i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2"

Transkript

1 Repetsjon 4 ( ) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + : +) 3. a) Summen av oksdasjonstallene for atomene molekyl er 0 b) Summen av oksdasjonstallene for atomene fleratomge on er lk ladnngen tl onet (SO - 4 : -) 4. Fluor har oksdasjonstall 1 } kjemske forbndelser 5. Hydrogen har oksdasjonstall Oksygen har oksdsjonstall - Dersom der er konflkt mellom reglene så er det regelen med lavest nummer som gjelder Hvordan fnne ut hva som er oksdert og redusert? Fnner oksdasjonstallene tl alle atomene reaksjonen og ser hvlke som har endret oksdasjonstall reaksjonen Reduksjon: Mnke oksdasjonstall Oksdasjon: Øknng oksdasjonstall Eksempel: MnO Fe +? Fe 3+ + Mn + Fnn oksdasjonstall: MnO Fe +? Fe 3+ + Mn + MnO 4 - har bltt redusert tl Mn + Fe + har bltt oksdert tl Fe 3+ Balanserng av redoks reaksjoner Halvreaksjonsmetoden. En metode for å balansere redoksreaksjoner Eksempel: Balanser følgende reaksjonslgnng surt mljø (overskudd av H + ) MnO Fe +? Fe 3+ + Mn + 0. Fnn oksdasjonstall for alle elementene og hvlke element som blr redusert og hvlke blr oksdert MnO Fe +? Fe 3+ + Mn + MnO 4 - har bltt redusert tl Mn + Fe + har bltt oksdert tl Fe Del lgnngen to halvreaksjoner: 1 reduksjon og 1 oksdasjon En plukker ut de forbndelsene der en har endrng oksdasjonstall og setter opp en reaksjon for reduksjon og en for oksdasjon

2 () Fe +? Fe 3+ () MnO - 4? Mn + (oksdasjon) (reduksjon). Balanser alle atom unntatt H og O I dette tlfellet er alle atom som kke er H eller O balansert 3. Balanser O med H O En legger tl vann på den sden som mangler oksygen I () har en 4 oksygen på venstre og ngen på høyre. En legger da tl 4 vann på høgresden () Fe +? Fe 3+ () MnO 4 -? Mn + + 4H O 4. Balanser H med H + En legger tl H + på den sden som mangler hydrogen I () har en 8 hydrogen på høyresden og ngen på venstre. En legger da tl 8 H + på venstresden () Fe +? Fe 3+ () MnO H +? Mn + + 4H O 5. Balanser oksdasjonstall for halvreaksjonene (med elektron, e - ) En legger tl e - på den sden en har for høyt oksdasjonstall I () har en + på venstre og +3 på høgre sden legger tl 1e- på høgre sde I () har en +7 på venstre og + på høgre sden. En legger tl 5e- på venstre sde () Fe +? Fe 3+ +e - () MnO H + + 5e -? Mn + + 4H O 6. Balanser e - tall opp og avgtt og legg sammen de to halvreaksjonene Antall elektron tatt opp og avgtt må være lkt. V ganger halvreaksjonene med passende tall for å oppnå dette. I dette tlfellet må v gange () med 5 og () med 1. () 5Fe +? 5Fe 3+ +5e - () MnO H + + 5e -? Mn + + 4H O otalreaksjon 5Fe + + MnO H +? 5Fe 3+ + Mn + + 4H O 7. Stryk alt som er lkt på de to sdene Ingentng er lkt på høgre og venstre sde. 8. For basske system: Legg tl samme antall OH - (på begge sder) som der er H +. Denne regelen gjelder bare for reaksjoner som skjer bassk mljø. Eksempel på bruk av regel 8: V har en reaksjonslgnng der v har gått gjennom steg 0 tl 7 og har då kommet fram tl følgende reaksjonslgnng 8CN - + 4Ag + O + 4H +? 4Ag(CN) - + H O

3 Denne reaksjonene skjer bare bassk mljø dvs. en må ha overskudd av OH -. En kan da kke ha en reaksjonslgnng som nneholder H +. Ifølge regel 8. skal v tlsette lke mange OH- på begge sder som der er H + på den ene sden. I dette tlfellet betyr det at v må legge tl 4OH - på begge sder 8CN - + 4Ag + O + 4H + + 4OH -? 4Ag(CN) - + H O + 4OH - OH - og H + vl reagere med hverandre og danne H O 8CN - + 4Ag + O + 4H O? 4Ag(CN) - + H O + 4OH - Reaksjonen er nå balansert for bassk reaksjon, men v har fått vann på begge sder v går derfor tlbake tl regel 7 og stryker det som er lkt. En vl då gå følgende reaksjonslgnng 8CN - + 4Ag + O + H O? 4Ag(CN) - + 4OH - Repetsjon 1 ( ) Kapttel 5 Gasser Selv om gasser har veldg ulke kjemske egenskaper følger de mer eller mndre de samme fysske lovene 1. Defnsjon av trykk og ulke enheter 1,00 atm = 1,0135*10 5 Pa = 1,0135 bar = 760 torr = 760 mm Hg 1,00 m 3 = 1000 dm 3 = cm 3. Ideelle gasslov og beregnnger (gass støkometr) = P er trykk, V er volum, n er antall mol, R er gasskonstant, er temperatur Pass på enhetene!!!!!! System 1 System System 3 rykk, P atmosfære (atm) Pascal (Pa) bar (bar) Volum, V lter (dm 3 ) kubkkmeter (m 3 ) lter (dm 3 ) Gasskonstanten, R 0,0806 L. atm/mol. K 8,3145 J/mol. K 0,08315 L. bar/mol. K emperatur, kelvn (K) kelvn (K) kelvn (K) Den deelle gasslov er en emprsk lov dvs. en ha kommet fra tl denne loven ved å gjøre ekspermenter med ulke gasser. Den deelle gasslov er en god tlnærmelse for de fleste gasser ved relatvt lavt trykk og kke for lav temperatur Antagelser bak den deelle gasslov: 1. Molekylene har kke volum eller volumet av molekylene er veldg lten relatvt tl det totale gassvolumet.. Der er kke krefter mellom molekylene

4 Standardtlstand for gasser (SP standard temperatur og trykk) rykk = 1,00 atm og temperatur = 0 o C Molartvolum: Volumet av 1 mol gass ved SP - V =,41 L Massetetthet, r: masse?= volum Oppgave Et sykkelhjul er fylt med luft og har et trykk på 6,0 atm når temperaturen er 19,0 o C. Dersom en kjører sykkelen på asfalt på en varm sommerdag vl temperaturen øke tl 58,0 o C og volumet vl øke med 4,00 %. Hva er det nye trykket sykkelhjulet? (R = 0,0806 L*atm/mol*K) En skal fnne P = V En har gtt En kan fnne V (V = V 1 +V. 1 0,04) dersom en setter V 1 lke 1,00 L. En kan sette V 1 tl det en vl, sden en verken har gtt volumet eller antall mol for noen av tlstandene. For å beregne P trenger en også n. En må bruke at n er den samme ved start og slutt (n 1 =n ). = nr = som gr 1 1 P= 1 V En setter nn opplysnngene gtt oppgaveteksten (pass på enhetene) 6,0atm 1,00L (73,15+58,0)K 1 1 P= = =6,56atm 1 V (73,15+19,0)K (1,00+1,00 0,04)L

5 Repetsjon ( ) Kapttel 5 Gasser 3. Dalton s lov om partelle trykk (og def. av molbrøk) Partelt trykk tl en gass blandng: rykken en gass vlle ha hatt dersom den var ålene. nh R PH = der V er total volumet H O H V H no R PO = der V er total volumet O O O V Dalton s lov: otaltrykket tl en gassblandng er summen av partell trykkene for gassene blandngen 1 3 R Ptot = P1 + P + P = = ntot V V V V otaltrykket er uavhengg av sammensetnngen av blandngen Molbrøk: Forholden mellom antall mol av en komponent og totalt antall mol Sammenhengen mellom molbrøk, partell trykk og totaltrykk n χ = n tot P = P χ tot Oppsamlng av en gass over en væske: F. eks. over vann: Dersom en samler opp en gass for eksempel O over vann vl gassvolumet også nneholde vanndamp. P total = P O + P H O Dersom en er nteressert trykket eller antall mol av O må en ta hensyn tl at der er vannmolekyl blandngen.

3. Balansering av redoksreaksjoner (halvreaksjons metoden)

3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel 4 Oksidasjon og reduksjons reaksjoner (redoks reaksjoner) 1. Definisjon av oksidasjon og reduksjon 2. Oksidasjonstall og regler 3. Balansering av redoksreaksjoner (halvreaksjons metoden) Kapittel

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri

Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri 1 Kap 4. Typer av kjemiske reaksjoner og løsningsstøkiometri Vandige løsninger; sterke og svake elektrolytter Sammensetning av løsninger Typer av kjemiske reaksjoner Fellingsreaksjoner (krystallisasjon)

Detaljer

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2016 Tid:

Side 1 av 3/nyn. Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735) EKSAMEN I FAG TEP4125 TERMODYNAMIKK august 2016 Tid: Sde 1 av 3/nyn. NOREGS TEKNISK-NATURVITSKAPLEGE UNIVERSITET INSTITUTT FOR ENERGI- OG PROSESSTEKNIKK Kontakt under eksamen: Ivar S. Ertesvåg, tel. (735)93839 EKSAMEN I FAG TEP4125 TERMODYNAMIKK 2 19. august

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

1. Oppgaver til atomteori.

1. Oppgaver til atomteori. 1. Oppgaver til atomteori. 1. Hva er elektronkonfigurasjonen til hydrogen (H)?. Fyll elektroner inn i energidiagrammet slik at du får elektronkonfigurasjonen til hydrogen. p 3. Hva er elektronkonfigurasjonen

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

FLERVALGSOPPGAVER STØKIOMETRI

FLERVALGSOPPGAVER STØKIOMETRI FLERVALGSOPPGAVER STØKIOMETRI Hjelpemidler: Periodesystem og kalkulator Hvert spørsmål har et riktig svaralternativ. Støkiometri 1 Bestem masseprosenten av nitrogen i denne forbindelsen: (N 2 H 2 ) 2 SO

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner

Studie av overføring av kjemisk energi til elektrisk energi og omvendt. Vi snakker om redoks reaksjoner Kapittel 19 Elektrokjemi Repetisjon 1 (14.10.02) 1. Kort repetisjon redoks Reduksjon: Når et stoff tar opp elektron Oksidasjon: Når et stoff avgir elektron 2. Elektrokjemiske celler Studie av overføring

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny!

Fasit oppdatert 10/9-03. Se opp for skrivefeil. Denne fasiten er ny! Fasit odatert 10/9-03 Se o for skrivefeil. Denne fasiten er ny! aittel 1 1 a, b 4, c 4, d 4, e 3, f 1, g 4, h 7 a 10,63, b 0,84, c,35. 10-3 aittel 1 Atomnummer gir antall rotoner, mens masse tall gir summen

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

x 1 x 3 = 0 4x 1 2x 4 = 0 2x 2 2x 3 x 4 = 0

x 1 x 3 = 0 4x 1 2x 4 = 0 2x 2 2x 3 x 4 = 0 1 Redoksligninger Balansering av redoksligninger kan utføres på flere måter. Mer kompliserte redokssystemer kan balanseres ved hjelp av en algebraisk metode. Ved å flytte koeffsientene for hvert molekyl

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN MAI 2006

LØSNINGSFORSLAG TIL EKSAMEN MAI 2006 NTNU Norges teknisknaturvitenskapelige universitet Fakultet for naturvitenskap og teknologi Institutt for materialteknologi Seksjon uorganisk kjemi TMT KJEMI LØSNINGSFORSLAG TIL EKSAMEN MAI 006 OPPGAVE

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 6, HØST 2009

LØSNINGSFORSLAG TIL ØVING NR. 6, HØST 2009 NTNU Norges teknisknaturvitenskapelige universitet Fakultet for naturvitenskap og teknologi Institutt for materialteknologi TMT11 JEMI LØSNINGSFORSLAG TIL ØVING NR. 6, HØST 009 OPPGAVE 1 a) Sterk syre,

Detaljer

Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger

Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger Kapittel 4 Ulike kjemiske reaksjoner og støkiometri i løsninger 1. Vann som løsningsmiddel 2. Elektrolytter Sterke elektrolytter Svake elektrolytter Ikke-eletrolytter 3. Sammensetning av løsning Molaritet

Detaljer

Oppgave 1 (35 poeng) 1. uttak til den 38. Kjemiolympiaden, Fasit og poengberegning. 1) D 2) B 3) A 4) A 5) D 6) C 7) D 8) C

Oppgave 1 (35 poeng) 1. uttak til den 38. Kjemiolympiaden, Fasit og poengberegning. 1) D 2) B 3) A 4) A 5) D 6) C 7) D 8) C 1. uttak til den 38. Kjemiolympiaden, 006. Fasit og poengberegning. ppgave 1 (35 poeng) 1) D ) B 3) A ) A 5) D 6) C 7) D 8) C 9) D 10) A 11) C 1) B 13) C 1) B 15) B 16) D 17) B 1 ppgave (15 poeng) A. a)

Detaljer

Løsningsforslag for regneøving 2

Løsningsforslag for regneøving 2 TFE4 Dgtalteknkk med kretsteknkk Løsnngsforslag tl regneøng årsemester 8 Løsnngsforslag for regneøng Utleert: fredag 5. februar 8 Oppgae : a b Krets Benytt følgende erder: a A, b A, Ω, Ω, 5Ω a) Fnn spennngene

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Kjemi og miljø. Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5

Kjemi og miljø. Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5 1 Kjemi og miljø Elektrokjemi Dette kompendiet dekker følgende kapittel i Rystad & Lauritzen: 10.1, 10.2, 10.3, 10.4 og 10.5 Kapittel 10 Elektrokjemi 2 10.1 Repetisjon av viktige begreper: 2 10.2 Elektrokjemiske

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

EKSAMENSOPPGAVE. Fag: Generell og uorganisk kjemi. Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 LO 400 K.

EKSAMENSOPPGAVE. Fag: Generell og uorganisk kjemi. Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 LO 400 K. EKSAMENSOPPGAVE Fag: Generell og uorganisk kjemi Gruppe(r): 1KA Fagnr LO 400 K Dato: 14. desember 001 Faglig veileder: Kirsten Aarset Eksamenstid, fra - til: 9.00-14.00 Eksamensoppgaven består av Tillatte

Detaljer

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn )

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn ) SIF402 og MNFFY03 høst 2002: Sammendrag uke 44 (Alonso&Fnn 26.4-26.6) Magnetsme To effekter når et materale påvrkes av et ytre magnetfelt B:. nnrettng av permanente atomære (evt. molekylære) magnetske

Detaljer

3. Massevirkningsloven eller likevektsuttrykk for en likevekt

3. Massevirkningsloven eller likevektsuttrykk for en likevekt apittel 8 jemisk likevekt 1. Reversible reaksjoner. Hva er likevekt? 3. Massevirkningsloven eller likevektsuttrykk for en likevekt 4. Likevektskonstanten (i) Hva sier verdien oss? (ii) Sammenhengen mellom

Detaljer

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov.

At energi ikke kan gå tapt, må bety at den er bevart. Derav betegnelsen bevaringslov. Sde av 7 LØSNINGSFORSLAG TIL EKSAMEN 007 SMN69 VARMELÆRE DATO: 7. OKTOBER 007 TID: KL. 09.00 -.00 OPPGAVE (0%) a) Termodynamkkens. hovedsats. hovedsetnng: Energ kan verken oppstå eller forsvnne, bare omdannes

Detaljer

Auditorieoppgave nr. 1 Svar 45 minutter

Auditorieoppgave nr. 1 Svar 45 minutter Auditorieoppgave nr. 1 Svar 45 minutter 1 Hvilken ladning har et proton? +1 2 Hvor mange protoner inneholder element nr. 11 Natrium? 11 3 En isotop inneholder 17 protoner og 18 nøytroner. Hva er massetallet?

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet

Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo Det matematisk-naturvitenskapelige fakultet Eksamen i KJM1100 Generell kjemi Eksamensdag: Fredag 15. januar 2016 Oppgavesettet består av 17 oppgaver med følgende vekt (også gitt i

Detaljer

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgskolen i Østfold Avdeling for ingeniør- og realfag EKSAMENSOPPGAVE Fag: IRK104 Grunnleggende kjemi Sensurfrist : tirsdag 23. september 28 Lærer : Birte J. Sjursnes Grupper : K3A Dato : 02.09.28 Tid

Detaljer

HØGSKOLEN I SØR-TRØNDELAG

HØGSKOLEN I SØR-TRØNDELAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR TEKNOLOGI Kandidatnr: Eksamensdato: 09.12.2004 Varighet: 09.00 14.00 Fagnummer: FO120N Fagnavn: Klasse(r): Generell kjemi Studiepoeng: Faglærer(e): Hjelpemidler:

Detaljer

STILLA MARIDALEN SPIKERVERKET BJØLSEN VALSEMØLLE ELVA VÅR IDUN GJÆRFABRIKK

STILLA MARIDALEN SPIKERVERKET BJØLSEN VALSEMØLLE ELVA VÅR IDUN GJÆRFABRIKK O S LO - P R Ø V E N 2003 N AT U R - O G M I L J Ø FA G STILLA MARIDALEN ELVA VÅR NAVN: SPIKERVERKET BJØLSEN VALSEMØLLE IDUN GJÆRFABRIKK KLASSE: MARIDALEN ELVA Informasjon STILLA SPIKERVERKET IDUN GJÆRFABRIKK

Detaljer

reduseres oksidasjon

reduseres oksidasjon Redoksreaksjoner En redoksreaksjon er en reaksjon der ett eller flere elektroner overføres fra en forbindelse til en annen. En reduksjon er en prosess hvor en forbindelse mottar ett eller flere elektroner.

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

v a~iii~ raitaii. ij ~ Kontaktperson i eksamensdag: Eugenia Sandru

v a~iii~ raitaii. ij ~ Kontaktperson i eksamensdag: Eugenia Sandru NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITE~ INSTITUTr FOR KJEMI Faglg kontakt under eksamen: Insttutt for kjem, Realfagbygget ~ fl...,.i:. T~ Cfl C~ LVI v a~~ rata. j ~ Kontaktperson eksamensdag: Eugena

Detaljer

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit.

Den 35. internasjonale Kjemiolympiade i Aten, juli uttaksprøve. Fasit. Oppgave 1 A) d B) c C) b D) d E) a F) a G) c H) d I) c J) b Den 35. internasjonale Kjemiolympiade i Aten, juli 2003. 1. uttaksprøve. Fasit. Oppgave 2 A) a B) b C) a D) b Oppgave 3 Masseprosenten av hydrogen

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Kjemi 1 Årsprøve vår 2011

Kjemi 1 Årsprøve vår 2011 Kjemi 1 Årsprøve vår 2011 Tillatte hjelpemidler: Tabeller i kjemi og kalkulator. Flervalgsoppgaver Oppgave 1 omfatter flervalgsoppgavene a-y. Hver oppgave har fire svaralternativer med ett riktig svar.

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.:

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.: Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi KJ1000 Generell kjemi Bokmål Student nr.: Studieprogram: Eksamen lørdag 2. juni 2007, 0900-1300 Tillatte hjelpemidler: kalkulator

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemers dynamkk 8.04.06 FYS-MEK 0 8.04.06 otasjon av et stvt legeme: defnsjon: z m treghetsmoment for legemet om aksen z (som går gjennom punktet O) kontnuerlg legeme med massetetthet (r) m ) dv

Detaljer

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA Det nnkalles herved tl ordnær generalforsamlng FARA ASA den 24. aprl 2014, kl. 16.30 selskapets lokaler O.H. Bangs ve 70, 1363 Høvk. DAGSORDEN Generalforsamlngen

Detaljer

Men det at de har så like fysiske egenskaper gjq>r at det er desto vanskeligere å se forskjell på de enkelte feltspatmineralene.

Men det at de har så like fysiske egenskaper gjq>r at det er desto vanskeligere å se forskjell på de enkelte feltspatmineralene. FELTSPATGRUPPEN Feltspatene er de mest vanlge av alle bergartsdannende mneraler og utgjq>r ca. 60% av jordskorpa. Feltspat fnner v over alt, og det er noe av det fq>rste v lærer å kjenne - og noe av det

Detaljer

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2

- Kinetisk og potensiell energi Kinetisk energi: Bevegelses energi. Kinetiske energi er avhengig av masse og fart. E kin = ½ mv 2 Kapittel 6 Termokjemi (repetisjon 1 23.10.03) 1. Energi - Definisjon Energi: Evnen til å utføre arbeid eller produsere varme Energi kan ikke bli dannet eller ødelagt, bare overført mellom ulike former

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Fasit til 1. runde. for uttakning til den. 40. internasjonale kjemiolympiaden i Budapest, Ungarn, juli 2008

Fasit til 1. runde. for uttakning til den. 40. internasjonale kjemiolympiaden i Budapest, Ungarn, juli 2008 Kjemi OL Fasit til 1. runde for uttakning til den 40. internasjonale kjemiolympiaden i Budapest, Ungarn, 12.-21. juli 2008 Oppgave 1 1 C 2 D 3 C 4 C 5 D 6 B 7 A 8 B 9 A 10 A 11 A 12 A 13 B 14 B 15 C 16

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

Medarbeiderundersøkelsen 2009

Medarbeiderundersøkelsen 2009 - 1 - Medarbederundersøkelsen 2009 Rapporten er utarbedet av B2S AS - 2 - Innholdsfortegnelse Forsde 1 Innholdsfortegnelse 2 Indeksoverskt 3 Multvarate analyser Regresjonsanalyse 5 Regresjonsmodell 6 Resultater

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8

Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8 Program for Elektro og Datateknikk/ AFT Prøveeksamen i Fysikk/kjemi Løsningsforslag Prøve 8 Oppgave 1 a) Det skal settes navn på følgende forbindelser : i) Hg2(NO3)2 : Kvikksølv(I)nitrat (Kvikksølv kan

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.:

Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi. Bokmål Student nr.: Norges teknisk-naturvitenskapelige universitet, Trondheim Institutt for kjemi KJ1000 Generell kjemi Bokmål Student nr.: Studieprogram: Eksamen fredag 3. desember 2004, 0900-1300 Tillatte hjelpemidler:

Detaljer

FASIT til 2. UTTAKSPRØVE

FASIT til 2. UTTAKSPRØVE Kjemi OL FASIT til 2. UTTAKSPRØVE til den 41. Internasjonale Kjemiolympiaden 2009 i Cambridge, England Oppgave 1 (36 poeng, 2 poeng per deloppgave) 1) C 2) B 3) A 4) A 5) C 6) A 7) C 8) C 9) C 10) C 11)

Detaljer

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger

KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Side 1 av 6 KJ1042 Grunnleggende termodynamikk med laboratorium. Eksamen vår 2013 Løsninger Oppgave 1 a) Termodynamikkens tredje lov kan formuleres slik: «Entropien for et rent stoff i perfekt krystallinsk

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

Når vi snakker om likevektskonstanter for syrer og baser så er det alltid syren eller basen i reaksjon med vann

Når vi snakker om likevektskonstanter for syrer og baser så er det alltid syren eller basen i reaksjon med vann Kapittel 16 Syrer og baser Repetisjon 1(30.09.03) 1. Syrer og baser Likevektsuttrykk/konstant Når vi snakker om likevektskonstanter for syrer og baser så er det alltid syren eller basen i reaksjon med

Detaljer

HØGSKOLEN I NARVIK, IBDK, INTEGRERT BYGNINGSTEKNOLOGI

HØGSKOLEN I NARVIK, IBDK, INTEGRERT BYGNINGSTEKNOLOGI HØGSKOLEN I NAVIK, IBDK, INTEGET BYGNINGSTEKNOLOGI Lønngforlag tl EKSAMEN I INNEMILJØ: STE - 6228 DATO : ONSDAG 14. Deember 2005 Oppgave 1 (vekt: 50%) a) Hele: Hele er en tltand av fyk, pykk og oal velvære,

Detaljer

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer?

2. Hva er formelen for den ioniske forbindelsen som dannes av kalsiumioner og nitrationer? Side 1 av 6 Del 1 (50 p). Flervalgsoppgaver. Hvert riktig svar med riktig forklaring gir 2.5 poeng. Riktig svar uten forklaring eller med feil forklaring gir 1.5 poeng. Feil svar (med eller uten forklaring)

Detaljer

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok

EKSAMENSOPPGAVE. Kalkulator «Huskelapp» -A4 ark med skrift på begge sider Enkel norsk-engelsk/engelsk-norsk ordbok Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: KJE-1001 Introduksjon til kjemi og kjemisk biologi Dato: 22.02.2017 Klokkeslett: 09:00-15:00 Sted: Åsgårdveien 9 Tillatte hjelpemidler:

Detaljer

DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT. prisbestemmelsen

DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT. prisbestemmelsen DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT Fskebãtredernes forbund Postboks 67 6001 ALESUND Deres ref Var ref Dato 200600063- /BSS Leverngsplkt for torsketrálere - prsbestemmelsen V vser tl Deres brev av

Detaljer

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe.

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave I et tlfeldg utvalg på normalvektge personer, og overvektge personer, måles konsentrasjonen av 2 ulke protener blodet.

Detaljer

UTSATT EKSAMEN Sensur faller innen

UTSATT EKSAMEN Sensur faller innen Individuell skriftlig eksamen i Naturfag 1, NA130E UTSATT EKSAMEN 23.05.2011. Sensur faller innen 15.06.2011. BOKMÅL. Resultatet blir tilgjengelig på studentweb første virkedag etter sensurfrist, dvs.

Detaljer

2. Kjemisk likevekt Vi har kjemisk likevekt når reaksjonen mot høgre og venstre går like fort i en reversibel reaksjon.

2. Kjemisk likevekt Vi har kjemisk likevekt når reaksjonen mot høgre og venstre går like fort i en reversibel reaksjon. Repetisjon (.09.0) apittel 5 jemisk likevekt. Reversible reaksjoner En reaksjon som kan gå begge veier: H (g) + I (g) HI (g). jemisk likevekt i har kjemisk likevekt når reaksjonen mot høgre og venstre

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

Kjemiske bindinger. Som holder stoffene sammen

Kjemiske bindinger. Som holder stoffene sammen Kjemiske bindinger Som holder stoffene sammen Bindingstyper Atomer Bindingene tegnes med Lewis strukturer som symboliserer valenselektronene Ionebinding Kovalent binding Polar kovalent binding Elektronegativitet,

Detaljer

Kjemi 1. Figur s. 10. Figurer kapittel 1: Verden som kjemikere ser den. Makronivå Kjemiske stoffer Beskrivelser

Kjemi 1. Figur s. 10. Figurer kapittel 1: Verden som kjemikere ser den. Makronivå Kjemiske stoffer Beskrivelser Figur s. 10 Makronivå Kjemiske stoffer Beskrivelser Mikronivå Atomer, molekyler, ioner Forklaringer Kjemispråk Formler, ligninger Beregninger Figur s. 11 Cl H O C Kulepinnemodeller (øverst) og kalottmodeller

Detaljer

Naturfag 2, Na210R510

Naturfag 2, Na210R510 Individuell skriftlig eksamen i Naturfag 2, Na210R510 10 studiepoeng ORDINÆR EKSAMEN 13. desember 2011 Sensur faller innen 05.01.2012 BOKMÅL. Resultatet blir tilgjengelig på studentweb første virkedag

Detaljer

NORGE [B] (11) UTLEGNINGSSKRIFT Ar. 131535

NORGE [B] (11) UTLEGNINGSSKRIFT Ar. 131535 NORGE [B] () UTLEGNINGSSKRIFT Ar. 3535 (5) Int. Cl. B Ol D 53/0 STYRET () Patentsøknad nr. 6/73 FOR DET INDUSTRIELLE () nngtt. RETTSVERN (3) Løpedag 5.06.73 (4) Søknaden ålment tlgjengelg fra 30..74 (44)

Detaljer