Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
|
|
- Ann-Kristin Thorbjørnsen
- 9 år siden
- Visninger:
Transkript
1 Oppgave 1 a) Ei ideell fjær har fjærkonstant k = [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator. b) Finn hvilken verdi vi må ha for b for å få kritisk demping. Hvilke verdier av b gir svingninger i dette systemet? c) Vi velger b = 200 [Ns/m] og gir massen startfarten v 0 = 1.00 [m/s] fra startposisjonen x 0 = 0 [m]. Skriv opp ligningen for utsvinget x(t). d) Bruk de oppgitte tallverdiene for startbetingelsene og vis at tiden fra starten og til massen når sitt største utsving er gitt av t(b,m,ω) = 1 ( ) 2mω ω tan 1 b e) Sett inn tallverdier for b,m og ω og finn tiden til største utsving. Sammenlign denne verdien med tilsvarende tid for et udempet svingesystem med ω = 5.0 [rad/s]. Gi en forklaring på denne forskjellen. f) Svingesystemet i c) skal simuleres med en elektrisk krets som har en spole L = 10.0 [H]. Finn hvilke verdier vi må bruke for C og R i svingekretsen. Finn den stø rste strømmen I som vil gå i denne kretsen. Oppgave 2 a) To ladninger Q og 8Q ligger på x-aksen til et kartesisk koordinatsystem. Finn feltstyrken E (størrelse og retning) i punktet P på y-aksen, se figuren. P y (0, 1) Q -8Q ( 3, 0) x To uendelige lange, rette ledninger ligger parallelt med x-aksen og i xy-planet til et kartesisk koordinatsystem, se figuren. Hver ledning har ladningen λ [C/m]. 1
2 z 1 [m] 1 [m] λ x λ b) Gi en forklaring på feltstyrkeverdien langs x-aksen. Vis at feltstyrken i xy-planet og mellom de 2 lederne er λ y E(y) = πɛ 0 (1.0 y 2 ) ( ĵ) c) En punktmasse holdes i ro i xy-planet mellom de 2 lederne. Massen har en ladning med samme fortegn som λ. Gi en kvalitativ beskrivelse av bevegelsen til massen når den slippes og kan bevege seg fritt. ( Se bort fra tyngdefeltet) d) Bruk ligningen i b) og finn potensialet V (y) i xy-planet mellom de 2 lederne, referert til potensialet V 0 i origo. e) Finn et uttrykk for feltstyrken langs z-aksen (egentlig xz-planet). Finn hvor feltstyrken har størst tallverdi og bestem den største feltstyrken. Lag en skisse av feltstyrken i z-intervallet [ 10, 10] [m] for λ = [C/m]. Oppgave 3 En uendelig lang, rett ledning ligger på x-aksen til et kartesisk koordinatsystem. Ledningen fører strømmen I 1 = 5.00 [A] i positiv x-retning. a) En punktladning med ladning q = 2.00 [nc] har hastigheten v = î [m/s]. Punktladningen befinner seg i punktet (0.0, 0.05, 0.0) [m]. Finn kraften F (størrelse og retning) på q som skyldes strømlederens magnetfelt. b) En rett strømleder med lengde L = 20.0 [cm] ligger parallelt med x-aksen. Denne lederen fører strømmen I 2 = 2.00 [A] i positiv x-retning. Avstanden mellom I 1 og I 2 er 10.0 [cm]. Finn kraften F 2 (størrelse og retning) på I 2 på grunn av magnetfeltet fra I 1. En kvadratisk strømsløyfe ligger i xy-planet som vist i figuren. Sløyfen inneholder motstanden R. 2
3 y L = 0.2 [m] z l l R x I1 c) Vis at magnetfluksen gjennom sløyfen på grunn av magnetfeltet fra I 1 er Φ = ln(2) µ 0 2π I 1 L d) Strømmen i I 1 endres til en vekselstrøm, i 1 (t) = 320 sin(100πt) [A]. Finn den induserte spenningen ε(t) i sløyfen (sett inn tallverdier fra figuren). Bestem den største strømmen i sløyfa når R = 2.00 [ohm]. SLUTT PÅ OPPGAVEN 3
4 Oppgave 1 a) F = kx = = 390 [N] b) Kritisk demping (ut fra formelheftet): ω = k m ( ) 2 b = 0 2m ( ) 2 b = k 2m m = b = 4km b = = 1020 [Ns/m] Vi får svingninger for positive verdier av ω, fra formelheftet: ( ) 2 k b m > 0 2m Vi får svingninger for b < 1020 [Ns/m] ( Store verdier for b gir et system som ikke svinger, men som bare beveger inn mot likevekt uten å bevege seg ut på den andre siden ) c) Alternativ I) Siden b er mindre enn b kritisk, vil vi ha et dempet svingesystem. Beregner amplituden A, vinkelfrekvensen ω og fasekonstanten φ direkte fra formler i formelarket: ( ) ω = 100 = 5.0 [rad/s] A = = 0.2[m] 5 ( ) 1 φ = tan 1 = π 0 2 x(t) = 0.2e t cos (5t π/2) = 0.2e t sin (5t) [m] Alternativ II) Vi kan starte med diff.ligningen for harmonisk oscilator, se formelarket. Bruker 2.gradsligningen for r: r 1,2 = b ± b 2 4k m m 2 m 2 r 1,2 = 2 ± = 1 ± 5i 4
5 e ix = cosx + i sin x x(t) = C 1 e ( 1+5i)t + C 2 e ( 1 5i)t = e t ( C 1 e i 5t + C 2 e i 5t) x(t) = e t (C 1 (cos(5t) + i sin(5t)) + C 2 (cos(5t) i sin(5t))) Bestemmer C 1 og C 2 ved hjelp av startbetingelsene: x(0) = 0 = 1 (C 1 (1 + i 0) + C 2 (1 i 0)) = C 2 = C 1 Setter dette inn i x(t) og deriverer for å bruke startbetingelsen for farten: x(t) = C 1 e t ((cos(5t) + i sin(5t)) + ( 1)(cos(5t) i sin(5t))) = 2iC 1 e t sin(5t) v(t) = dx(t) = 2iC 1 e t ( sin(5t) + 5cos(5t)) dt v(0) = 1.0 = 2iC 1 (0 + 5) = 10iC 1 = C 1 = 0.1i C 1 blir imaginær, dette gir oss en reell funksjon som svar! x(t) = 2i 0.1i e t sin(5t) = 0.2e t sin(5t) Dette er samme svar som ovenfor. Vanligvis foretrekker vi å skrive dette med en (positiv) amplitude der minustegn settes inn som en fasevinkel: x(t) = 0.2e t cos(5t π/2) d) Skriver om ligningen for x(t) ved å sette inn startbetingelsene v 0 = 1.00 og x 0 = 0 : x(t) = 1 ω e (b/2m)t sin(ωt) Deriverer og setter den deriverte lik 0: dx dt = 1 ω e (b/2m)t tan (ωt) = 2mω b [ ] b sin(ωt) + ω cos(ωt) = 0 2m ) = t = 1 ω tan 1 ( 2mω b qed (På grunn av dempingen e (b/2m)t vil etterfølgende utsving være mindre enn det første) e) Med tallverdier: Uten dempning: t = 1 5 tan 1 (5) = [s] t = T 4 = 2π 4ω [s] 5
6 t = 1 ω tan 1 ( ) = 1 π ω [s] Forskjellen skyldes at eksponentialfunksjonen e (b/2m)t er en faktor som kan sees på som en avtagende amplitude som vil deformere sinusfunksjonen slik at maksimumsverdien forskyves framover i tid (eksp.funksjonen avtar fra 1 mot 0 med økende t). Dette sees tydelig fra en graf som inneholder utsvinget x(t) ( både ) med og uten dempeleddet e (b/2m)t. 2mω Fra ligningen i d) ser vi også at faktoren tan 1 gir en vinkel som starter ved π/2 b med b = 0 (ingen demping) og som avtar mot 0 med økende b. f) For å bevare bevegelsesligningen når vi går fra det mekaniske til det elektriske svingesystemet kan vi bruke relasjonene gitt i formelarkets ligninger for x(t) ogi(t): R L = b m 1 CL = k m = R = = C = = 20 [Ω] = 3.85 [mf] I vil numerisk være lik x maks, vi setter inn t = 1 5 tan 1 (5) fra e) inn i ligningen for x(t) fra del c): I = i ( t = 0.2 tan 1 (5) ) = 0.2e 0.2 tan 1 (5) sin ( tan 1 (5) ) = [A] Oppgave 2 a) Bruker ligningen for E fra en punktladning (se formelarket): 1 j E 1 = kq( (0 0) 2 + (1 0) 2) = kq j 3/2 3 i + 1 j E 2 = k( 8Q) ( (0 ) ) = 8kQ ( 3 i + 1 ( ) j ) = kq 2 3/2 3 i j 3 + (1 0) 2 8 Summerer de 2 vektorene: Det elektriske feltet peker i positiv x-retning. E = E1 + E 2 = 3Q 4πɛ 0 i b) x-aksen ligger like langt fra de 2 lederne som har sammen fortegn på ladningen = E = 0 på x-aksen. For en uendelig lang, rett leder er feltstyrken utenfor lederen gitt som E = 2k λ/r, der r er regnet ut fra lederens senterakse (se formalarket). For å finne feltet samlet fra begge lederne 6
7 vi avstanden r med 1.0 y, retningen er ĵ for y < 1.0: E 1 = 2kλ 1.0 yĵ For lederen i posisjonen y = 1.0 erstatter vi r med y, retningen er ĵ for y > 1.0: Den totale feltstyrken blir: E 1 = 2kλ yĵ E = E1 + E 2 = 2kλ ( y y ) ĵ = λ πɛ 0 y 1.0 y2( ĵ) qed Det elektriske feltet mellom lederne i xy-planet peker hele tiden loddrett inn mot x-aksen. c) I xy-planet mellom lederne vil kraften F på en punktladning alltid peke inn mot x-aksen. For punktene +y og y har kraften samme tallverdi F og den potensielle energien har samme verdi i de 2 punktene. For startpunkt utenom x-aksen vil ladningen svinge fram og tilbake mellom +y og y. Hvis ladningen starter på x-aksen vil den forbli i ro. d) Vi finner V (y) ved å integrere uttrykket for feltstyrken gitt i b). Fra formelarket har vi: y V y V 0 = 0 E(y)cosφdl Siden feltet er rettet langs y-aksen og vi skal integrere langs y-aksen (langs feltet) blir cosφ lik 1. Vi får vi integralet y y dy V y V 0 = 4kλ 1.0 y 2 Innfører ny variabel u = 1.0 y 2 = du = 2y dy y V y V 0 = 2kλ ( ) 1 V y = V 0 + 2kλ ln 1.0 y du u = 2kλ [ ln(1.0 y 2 ) ] y 0, y < 1.0 Potensialet har en minste verdi på x-aksen, det øker utover mot de 2 lederne. e) Siden de to lederne har lik ladning og ligger i samme avstand fra z-aksen vil resultanten ligge langs z-aksen. Feltstyrken fra en uendelig lang, rett leder er gitt i formelheftet. Vi finner feltets z-komponent fra en av lederne og multipliserer med 2. I punktet z er avstanden 7
8 Potensialet (Vy - V0)/2kl y 0 fra lederen r = (1.0 + z 2 ), kan bruke likedannede trekanter til å finne komponenten langs z-aksen: 2kλ E z = (1.0 + z2 ) cos α, cos α = z (1.0 + z2 ) z E = 2Ez k = 4kλ k z 2 Maksimumsverdien finnes ved derivasjon: [ ] de z 2 dz = 0 = 4kλ 2z 2 (1.0 + z 2 ) 2 = z = ±1.0 [m] For grafen har vi: E maks = 2kλ E = z z = 36.0 z z 2 Den største verdien for figuren er E maks = 18.0 [N/C]. Oppgave 3 8
9 Feltstyrken E langs z-aksen 15 E [N/C] z [m] a) Ligningen for magnetfeltet fra uendelig lang, rett strømleder er gitt i formelheftet. Retningen finner vi ved å bruke høyrehåndsregelen. Feltet i punktladningens posisjon blir: B = µ 0 I 1 2πr k = k [T] Kraften på punktladningen blir: F = q ) v B = (î 5 k F = ( ĵ) [N] Punktladningen aksellereres inn mot strømlederen. b) Antar at I 2 er plassert i y = 0.1. Magnetfeltet er halvert i forhold til forrige oppgave. Kraften på I 2 pga. magnetfeltet B 1 fra strø mlederen I 1 blir ( Kraft pårett strømleder, B er konstant langs leder nr. 2 ): F 2 = I 2 L B1 = I 2 L µ 0I 1 (î k) = πr F 2 = ( ĵ) [N] 9
10 (positiv z-akse). Magnetfluksen gjennom sløyfearealet A når flatenormalen da er parallell B blir: B Φ = da = B da Siden B ikke varierer i x-retning men varierer med y lager vi et flatesegment da = L dy: Φ = 2l l µ 0 I 1 2πy L dy = µ 2l 0I 1 L dy 2π y = µ 0I 1 L 2π [ln(y)]2l l l Φ = ln(2) µ 0 2π I 1 L qed d) Fluksen gjennom sløyfa er nå tidsavhengig. Setter inn tallverdier i ligningen fra c): Φ = ln(2) sin(100πt) 0.2 = ln(2) sin(100πt) Φ sin(100πt) Den induserte spenningen finnes ved tidsderivasjon: ε(t)= dφ dt = ln(2) π cos(100πt) ε(t) = sin(100πt π/2) [V ] i maks = ε maks R = = 1.39 [ma] 10
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
b) Vi legger en uendelig lang, rett stav langs y-aksen. Staven har linjeladningen λ = [C/m].
Oppgave 1 a) Punktladningen q 1 = 1.0 10 9 [C] ligger fast i punktet (2.0, 0, 0) [m]. Punktladningen q 2 = 4.0 10 9 [C] ligger i punktet ( 1.0, 0, 0) [m]. I) Finnes det punkt(er) i rommet med elektrisk
Elektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400.
Institutt for fysikk, NTNU FY1002/TFY4160 Bølgefysikk Høsten 2007 Midtsemesterprøve Bølgefysikk Fredag 12. oktober 2007 kl 1215 1400. LØSNINGSFORSLAG 1) En masse er festet til ei fjær og utfører udempede
Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
EKSAMENSOPPGAVE. Eksamen i: FYS- 1002 Elektromagnetisme Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS- 1002 Elektromagnetisme Dato: Tid: Sted: Fredag 31. august 2012 Kl 09:00 13:00 adm. Bygget, rom B154 Tillatte hjelpemidler:
Denne ligninga beskriver en udempet harmonisk oscillator. Torsjons-svingning. En stav er festet midt på en tråd som er festet i begge ender.
Side av 6 Periodiske svingninger (udempede) Masse og fjær, med fjærkonstant k. Massen glir på friksjonsfritt underlag. Newtons. lov gir: mx kx dvs. x + x 0 hvor ω0 k m som gir løsning: xt () C cos t +
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Mandag F d = b v. 0 x (likevekt)
Institutt for fysikk, NTNU TFY46/FY: Bølgefysikk Høsten 6, uke 35 Mandag 8.8.6 Dempet harmonisk svingning [FGT 3.7; YF 3.7; TM 4.4; AF.3; LL 9.7,9.8] I praksis dempes frie svingninger pga friksjon, f.eks.
MAT1100 - Grublegruppen Uke 36
MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)
r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
Krefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
Sammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:
MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2
SJØKRIGSSKOLEN Tirsdag 30.05.06 EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående
Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
TFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 7. Oppgave 1 Prinsippet for en mekanisk klokke er et hjul med treghetsmoment I festet til ei spiralfjr som virker pa hjulet med et dreiemoment som er proporsjonalt
NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK. Fredag 9. desember 2005 Tid: kl 09.00-13.
Bokmål Side 1 av 1 Studentnummer: Studieretning: NORGES TEKNISKNATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I EMNE TFY4120 FYSIKK Fredag 9. desember 2005 Tid: kl 09.00-13.00 Faglig kontakt
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Kontinuasjonseksamen i: FYS 1000 Eksamensdag: 16. august 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert
Fysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
Utsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.
Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.:97692132 Eksamensdato: 07.08.2013 Eksamenstid (fra-til): 09:00-13:00 Hjelpemiddelkode/Tillatte
Impuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
Bølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form
Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske
Norges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
Løsningsforslag til øving 1
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 1 Oppgave 1 a) Vi antar at Hookes lov, F = kx, gjelder for fjæra. Newtons andre lov gir da eller kx = m d x
EKSAMEN I SIF4048 KJEMISK FYSIKK OG KVANTEMEKANIKK Lørdag 2. august 2003 kl. 09.00-15.00
Side 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt under eksamen: Margareth Nupen, tel. 73 55 96 42 Ingjald Øverbø, tel. 73 59 18 67 EKSAMEN I SIF4048 KJEMISK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON
Side 1 av 7 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Helge E. Engan Tlf.: 94420 EKSAMEN I EMNE TFE4130 BØLGEFORPLANTNING
KONTIUNASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
NTNU Norges teknisk-naturvitenskapelige universitet ide 1 av 7 Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon Bokmål/Nynorsk Faglig/fagleg kontakt
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
Løsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING EKSAMEN I FAG 44061 BØLGEFORPLANTNING LØRDAG/LAURDAG 19. MAI 2001 TID: KL 0900-1400
Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKALSK ELEKTRONIKK Faglig/fagleg kontakt under eksamen: Navn: Helge E. Engan Tlf.: 9440 EKSAMEN I EMNE SIE4015 BØLGEFORPLANTNING
. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00
TFY4104 Fysikk Eksamen 17. august V=V = 3 r=r ) V = 3V r=r ' 0:15 cm 3. = m=v 5 = 7:86 g=cm 3
TFY4104 Fysikk Eksamen 17. august 2018 Lsningsforslag 1) C: V = 4r 3 =3 = 5:575 cm 3 For a ansla usikkerheten i V kan vi regne ut V med radius hhv 11.1 og 10.9 mm. Dette gir hhv 5.729 og 5.425 cm 3, sa
FYS1120 Elektromagnetisme H10 Midtveiseksamen
FYS1120 Elektromagnetisme H10 Midtveiseksamen Oppgave 1 a) Vi ser i denne oppgave på elektroner som akselereres gjennom et elektrisk potensial slik at de oppnår en hastighet 1.410. Som vist på figuren
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
EKSAMEN. TILLATTE HJELPEMIDLER: John Haugan: Formler og tabeller. Rottmanns formelsamling (tillatt som overgangsordning)
KANDIDATNUMMER: EKSAMEN FAGNAVN: Matematikk FAGNUMMER: REA4 EKSAMENSDATO: 6. desember 24 SENSURFRIST: 6. januar 25 KLASSE:. klassene, ingenørutdanning. TID: kl. 9. 3.. FAGLÆRER: Hans Petter Hornæs ANTALL
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
Oppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK
Side 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Institutt for fysikk, Realfagbygget Professor Catharina Davies 73593688 BOKMÅL EKSAMEN I EMNE
TFY4160 Bølgefysikk/FY1002 Generell Fysikk II 1. Løsning Øving 2. m d2 x. k = mω0 2 = m. k = dt 2 + bdx + kx = 0 (7)
TFY4160 Bølgefysikk/FY100 Generell Fysikk II 1 Løsning Øving Løsning oppgave 1 Ligning 1) i oppgaveteksten er i dette tilfellet: Vi setter inn: i lign. 1) og får: m d x + kx = 0 1) dt x = A cosω 0 t +
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
Fysikk 3FY AA6227. Elever og privatister. 26. mai 2000. Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag
E K S A M E N EKSAMENSSEKRETARIATET Fysikk 3FY AA6227 Elever og privatister 26. mai 2000 Bokmål Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene på neste
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Løsningsforslag til underveiseksamen i MAT 1100
Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første
Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO
Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.
FY0001 Brukerkurs i fysikk
NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
FYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen
0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?
OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir
,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ
3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre
KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Robert Marskar (48222091) Hjelpemidler: C - pesifiserte
Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk
Kap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn
Fysikkolympiaden Norsk finale 2019 Løsningsforslag
Fysikkolympiaden Norsk finale 09 Løsningsforslag Oppgave Vi kaller strømmene gjennom de to batteriene I og I og strømmen gjennom den ytre motstanden I = I + I. Da må vi ha at U = R I + RI U = R I + RI.
7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
Øving 13, løsningsskisse.
TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Mandag 29. juli kl
Side av 9 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I FAG SIF 4 ELEKTROMAGNETISME
Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU
Side 1 av 8 Bokmål Norges teknisk-naturvitenskapelig universitet Institutt for fysikk, NTNU TFY410 Fysikk Studentnr Studieretning. Faglig kontakt under eksamen: Navn: Ragnvald Mathiesen Tlf.: 7359 336
Oppgave 3: Motstand, Kondensator og Spole
Lab i TFY412 Oppgave 3: Motstand, Kondensator og Spole Institutt for fysikk, NTNU 1.1. INNLEDNING 1 1.1 Innledning Ohms lov, = I, gir sammenhengen mellom spenningsfallet over og strømmen gjennom en motstand.
Forelesningsnotat, lørdagsverksted i fysikk
Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt
FYS 2150.ØVELSE 15 POLARISASJON
FYS 2150.ØVELSE 15 POLARISASJON Fysisk institutt, UiO 15.1 Polarisasjonsvektorene Vi skal i denne øvelsen studere lineært og sirkulært polarisert lys. En plan, lineært polarisert lysbølge beskrives ved
Elektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
Løsningsskisse til eksamen i TFY112 Elektromagnetisme,
Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.
TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
EKSAMEN Styring av romfartøy Fagkode: STE 6122
Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,
Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene
FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal
Eksamen i MIK130, Systemidentifikasjon
DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:
Fysikkolympiaden 1. runde 27. oktober 7. november 2008
Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 27. oktober 7. november 2008 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
Eksempelsett R2, 2008
Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx
Den franske fysikeren Charles de Columb er opphavet til Colombs lov.
4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes
Begrep. Protoner - eller Hvordan få et MR-signal? Kommunikasjon. Hoveddeler. Eksempel: Hydrogen. Hvordan få et signal?
Begrep Protoner - eller Hvordan få et MR-signal? Rune Sylvarnes NORUT Informasjonsteknologi Høgskolen i Tromsø MR - fenomenet magnetisk resonans NMR - kjerne MR, vanligvis brukt om MR på lab (karakterisering
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
Løsningsforslag til avsluttende eksamen i AST1100, høsten 2013
Løsningsforslag til avsluttende eksamen i AST1100, høsten 013 Oppgave 1 a) I ligningen for hyostatisk likevekt er P trykket, M(r) massen innenfor en avstand r fra sentrum og ρ(r) er tettheten i en avstand
EKSAMEN I EMNE TFY4125 FYSIKK
Bokmål NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Studentnummer: Studieretning: Bokmål, Side 1 av 1 Faglig kontakt under eksamen: Institutt for fysikk, Gløshaugen Professor Steinar
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde