Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Størrelse: px
Begynne med side:

Download "Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland"

Transkript

1 Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

2 Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave Matematsk modell... 4 a) Tlstandsrom modell... 4 b) Utled lkevektspunkt :... 4 Oppgave Stabltet... 5 a) Jacobmatrsen A... 5 b) Stabltet lkevektspunktene... 6 Oppgave Regulator basert på lneære metoder... 6 a) Blokkdagram for regulerngssystemet... 6 b) knng for egentlg regulator... 7 c) Tlstandsrommodell for lukket-sløyfe system... 7 d) Jacobmatrsen for lukket sløyfe-system orgo... 8 e) Stabltet lkevektspunkter... 8 f) Smulerng av lukket sløyfe-system... 9 g) Praktsk regulerng... h) Sammenlgnng teor/prakss... Oppgave 4 Faseplan... a) ukket sløyfe strømdynamkk... b) Faseportrett av det åpen sløyfe-ulneære systemet... c) Egenverder for den åpne regulerngssløyfen... d) ukket sløyfe system med PD regulator:... e) Egenverder for lukket sløyfe system med PD regulator... Oppgave 5 Beskrvende funksjoners metode... a) Transferfunksjon G(s)... b) Smulerng med hystereseelement... 5 c) aboratoreforsøk... 8 d) Beskrvende funksjon for backlashelementet... 9 Oppgave 6 Inngang-Utgang lnearserng... 9 a) Defnsjon... 9 b) Vs at systemet har relatv grad ρ { R } :... c) e-derverte... d) Normalform og nulldynamkk... Oppgave 7 Regulator... a) Tlstandsrommodell... b) Utled et uttrykk for tlstandstlbakekoblngen v Kζ :... c) Fnn K ved polplasserng:... d) Smulerng av modell... e) Anvendelse av regulator på systemet... 5 Konklusjon... 5

3 Innlednng Prosjektet Magnetsk nvåregulerng er nyttet som en praktsk vnklng av faget TTK 45. Systemet består av en stålkule som holdes svevende ved hjelp av magnetsk kraft. Den magnetske kraften er generert av en spole der strømmen kan reguleres. For å holde ballen en fast possjon må magnetkraften tlsvare gravtasjonskraften som vrker på kula. På grunn av mndre forstyrrelser må strømmen reguleres ved hjelp av en tlbakekoblng av ballens possjon. Possjonen tl kula er målt hvert,5 mllsekund ved hjelp av en sensor som fastslår lysmengden som slpper ned søyla under ballen. Ved hjelp av målngen er en ny referanse for strømmen fastsatt. Systemet er ulneært da magnetkraften på kula er omvendt proporsjonal med kvadratet av avstanden mellom kula og spolen og proporsjonal med kvadratet av strømmen gjennom spolen. Den åpne sløyfen er også meget ustabl da den magnetske kraften fra spolen på kula vl avta når kulen fjerner seg mens strømmen er stabl. Dette vl gjen øke akselerasjonen nedover. Regulerngsproblemene prosjektet er basert på både konstant referanse, samt snus- og frkantpulsfunksjoner. neære og ulneære kontrollsystemer er testet og sammenlgnet, sammen med grensesykler.

4 4 Oppgave Matematsk modell a) Tlstandsrom modell u R R d m K g u R R d m K g d m K g s l s l ) ( ) ( ) ( b) Utled lkevektspunkt : ) ( ) ( u R R u R R d K mg d R R u mg K d mg K d m K g s l s l s l

5 Oppgave Stabltet a) Jacobmatrsen A f k ( ) k A a a m d m d ( ) ( ) a R RS Fnner koeffsentene ved å sette nn for : a a a ( ) ( ) mg ( d ) K K K mg ( d) g m d m K d d mg ( d ) K K K mg gk m ( d) m K ( d) m ( d) R R S f g gk A d m ( d) R RS 5

6 b) Stabltet lkevektspunktene ( λ) det( λi A) λ det a λ a λ a ( a ) ( a )( a )( ) λ λ λ ( λ a )( λ a ) Systemets poler nnsatt lkevektspunktene og parametrene er hentet fra ntmaglev: R RS λ a λ g 9.8 ± a ± ± ± ,.7 d Dvs. at v har en pol høyre halvplan som gjør det åpne systemet ustablt. Uten regulerng har v ngen praktsk stable lkevektspunkter. Oppgave Regulator basert på lneære metoder a) Blokkdagram for regulerngssystemet Fgur. Blokkdagram for regulerngssystemet u og u representerer en PID- kontrollstruktur. 6

7 b) knng for egentlg regulator Skal vse at: d K Defnsjoner: - u u -u - d d I tllegg har man: d u. ( ) ( u u ) ( u ) ( u ) d d Her vl den sste parentesen bl, og når man bruker at u Kender man med: d K som skulle vses. u kd k5 ddt Bruker resultatet d K u k ( k k k ) k ( k k k dt) dt u k k K k dt k k dt k k dt k k dtdt u K kk kk kk kk u k K K k k k k k k c) Tlstandsrommodell for lukket-sløyfe system Har at [ ] Bruker at: Som gr: u u u T K ( u u) K ( u u) g g m ( d) m ( d) a bu a b( kk K kk5 4 kk5 k4k56 ) 4 4 7

8 d) Jacobmatrsen for lukket sløyfe-system orgo Fnner Jacobmatrsen for systemet orgo, dvs A K ( ) K ( ) m ( d) m ( d) bkk bkk5 bkk a bk bkk4 bkk5 bk5 bk4k5 Innsatt lkevektspunktet orgo gr Jacobmatrsen A: K K m ( d) m ( d) A bkk bkk5 bkk a bk bkk4 bkk5 bk5 bk4k5 e) Stabltet lkevektspunkter Bruker Matlab og kjører flen ntmaglev.m og fnner forsterknngene for 7 mm k k k 88. k k 5 64 Fnner egenverdene tl A for lkevektspunktene { }[mm] med de gtte forsterknngene regnet ut rett ovenfor. mm 6.5 mm 7 mm 7.5 mm mm e e e e e-5 Tabell. For lkevektspunktet mm er det en egenverd som har postv realdel. Det betyr at punket er ustablt. For alle de andre lkevektspunktene lgger er realdelene <, dvs lkevektspunktene er stable. 8

9 f) Smulerng av lukket sløyfe-system Bruker matlab for å plotte referanse for strømmen sammen med vrkelg strøm og referansen for possjon sammen med vrkelg possjon. Fgur. Smulerng av regulerngssystetemet med ampltude 4mm og arbedspunkt 7mm. Fgur. Smulerng av regulerngssystemet med ampltude 4 mm og arbedspunkt 7mm. Fgur.4 Smulerng av regulerngssystemet med ampltude,5mm og arbedspunkt 7mm. Fgur.5 Smulerng av regulerngssystemet med ampltude,5 mm Man kan legge merke tl at strømregulerngen er mye raskere enn possjonsregulerngen. 9

10 g) Praktsk regulerng Fgur.6 Generatorampltude.5mm. Arbedspunkt 7mm Fgur.7 Generatorampltude.5mm. Arbedspunkt 7mm h) Sammenlgnng teor/prakss For.5mm ampltude på frkantpulsen, ble plottene for strøm og possjon det vrkelge systemet nokså lkt de samme plottene smulerngen. Men det var en anelse mer oversvng det vrkelge systemet, samt at det var ltt svngnnger på kurven noe som kan skyldes at kulen svnger sdeves. Økte man ampltuden tl 4mm var systemet stablt under smulerngen, mens oversvnget ble for stort det vrkelge systemet tl at regulerngen fungerte. (Kulen heftet seg tl magneten).

11 Oppgave 4 Faseplan a) ukket sløyfe strømdynamkk Det antas at lukket strøm sløyfe er uendelg rask forhold tl possjonssløyfen. ukket sløyfe strøm dynamkken kan derfor gnoreres under teoretsk analyse og smulerng. Henvser tl fgur.-.5. b) Faseportrett av det åpen sløyfe-ulneære systemet Tlstandsrommodell: K u g m ( d) Når 7mm, fnnes u ved lkevekt slk: mg u ( d) K Benytter pplane6 matlab for å tegne faseportrett.. ' y K 55 ( - 9) d 7.85 ( - ) m.68 y ' g - (K/m) (u )/( d) u.846 g 9.8 Konstantene er hentet fra fla ntmaglev y Fgur 4. Faseportrett for åpen sløyfe Faseportrettet vser at lkevektspunktet er et sadelpunkt. Trajektorene går aldr nn tl lkevektspunktet. Systemet har en postv og en negatv egenverd, og er derfor ustablt. Dette er naturlg ettersom det kke er noen form for regulerng på det ulneære systemet.

12 c) Egenverder for den åpne regulerngssløyfen Tlstandsrommodell: u a a, a g ( d), a ( d) K g m Fnner systemets egenverder vha matlab: e 6.485, e Som faseplananalysen vste er egenverdene reelle med motsatt fortegn. Konstantene er gtt som forrge oppave. d) ukket sløyfe system med PD regulator: Tlstandsrommodell: u a a, u k k K Setter nn for u tlstandsrommodellen. Tlstandsrommodellen blr dermed som følger, med ny systemmatrse (A-BK) : y ' y y ' y Plotter faseportrettet med pplane6 matlab Konstantene: m,d,g,k er gtt som forrge oppg. kevektspunkt 7 mm Fgur 4. Faseportrett for lukket sløyfe

13 a ka ka Benytter kontrollgan k og k (fra ntmaglev) Regner ut (A-BK) med matlab tl å bl: ( A BK) I prakss er begrenset mellom [,.5^-]m, men v plottet negatve verder for å vse klart at lkevektspunktet er en stabl node. Trajektorene går mot lkevektspunktet og vser at lkevektspunktet er en stabl node. Egenverdene kan forventes å være reelle og lgge venstre halvplan. e) Egenverder for lukket sløyfe system med PD regulator Benytter matlab for å beregne egenverdene. eg(a-bk) gr følgende egenverder: e-8.79, e Egenverdene er reelle og lgger venstre halvplan. Dette var å forvente ettersom faseplananalysen vste at lkevektspunktet var en stabl node. Oppgave 5 Beskrvende funksjoners metode a) Transferfunksjon G(s) Det lneære systemet kan skrves a a u aplacetransformerer og elmnerer s a au g () p s a u s a Transferfunksjonen for regulatoren blr den samme som transferfunksjonen fra avvket e tl pådraget u. Sden referansen er, vl avvket e -y - Regulatoren er gtt ved u k k k4 dt

14 aplacetransformerer og fnner transferfunksjonen fra - tl u u k sk k4 s u gr () s k sk k4 s Utgangen y. Så transferfunksjonen G(s) g r (s) g p (s) blr: a s a k sa k a k Gs () g() s g() s ( k sk k)( ) r p 4 4 s s a s( s a) Plotter Nyqustdagrammet for G(s) Matlab. Fgur 5. Nyqustdagram Den åpne sløyefunksjonen har en pol høyre halvplan. Av Nyqustplottet ser man at punktet (-,) er omsrklet av Nyqust-kurven retnng mot klokka. Det betyr at antall poler høyre halvplan for det tlbakekoblede systemet er null, dvs. stablt. 4

15 b) Smulerng med hystereseelement Fgur 5. ukket sløyfe lneær modell med hysterese Fgur 5. Smulerng av ln modell med.mm dødbånd Fgur 5. Smulerng av uln modell med.mm dødbånd 5

16 Fgur 5.4 Smulerng av ln modell med.mm dødbånd Fgur 5.4 Smulerng av uln modell med.mm dødbånd 6

17 Fgur 5.5 Smulerng av ln modell med.5mm hysterese Fgur 5.6 Smulerng av uln modell med.5mm hysterese Ser av fgurene at den lneære modellen gr høyere frekvens, men at modellene har tlnærma lk ampltude. Tdsaksen er 4 for stor pga en fel plottngen matlab. Fgur 5.7 ukket sløyfe uln modell med hysterese på tlbakekoblngen 7

18 c) aboratoreforsøk System med hysterese, ampltude. Hysterese Possjon Ampltude [m] Td [s] Fgur 5.7 aboratoreforsøk, hysterese med ampltude, mm System med hysterese, ampltude. Hysterese Possjon Ampltude [m] Td [s] Fgur 5.8 aboratoreforsøk, hysterese med ampltude, mm 8

19 System med hysterese, ampltude.5 Hysterese Possjon Ampltude [m] Td [s] Fgur 5.9 aboratoreforsøk, ampltude,5 mm Plottene har stor lkheter ampltude, men har noe avvk når det gjelder frekvens. Ved en ampltude på.6 ble grensesykelen ustabl. d) Beskrvende funksjon for backlashelementet Utgår fra oppgaven. Oppgave 6 Inngang-Utgang lnearserng a) Defnsjon Systemet kan generelt skrves på formen: f( ) G( ) u y h( ) V måler kulens possjonen, slk at målematrsen blr y. Fra Defnsjon 6. og. oppgave a) ser v lett at : A f ( ) og Bu G( ) uog y C h( ) Dermed er det vst at: 9

20 k f( ) g m ( d) R RS g ( ) h ( ) b) Vs at systemet har relatv grad ρ { R } : y y h( ) f k y h g f ( ) m ( d) y h ( ) h ( ) f g f d k k ( d) ( d) g 4 d m ( d) m ( d) R RS u ( d) ( d) k ( d) k m ( d) m R RS ( d ) k m ( ) ( ) k d m d u V derverer utgangen tre ganger slk at nngangen u kommer frem lknngen. Systemet har en veldefnert relatv grad. ρ n c) e-derverte hvor: y h ( ) h ( ) u ( ρ) ( ρ) ( ρ ) f g f y h ( ) h ( ) u u f g f f g f R RS ( ) k d f h( ) m ( d) k g f h ( ) m ( d)

21 m( d) u v R RS K ( d) Setter så nn for ( ) nn y R RS k ( d ) ( ) k m d y v ( R RS) m ( d) m ( d) K ( d) R RS ( d ) ( k m d) k k y v k ( R RS) m ( d) K m ( d) ( d) m ( d) m ( d) R R ( R R S S) ( ) k d ( ) k k d k y v m ( d) m ( d) m ( d) m ( d) y v d) Normalform og nulldynamkk Generelt kan systemet skrves som η Aη BCcξ ξ Acξ Bc γ( ) u α( ) y C ξ c [ ] hvor η beskrver den ndre dynamkken og ξ eksterndynamkken. Sden antall tlstander og relatv grad er lke, ρ n, reduseres lknngen tl [ ] ξ Acξ Bc γ( ) u α( ) y C ξ c Varabelen η ekssterer kke, så derfor har systemet ngen nulldynamkk. Systemet har da mnmum fase. y V lager en tlstandsvektor av de e-derverte ξ y y () V derverer ξ og setter nn y v y y ξ y y v y y y y [ ] y y Systemet er nå på kanonsk normalform.

22 Oppgave 7 Regulator a) Tlstandsrommodell Tlstandsvektor: y y T T ξ ξ y y ζ y y ζdt ( y ) y dt hvor ζ y y V derverer tlstandsvektoren og vet at () y v : y y y y y y y y ζ v y y y y y y ( y y ) dt ζ Aζ Bv b) Utled et uttrykk for tlstandstlbakekoblngen v Kζ : Setter nn for v den utvda matrsen og defnerer K [ K K K K ] : 4 ζ ζ ( Kζ ) ζ K ζ ζ K K K K4 Regulerngslov v Kζ y y P ledd y y D ledd V ser på tlstandsvektoren ζ at v harζ y y D ledd ( y y ) dt I ledd Altså en PID-regulator

23 c) Fnn K ved polplasserng: Desgner K slk at matrsen (Ac-BcK) blr Hurwtz og får reelle poler: Ønsket poler: (s)(s)(s)(s4) [ I A B K] det λ c c Deretter sammenlkner v polynomene og løser lknngene mhp K Kan også bruke matlab Som gr oss place[a,b,[ ]] K K K K d) Smulerng av modell Fgure 7. Frkantpuls referanse-smulerng strømpådrag, amp 5mm

24 Fgure 7. Frkantpuls referanse-smulerng possjon, amp 5mm Ved øknng av ampltuden fant v krtsk ampltude for systemet lk 6.9mm Fgur 7. Frkantpuls referanse-smulerng possjon, amp 6.9mm 4

25 Fgur 7. Frkantpuls referanse-smulerng possjon, amp 6.9 mm e) Anvendelse av regulator på systemet Selv med justerng av polvalg og modellgjennomgang vlle kke systemet stablsere seg. Konklusjon Oppgaven medførte en praktsk gjennomgang av tdlgere gjennomgått teor og har bdratt tl øket forståelse av fagets anvendelse. Det er derfor å beklage at v kke lyktes med å fnne tlfredsstllende parametere for regulerng av systemet. 5

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn )

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn ) SIF402 og MNFFY03 høst 2002: Sammendrag uke 44 (Alonso&Fnn 26.4-26.6) Magnetsme To effekter når et materale påvrkes av et ytre magnetfelt B:. nnrettng av permanente atomære (evt. molekylære) magnetske

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr

Detaljer

1653B/1654B. Installasjonstest på et IT anlegg i drift

1653B/1654B. Installasjonstest på et IT anlegg i drift 65B/654B Installasjonstest på et IT anlegg drft Utførng av testene Spennngsmålnger Testeren kan brkes som et ac voltmeter hvor spennng og frekvens kan vses samtdg ved å sette rotasjonsbryteren tl V. Alle

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, 2004

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

\ ;' STIKKORD: FILTER~ VEIEFEIL YRKESHYGIENISK INSTITUTT REGISTRERI~G AV FEILKILDER AVDELING: TEKNISK AVDELING RØNNAUG BRUUN HD 839/80820

\ ;' STIKKORD: FILTER~ VEIEFEIL YRKESHYGIENISK INSTITUTT REGISTRERI~G AV FEILKILDER AVDELING: TEKNISK AVDELING RØNNAUG BRUUN HD 839/80820 "t j \ ;' REGISTRERIG AV FEILKILDER VED VEI ING AV Fl LTRE RØNNAUG BRUUN Lv flidthjell HD 839/80820 AVDELING: TEKNISK AVDELING ANSVARSHAVENDE: O. ING. BJARNE KARTH JOHNSEN STIKKORD: FILTER VEIEFEIL YRKESHYGIENISK

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

NO kapittel 3.5 Næringsstruktur og faktoravlønning, Stolper Samuelson, Rybczynski

NO kapittel 3.5 Næringsstruktur og faktoravlønning, Stolper Samuelson, Rybczynski 1 Frelesnng 10 NO kapttel 3.5 Nærngsstruktur g faktravlønnng, Stlper Samuelsn, Rybczynsk 3.5 Lang skt Lkevekt arbeds g kaptalmarkeder Relevansen av langtdslkevekt Ikke skkert v får knvergens, en dynamsk

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2007/7 Raorter Reorts Bente alvorsen, Bodl M. Larsen og Runa Nesbakken Smulerng av usoldnngenes elektrstetsforbruk Dokumentason og anvendelser av mkrosmulerngsmodellen SE Statstsk sentralbyrå Statstcs

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemers dynamkk 8.04.06 FYS-MEK 0 8.04.06 otasjon av et stvt legeme: defnsjon: z m treghetsmoment for legemet om aksen z (som går gjennom punktet O) kontnuerlg legeme med massetetthet (r) m ) dv

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

Sorterings- Algoritmer

Sorterings- Algoritmer Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20

Detaljer

Rapport 2008-031. Benchmarkingmodeller. incentiver

Rapport 2008-031. Benchmarkingmodeller. incentiver Rapport 28-3 Benchmarkngmodeller og ncentver CO-rapport nr. 28-3, Prosjekt nr. 552 ISS: 83-53, ISB 82-7645-xxx-x LM/ÅJ, 29. februar 28 Offentlg Benchmarkngmodeller og ncentver Utarbedet for orges vassdrags-

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Oblig1.nb 1. Et glassfiberlaminat består av følgende materialer og oppbygging:

Oblig1.nb 1. Et glassfiberlaminat består av følgende materialer og oppbygging: Oblg1.nb 1 Oblg1 Data Et glassfberlamnat består av følgende materaler og oppbggng: Glassfber: Vnlester: E-modul: E=72MPa Posson s tall: n=.25 Denstet: 2.54 g/cm3 E=37 MPa Posson s tall: n=.3 Denstet; 1.19

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

= A. Tilbakekopling - Feedback Kap. 23 Paynter. Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

= A. Tilbakekopling - Feedback Kap. 23 Paynter. Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem18.aprl 2008 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler Blgke ytemer - ekempler

Detaljer

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov. Sde av 7 LØSNINGSFORSLAG TIL EKSAMEN 007 SMN69 VARMELÆRE DATO: 7. OKTOBER 007 TID: KL. 09.00 -.00 OPPGAVE (0%) a) Termodynamkkens. hovedsats. hovedsetnng: Energ kan verken oppstå eller forsvnne, bare omdannes

Detaljer

En teoretisk studie av tv-markedets effisiens

En teoretisk studie av tv-markedets effisiens NORGES HANDELSHØYSKOLE Bergen, våren 007 Utrednng fordypnng: Økonomsk analyse Veleder: Hans Jarle Knd En teoretsk stude av tv-markedets effsens av Odd Hennng Aure og Harald Nygård Bergh Denne utrednngen

Detaljer

Oppsummering Mekanikk. Newtons 2. lov: masse akselerasjon = kraft (total ytre kraft) Posisjon x [m] dx dt. v x. a x () t dt. Hastighet v x [m/s]

Oppsummering Mekanikk. Newtons 2. lov: masse akselerasjon = kraft (total ytre kraft) Posisjon x [m] dx dt. v x. a x () t dt. Hastighet v x [m/s] Oppsummerng Mekankk Sde av 6 Newtons. lov: masse akselerasjon kraft (total ytre kraft) Possjon x [m] Hastghet v x [m/s] Akselerasjon a x [m/s ] v x dx ----- dx v x x() t x( 0) a x t 0 v x () t dv -------

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem 16. aprl 2013 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler lgke ytemer -

Detaljer

Hvordan får man data og modell til å passe sammen?

Hvordan får man data og modell til å passe sammen? Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.

Detaljer

Eksamensoppgave i TFY4125 Fysikk

Eksamensoppgave i TFY4125 Fysikk de av 3 Insttutt for fyskk Eksamensoppgave TFY45 Fyskk Faglg kontakt under eksamen: Evnd Hs Hauge Tlf.: 98 5 3 Eksamensdato: 8. jun 3 Eksamenstd (fra-tl): 9: 3: Hjelpemddelkode/Tllatte hjelpemdler: Kode

Detaljer

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater 008/57 Notater Anna-Karn Mevk Notater Estmerng av månedlg omsetnng nnenfor bergverksdrft og ndustr Stabsavdelngen/Seksjon for statstske metoder og standarder 1. Innlednng.... Omsetnngsstatstkken for ndustren...

Detaljer

Klassisk Mekanikk IVER H. BREVIK. KOMPENDIUM i faget TEP4145 Til L A TEXved Simen Ellingsen

Klassisk Mekanikk IVER H. BREVIK. KOMPENDIUM i faget TEP4145 Til L A TEXved Simen Ellingsen Klasssk Mekankk IVER H. BREVIK KOMPENDIUM faget TEP4145 Tl L A TEXved Smen Ellngsen Insttutt for Energ og Prosessteknkk, Norges Teknsk Naturvtenskapelge Unverstet Mars 2006 Klasssk Mekankk Iver H. Brevk

Detaljer

Oppvarming og innetemperaturer i norske barnefamilier

Oppvarming og innetemperaturer i norske barnefamilier Ovarmng og nnetemeraturer norske barnefamler En analyse av husholdnngenes valg av nnetemeratur Henrette Brkelund Masterogave samfunnsøkonom ved Økonomsk Insttutt UNIVERSITETET I OSLO 13.05.2013 II ) Ovarmng

Detaljer

Avvisning av klage på offentlig anskaffelse

Avvisning av klage på offentlig anskaffelse Klagenemnda for offentlge anskaffelser Advokatfrmaet Haavnd AS Att. Maranne H. Dragsten Postboks 359 Sentrum 0101 Oslo Deres referanse Vår referanse Dato 1484867/2 2010/128 08.03.2011 Avvsnng av klage

Detaljer

Litt om empirisk Markedsavgrensning i form av sjokkanalyse

Litt om empirisk Markedsavgrensning i form av sjokkanalyse Ltt om emprsk Markedsavgrensnng form av sjokkanalyse Frode Steen Konkurransetlsynet, 27 ma 2011 KT - 27.05.2011 1 Sjokkanalyse som markedsavgrensnngsredskap Tradsjonell korrelasjonsanalyse av prser utnytter

Detaljer

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 l SAMMENDRAG: Rapporten omhandler bruk

Detaljer

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1 5 eegelsesmengde Fyskk for ngenører 5 eegelsesmengde og massesenter Sde 5 - Httl har forutsatt at åre legemer kan oppfattes som partkler Stort sett har behandlet dsse partklene som solerte legemer som

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Årsplan: Matematikk 4.trinn Uke Tema

Årsplan: Matematikk 4.trinn Uke Tema Årsplan: Matematkk 4.trnn Uke 33 34 35 36 37 38 39 Repetsjon Kap1. Koordnatsystemet Les av, plassere og beskrve possjoner rutenett, på kart og koordnatsystem, både med og uten verktøy. Samle, sortere,

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

SNF-rapport nr. 37/08

SNF-rapport nr. 37/08 Justerngsparameteren nntektsregulerngen Vurderng av behov for endrnger Endre Bjørndal, Mette Bjørndal og Thore Johnsen SNF-prosjekt nr. 7553 Justerngsparameteren nntektsrammeregulerngen Prosjektet er fnansert

Detaljer

Analyse av konkurransen om annonsekronene i det norske bladmarkedet

Analyse av konkurransen om annonsekronene i det norske bladmarkedet NORGES HANDELSHØYSKOLE Bergen, våren 006 Analyse av konkurransen om annonsekronene det norske bladmarkedet Hlde Chrstn Eken Veleder: Førsteamanuenss Øysten Foros Masterutrednng fordypnngsområde strateg

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges

Detaljer

Bevarelsesmetoder for hyperbolske dierensialligninger

Bevarelsesmetoder for hyperbolske dierensialligninger Bevarelsesmetoder for hyperbolske derensallgnnger Ivar Aavatsmark Anvendt og beregnngsorentert matematkk Unverstetet Bergen Bergen 2004 Innhold 1 Modellgnnger 4 1.1 Gruntvannsstrømnng......................

Detaljer

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5 Innholdsfortegnelse Innlednng I. Teorgrunnlag, s. 5 a) Nyklasssk nytteteor, s. 5 b) Utvdet nyttebegrep, s. 6 c) Lneære utgftssystemer, s. 7 d) Mellom-menneskelg påvrknng, s. 8 e) Modernserng og bostedspåvrknng,

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Kapitalbeskatning og investeringer i norsk næringsliv

Kapitalbeskatning og investeringer i norsk næringsliv Rapport Kaptalbeskatnng og nvesternger norsk nærngslv MENON-PUBLIKASJON NR. 28/2015 August 2015 av Leo A. Grünfeld, Gjermund Grmsby og Marcus Gjems Thee Forord Denne rapporten er utarbedet av Menon Busness

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer