 2009 Klasse OM2 og ON1 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori OM2 Tabeller i fysikk for den videregående skole Formelsamling i matematikk
LØYSING ØVING 6. Grunntilstanden i hydrogenliknande atom
FY6/TFY45 - Løysing øving 6 Løysing oppgåve LØYSING ØVING 6 Grunntilstanden i hydrogenliknande atom a) Vi merkar oss fyrst at vinkelderivasjonane i Laplace-operatoren gjev null bidrag til r, sidan (r)
Løsningsforslag til EKSAMEN
Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 30. April 03 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.
EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1005 og TFY4165 TERMISK FYSIKK: LØSNINGSFORSLAG Torsdag 6 juni 013 kl 1500-1900 Oppgave 1 Ti flervalgsoppgaver Poeng: pr
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
FYSIKK-OLYMPIADEN 2010 2011 Andre runde: 3/2 2011
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYMPIADEN Andre runde: 3/ Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet:3 klokketimer Hjelpemidler:Tabell
Løsningsforslag. for. eksamen. fysikk forkurs. 3 juni 2002
Løsningsforslag for eksamen fysikk forkurs juni 00 Løsningsforslag eksamen forkurs juni 00 Oppgave 1 1 7 a) Kinetisk energi Ek = mv, v er farten i m/s. Vi får v= m/s= 0m/s, 6 1 1 6 slik at Ek = mv = 900kg
Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I
Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg
Bølgeegenskaper til lys
Bølgeegenskaper til lys Alexander Asplin og Einar Baumann 30. oktober 2012 1 Forord Denne rapporten er skrevet som et ledd i lab-delen av TFY4120. Forsøket ble utført under oppsyn av vitenskapelig assistent
EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2
SJØKRIGSSKOLEN Tirsdag 30.05.06 EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående
Løsningsforslag til øving 14
Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov
EKSAMEN Styring av romfartøy Fagkode: STE 6122
Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,
EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna: Norsk russisk ordbok
EKSAMENSOPPGAVE Eksamen i: FYS-1002 Dato: Fredag 12.juni 2015 Tid: Kl 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling A.T. Surenovna:
Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd.
Foreleser: INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?
0.1 Kort introduksjon til komplekse tall
Enkel introduksjon til matnyttig matematikk Vi vil i denne innledningen introdusere litt matematikk som kan være til nytte i kurset. I noen tilfeller vil vi bare skrive opp uttrykk uten å komme inn på
Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler
Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor
Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven
Den franske fysikeren Charles de Columb er opphavet til Colombs lov.
4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes
Løsningsforslag til øving 10
FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU Våren 2015 Løsningsforslag til øving 10 Oppgave 1 a) Helmholtz fri energi er F = U TS, slik at df = du TdS SdT = pdv SdT +µdn, som viser at Entalpien
Kapittel 15. Skinndybde og bølgeledere. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg.
Kapittel 15 Skinndybde og bølgeledere Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. c1 En liten del av et mikrobølgeoppsett med bølgeledere for vel 9 GHz. Oppsettet brukes i elektron
Introduksjon til partikkelfysikk. Trygve Buanes
Introduksjon til partikkelfysikk Trygve Buanes Tidlighistorie Fundamentale byggestener gjennom historien De første partiklene 1897 Thomson oppdager elektronet 1919 Rutherford oppdager protonet 1929 Skobeltsyn
Eksamen, høsten 13 i Matematikk 3 Løsningsforslag
Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed
antall db = 10 log 10 ( I I ref X = 10 log 10 (Z) = et tall
Løsningsforslag Eksamen i FYS 230 Svingninger og bølger, 4. juni 2009. Oppgave a Uttrykkene og 3 er ekvivalente. Begge kan angi en svingning både med vilkårlig amplitude og vilkårlig fase. Uttrykk 2 kan
LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00
Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007
Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det
Løsningsforslag til prøve i fysikk
Løsningsforslag til prøve i fysikk Dato: 17/4-2015 Tema: Kap 11 Kosmologi og kap 12 Elektrisitet Kap 11 Kosmologi: 1. Hva menes med rødforskyvning av lys fra stjerner? Fungerer på samme måte som Doppler-effekt
Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten
Kreftenes opprinnelse i rommet (Naturkreftenes prinsipp) Frode Bukten Dette er en tese som handler om egenskaper ved rommet og hvilken betydning disse har for at naturkreftene er slik vi kjenner dem. Et
Oppgave 1. Svaralternativer. Oppgave 2. Svaralternativer
Oppgave 1 To biljardkuler med samme masse m kolliderer elastisk. Den ene kulen er blå og ligger i ro før kollisjonen, den andre er rød og beveger seg med en fart v 0,r = 5 m s mot sentrum av den blå kula
r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
Løsningsforslag til øving 12
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 014. Løsningsforslag til øving 1 Oppgave 1 a) I følge Galileo: (S = Sam, S = Siv, T = Toget) I følge Einstein: Dermed: Her har vi brukt
Studieretning: Allmenne, økonomiske og administrative fag
Eksamen Fag: AA654 Matematikk 3MX Eksamensdato: 3. juni 005 Vidaregåande kurs II /Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar / Elever Oppgåva ligg føre på begge
8. Tre-dimensjonal boks. Ideelle Fermiog Bose-gasser
TFY4250/FY2045 Tillegg 8 - Tre-dimensjonal boks. Ideelle Fermi- og Bose-gasser 1 TILLEGG 8 8. Tre-dimensjonal boks. Ideelle Fermiog Bose-gasser I dette Tillegget starter vi med tredimensjonal boks (8.1),
Andreas. har 8 sider
Instituttt for fysikk Eksamensoppgave i TFY 4102 Fysikk Faglig kontakt under eksamen: Jon Andreas Støvneng Tlf.: 45 45 55 33 Eksamensdato: 8. juni 2013 Eksamenstid (fra-til): 0900-1300 Hjelpemiddelkode/Tillattee
Fakultet for teknologi, kunst og design Teknologiske fag. Eksamen i: Fysikk for tretermin (FO911A)
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Fysikk for tretermin (FO911A) Målform: Bokmål Dato: 26/11-2014 Tid: 5 timer Antall sider (inkl. forside): 5 Antall oppgaver: 5 Tillatte
Oppgaver i naturfag 19-åringer, fysikkspesialistene
Oppgaver i naturfag 19-åringer, fysikkspesialistene I TIMSS 95 var elever i siste klasse på videregående skole den eldste populasjonen som ble testet. I naturfag ble det laget to oppgavetyper: en for alle
11 Harmonisk oscillator og dreieimpuls vha operatoralgebra
TFY4250/FY2045 Tillegg 11 - Harmonisk oscillator og dreieimpuls operatoralgebra 1 TILLEGG 11 11 Harmonisk oscillator og dreieimpuls vha operatoralgebra I Tillegg 3 er den harmoniske oscillatoren gitt en
Eksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA6524 Matematikk 3MX Eksamensdato: 4. juni 2007 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Oppgåva ligg føre på begge
Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?
Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering
LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 5 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Torsdag 14.1.24,
SENSURVEILEDNING. Velg mellom: masser, statiske elektriske ladninger, bevegelige elektriske ladninger, fotoner
SENSURVEILEDNING EMNEKODE OG NAVN Naturfag 2, EMNE 2, LGU53005-A. Fysikk er 51 %, SEMESTER/ ÅR/ EKSAMENSTYPE 4 timers skriftlig eksamen, ORDINÆR EKSAMEN 07.05.2014 vår 2014 OPPGAVETEKSTEN Oppgave 1 (20%)
Enkle kretser med kapasitans og spole- bruk av datalogging.
Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet
Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013
Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet