TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Størrelse: px
Begynne med side:

Download "TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>."

Transkript

1 ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt << >>. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer Europa. Rulett-hjulet er nndelt 37 lke store felter nummerert fra tl 36. Det er 18 røde felt, 18 svarte og et grønt felt med tallet. Et spll består å la en kule trlle nne hjulet nntl den havner et av de 37 feltene - slk at alle de 37 feltene har samme sannsynlghet. Utfallene fra forskjellge enkeltspll er uavhengge. En deltaker som satser penger et spll på en av flere mulge begvenheter, vnner et beløp hvs begvenheten nntreffer. Desto mndre sannsynlgheten er for at begvenheten skal nntreffe, desto større er gevnsten. Imdlertd, hvs kula havner det grønne -feltet, taper alle deltakere alt. Hele nnsatsen går tl huset. Sannsynlgheten for dette er 1/37. I denne oppgaven skal v kun se på den enkle strategen å satse på farge (rødt eller svart). Sannsynlgheten for rødt er (lk sannsynlgheten for svart), nemlg 18/37. For eksempel, hvs v satser 5 (euro) på rødt og kula havner et rødt felt, beholder v nnsatsen og får tllegg samme beløp (5 ) dvs. v ender opp med 5+5=1. Havner kula på svart eller -feltet, taper v nnsatsen og ender opp med 5 5 =. Trne er forsktg. Hun bestemmer seg på forhånd å splle for maksmum alt og satse 5 på rødt hver gang løpet av 4 spll. I tabell 1 er alle 16 mulge utfall av 4 spll med tlhørende sannsynlgheter angtt. I tabellen angr R at et spll resulterer rødt felt, mens T angr kke-rødt (dvs. svart- eller -felt). For eksempel utfall 13 (TRTT) betyr at det ble R (rødt) spll mens T (kke-rødt) nntraff spll 1, 3 og 4. V angr Trnes sluttbeholdnng etter 4 spll og er en stokastsk varabel som varerer mellom og 4.

2 Tabell 1. Mulge utfall av 4 spll. Startbeholdnng. Innsats pr. spll 5. Utfall Sannsynlghet Sluttbeholdnng V Utfall Sannsynlghet Sluttbeholdnng V 1 RRRR RTTR.6 RRRT TRTR.6 3 RRTR TTRR.6 4 RTRR RTTT TRRR TRTT RRTT.6 14 TTRT RTRT.6 15 TTTR TRRT.6 16 TTTT.7 Spørsmål. A. Forklar () hvorfor sannsynlgheten for utfall 13 (TRTT) er.66 (med 3 desmalers nøyaktghet) og () hvorfor Trnes sluttbeholdnng (V) blr 1 med dette utfallet (gtt at hun starter med ). <<Svar: () I et enkelt spll, p P( R) Uavhengghet gr 3 P(TRTT) p(1 p).66. () Utfallet TRTT gr sluttbeholdnng >> B. Defner begvenhetene, A = R første og fjerde spll, B = Mnst 3 R løpet av 4 spll. Fnn sannsynlghetene () PA ( ) () P( A B) () P ("R alle 4 spll" "mnst 3R") <<Svar: () P( A) P(utfall 1,3,4 eller 9) () A {1,3,4,9}, B {1,,3,4} A B {1,3,4 } og P( A B). 174 () P( B) P({1,,3,4,5} ).9 og (4R) B {1} P(4 R B) P({1}).56 P(4 R B).19 >> P( B) P( B).36 C. () La X være antall R som nntreffer 4 spll. Forklar hvorfor X er bnomsk fordelt.

3 3 () Sett opp en tabell som vser sannsynlghetsfordelngen tl sluttbeholdnngen V og beregn PV ( ). () Beregn E( V ) og var( V ). [Hnt. Merk at V 1X ] <<Svar: () Kravene for bnomske forsøk er oppfylt X ~ bn(4, p) der p () v P(V=v) der, f.eks. PV ( 1) 4 (.66).64. PV ( ) () E( V) E(1 X ) 1 E( X ) 1 4 p var( V) 1var( X ) 1 4 p(1 p) >> D. Trne syns 4-spll-strategen er kjedelg og bytter tl en 1-spll-strateg: Som før starter hun med (som hun er vllg tl å rskere) og satser 5 på rødt hvert spll. Hun spller så lenge hun har penger å satse men kke mer enn 1 spll. Hvs hun ender opp med før hun har splt 1 ganger, stopper hun å splle. Anta at Trne gjennomfører 1-spll-strategen. La V betegne sluttbeholdnngen Trne ender opp med, og K antall enkeltspll hun deltar. (Merk at K kan være forskjellg fra 1 ved at Trne ender opp med før hun har splt 1 ganger. Det kan vses at bare kan nntreffe spll nr. 4,6,8 eller 1, som du kke trenger å begrunne.) Det kan også vses (som du kke trenger å gjøre) at smultanfordelngen for V og K er gtt ved tabell. Tabell. Smultanfordelngen for V og K (dvs. P( K k V v) ), samt noe mellomregnng tl bruk nedenfor. ( f ( v) P( V v) ). k Sum Mellomregnng v 4 spll 6 spll 8 spll 1 spll f( v ) vf () v v f () v

4 Sum () Fnn PV ( ). () Hva er sannsynlgheten for at Trne får splle 1 spll under 1-spll-strategen? () Anta v vet at Trne endte opp med etter å ha prøvd 1-spll-strategen en gang, men kke hvor mange enkeltspll hun splte. Hva er sannsynlgheten for at hun bare splte 4 ganger? Begrunn svaret dtt. (v) Fnn E( V ) og var( V ) (relevant mellomregnng er angtt tabell ). <<Svar: () P( V ) P( V 3) P( V 7).344 () Drekte fra tabellen PK ( 1).8 P( K 4 V ) () P( K 4 V ).78 PV ( ) (v) Drekte fra tabellen, f ( v) P( V v) E( V ) vf ( v) ( ) var( V ) E V E( V ) v f ( v) E V (18.78) >> E. Trne beslutter å bruke 1-spll-strategen sn 3 dager (en gang hver dag). Hennes totale nnsats blr da 3 6. Sluttbeholdnngen etter 3 dager kan skrves W V1 V V3, der V angr sluttbeholdnngen for dag. () Beregn et tlnærmet 9% sprednngsntervall for W. () Beregn tlnærmet PW ( 6) med heltallskorreksjon. <<Svar: () Regel 5.19 gr at tlnærmet Regel 5.16 ) 3 ( V W ~ N E( W ), SD( W N E V ), 3 SD( ) N( 563.4, 8.36) et (tlnærmet) 9% sprednngsntervall er gtt ved E( W ) z SD( W ) (1. 645)(8.36) [47.9, 698.9] () heltallskorreksjon 6.5 EW ( ) P( W 6) 1 P( W 6) 1 P( W 6.5) 1 G SD( W ) G 1 G(.45)

5 5 (Noen vl kanskje nnse at W må være et multplum av 1. En bedre heltallskorreksjon vlle dermed være å bruke P( W 6) P( W 65). Hvs noen kommer med dette, burde de få ekstra uttellng.) >> Oppgave Innlednng. Sølvnnholdet (målt % ) er bestemt 11 mynter funnet på Kypros. Myntene stammer fra den bysantnske peroden (under kong Manuel I. Comnenus ( )). 4 av myntene stammer fra en gtt perode (perode 1) under kong Manuels regjerngstd, mens de resterende 7 er laget noen år senere (perode også under kong Manuel). V ønsker å fnne ut om dataene gr evdens for at sølvnnholdet mynter av denne typen generelt øket fra perode 1 tl perode. La X betegne sølvnnholdet ( %) mynt nr. fra perode 1 ( 1,,4 ). La Y betegne sølvnnholdet ( %) mynt nr. fra perode ( 1,,7 ). V antar X1, X,, X 4 er uavhengge og dentsk normalfordelte, med X ~ N( 1, ). Y1, Y,, Y 7 er uavhengge og dentsk normalfordelte, med Y ~ N(, ). Parametrene, 1,, antas ukjente. (Merk at v mplstt antar at X-ene og Y-ene har samme varans, mens at de kan ha forskjellg forventnng.) X-ene og Y-ene antas å være uavhengge av hverandre La X X, Y Y, S1 ( X X ), S ( Y Y ) Tlsvarende uttrykk med små bokstaver ndkerer observerte verder av dsse stokastske varablene. Data. Beskrvende størrelser. Perode 1 Perode Perode 1 Perode x y Antall observasjoner 4 7 y Gjennomsntt x Utvalgsvarans s1.5 s.1314

6 6 Spørsmål. A. V er nteressert en eventuell forskjell mellom 1 og. Sett 1. En naturlg estmator for er ˆ X Y. () Vs at ˆ er en forventnngsrett estmator for og beregn estmatet. () Fnn varansen tl ˆ uttrykt ved. <<Svar: () Sden (fra pensum) E( X ) 1 og E( Y ), får v E( ˆ ) E X Y E( X ) E( Y ) () X Y X Y >> var( ˆ ) var( ) var( ) var( ) B. V ønsker et 95% konfdensntervall for. Ingen av reglene Løvås er tlstrekkelg for dette, men fra generell statstkk har v følgende regel (som du kke trenger å begrunne) Regel I. Under modellen formulert nnlednngen gjelder at ˆ 1 W, der ˆ 3S1 3S, er eksakt t-fordelt med 9 ˆ 11 8 frhetsgrader uansett hva de ukjente verdene av 1,, er. () Bruk regel I tl å utlede et 95% konfdensntervall for. () Beregn det observerte konfdensntervallet ut fra data. <<Svar: () og.5% kvantlen t(9), t ˆ ˆ.5 8 ˆ ˆ.5 8 ˆ 11 ˆ ˆ 11 (.6) 8 (.6) 8.95 P t W t løs mhp P t t P ˆ () Observert: ˆ t ˆ.5 ˆ ˆ 8 obs t.5 obs (.6) [ 1.3,.18] >> obs C. V ønsker å teste H : 1 mot H1 : 1, som er det samme som å teste H : mot H :. 1

7 7 () Bruk regel I tl å konstruere en test med sgnfkansnvå 5% for H. () Gjennomfør testen og formuler en konklusjon. () Er p-verden for testen dn mndre enn 1%? [Hnt. Bruk t-kvantl-tabellen bak Løvås.] <<Svar: () Problemet er å teste H : mot H1 : der ˆ ˆ testobservatoren er T, og v skal åpenbart forkaste H ˆ 11 ˆ 11 for tlstrekkelg 8 8 små verder av T. Sden T ~ t(9) hvs, fnner v den krtske verden, k, av lgnngen P (forkast H ) P ( T k).5, som gr k t Altså vår 5% test: Forkast H hvs T ˆ obs.739 () Gjennomførng: Tobs.994. ˆ obs 8 8 Konklusjon: Forkast H. Det er sterk evdens data at det generelle sølvnnholdet har økt fra perode 1 tl. () Den krtske verden ved nvå 1% er, følge tabellen, -.81 som fortsatt gr forkastnng. Sden p-verden er det mnste nvået som gr forkastnng, og Tobs.81, må p-verden være mndre enn 1%. >> D. Den ukjente varansen,, kan estmeres på mange måter. En klasse av forventnngsrette estmatorer er, for eksempel, gtt ved ˆ c cs1 (1 c) S, der c er en vlkårlg valgt konstant mellom og 1. For å kunne velge blant alle dsse estmatorene kan v bruke følgende regel (som du kke trenger å begrunne) fra generell statstkk: Regel II Hvs U1, U,, U n er uavhengge og dentsk normalfordelte med n 1 U ~ N(, ), og hvs S ( U U), så gjelder generelt n 1 ( n1) S E n1 og 1 ( n1) S var ( n 1) () () () Bruk regel II tl å vse at Bruk regel II tl å fnne et uttrykk for varansen tl Bestem en c slk at varansen tl ˆc er forventnngsrett uansett hvlken c som blr valgt. ˆc blr mnst mulg. ˆc uttrykt ved c og.

8 8 <<Svar: Regel II medfører generelt at ( n 1) S ( n 1) S E( S ) E E ( n 1) n 1 n 1 n 1 og ( n 1) S ( n 1) S n 1 ( n 1) ( n 1) n var( S ) var var ( n1) E ˆ E cs (1 c) S c (1 c) (): c 1 () og () : 4 4 var ˆ c var cs1 (1 c) S c var( S1 ) (1 c) var( S ) c (1 c) c (1 c) c (1 c) 1 h( c), der h( c), med dervert, h( c) c som vser at mnmum varans oppnås for c 13(. dervert er negatv). >>

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Bokmål Eksamen : ECON130 Statstkk 1 Exam: ECON130 Statstcs 1 Eksamensdag: 3.05.014 Sensur kunngjøres: 13.06.014 Date of exam: 3.05.014 Grades wll be gven:13.06.014

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON0 Statstkk Exam: ECON0 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag. ma 007 Sensur kunngjøres: Onsdag. jun Date of exam: Wednesday, May, 007 Grades wll be gven: Wednesday,

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Eksamensoppgave i SØK2900 Empirisk metode

Eksamensoppgave i SØK2900 Empirisk metode Insttutt for samfunnsøkonom Eksamensoppgave SØK900 Emprsk metode Faglg kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 9 33 Eksamensdato: 3. jun 05 Eksamenstd (fra-tl): 4 tmer (09.00 3.00) Sensurdato:

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

Hvordan får man data og modell til å passe sammen?

Hvordan får man data og modell til å passe sammen? Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

En introduksjon i statistiske metoder for offisiell statistikk

En introduksjon i statistiske metoder for offisiell statistikk Notater Documents 06/3 Jan F. Bjørnstad En ntroduksjon statstske metoder for offsell statstkk Notater 3/06 Jan F. Bjørnstad En ntroduksjon statstske metoder for offsell statstkk Statstsk sentralbyrå Statstcs

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

SNF-rapport nr. 23/05

SNF-rapport nr. 23/05 Sykefravær offentlg og prvat sektor av Margt Auestad SNF-prosjekt nr. 4370 Endrng arbedsforhold Norge Prosjektet er fnansert av Norges forsknngsråd SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Litt om empirisk Markedsavgrensning i form av sjokkanalyse

Litt om empirisk Markedsavgrensning i form av sjokkanalyse Ltt om emprsk Markedsavgrensnng form av sjokkanalyse Frode Steen Konkurransetlsynet, 27 ma 2011 KT - 27.05.2011 1 Sjokkanalyse som markedsavgrensnngsredskap Tradsjonell korrelasjonsanalyse av prser utnytter

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Analyse av strukturerte spareprodukt

Analyse av strukturerte spareprodukt NORGES HANDELSHØYSKOLE Bergen, Høst 2007 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe Veleder: Professor Petter Bjerksund Utrednng fordypnngs-/spesalområdet: Fnansell

Detaljer

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657 Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON20 Statstkk Exam: ECON20 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag 20. ma 200 Sensur kunngjøres: Torsdag 2. jun Date of exam: Wednesday, May 20, 2009 Grades wll

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er: Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20

Detaljer

Econ 2130 uke 16 (HG)

Econ 2130 uke 16 (HG) Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat, vår 2003 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Vår 2004 Erlng Berge 2004 1 Forelesng IX Robust Regresjon Hamlton

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5 Innholdsfortegnelse Innlednng I. Teorgrunnlag, s. 5 a) Nyklasssk nytteteor, s. 5 b) Utvdet nyttebegrep, s. 6 c) Lneære utgftssystemer, s. 7 d) Mellom-menneskelg påvrknng, s. 8 e) Modernserng og bostedspåvrknng,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON0 Statstkk, våren 004 Exam: ECON0 Statstcs, sprng 004 Eksamensdag: Fredag 8. ma 004 Date of exam: Frday, May 8, 004 Td for eksamen: kl. 09:00 :00

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Oppvarming og innetemperaturer i norske barnefamilier

Oppvarming og innetemperaturer i norske barnefamilier Ovarmng og nnetemeraturer norske barnefamler En analyse av husholdnngenes valg av nnetemeratur Henrette Brkelund Masterogave samfunnsøkonom ved Økonomsk Insttutt UNIVERSITETET I OSLO 13.05.2013 II ) Ovarmng

Detaljer

SNF-rapport nr. 19/07

SNF-rapport nr. 19/07 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe SNF-prosjekt nr. 7000 SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER 2007 Dette eksemplar er fremstlt etter avtale

Detaljer

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6.

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6. forelesnng 3 Malthus teor. Befolknngsvekst ECON 2915 forelesnng 3 Malthus teor. Befolknngsvekst Solow-modellen. Fredag 6.september, 2013 forelesnng 3 Malthus teor. Befolknngsvekst Fgure 4.1: Relatonshp

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2007/7 Raorter Reorts Bente alvorsen, Bodl M. Larsen og Runa Nesbakken Smulerng av usoldnngenes elektrstetsforbruk Dokumentason og anvendelser av mkrosmulerngsmodellen SE Statstsk sentralbyrå Statstcs

Detaljer

Kapitalbeskatning og investeringer i norsk næringsliv

Kapitalbeskatning og investeringer i norsk næringsliv Rapport Kaptalbeskatnng og nvesternger norsk nærngslv MENON-PUBLIKASJON NR. 28/2015 August 2015 av Leo A. Grünfeld, Gjermund Grmsby og Marcus Gjems Thee Forord Denne rapporten er utarbedet av Menon Busness

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

FAUSKE KOMMUNE. Sammendrag: II Sak nr.: 050112 I KOMMUNESTYRE SAKSPAPIR

FAUSKE KOMMUNE. Sammendrag: II Sak nr.: 050112 I KOMMUNESTYRE SAKSPAPIR .------Jr..'c;~~---------..-------.-~-------------------.._-.. SAKSPAPR FAUSKE KOMMUNE JouralpostD: 11/11396 Arkv sakd.: 11/2608 Slttbehandlede vedtaksnnstans: Kommunestyre Sak nr.: 050112 KOMMUNESTYRE.

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2005/8 Rapporter Reports Bente Halvorsen, Bodl M. Larsen og Runa Nesbakken Prs- og nntektsfølsomet ulke usoldnngers etterspørsel etter elektrstet, fyrngsoler og ved Statstsk sentralbyrå Statstcs Norway

Detaljer

IN1 Audio Module. Innføring og hurtigreferanse

IN1 Audio Module. Innføring og hurtigreferanse IN Audo Module Innførng og hurtgreferanse Les heftet med skkerhetsnstruksjoner før du tar bruk lydmodulen. Pakk ut av esken Innhold: A/V-kabler følger kke med. Dsse kan kjøpes fra www.nfocus.com/store

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamen : ECON230 Statstkk Exam: ECON230 Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: Onsdag 20. ma 200 Sensur kunngjøres: Torsdag 2. jun Date of exam: Wednesday, May 20, 2009 Grades

Detaljer

Kontraktstildeling med mindre prisfokus

Kontraktstildeling med mindre prisfokus Kontraktstldelng med mndre prsfokus Anskaffelsesstrateger Entreprsekjøp Oktober 014 Dr. ng Øysten H. Meland Dr. ng Øysten Meland Dr. ng Øysten Meland 3 Brukermedv./ programmerng Partnerng Kun egen spesaltet

Detaljer

Referanseveiledning. Oppsett og priming

Referanseveiledning. Oppsett og priming Referansevelednng Oppsett og prmng Samle følgende utstyr før Oppsett: Én 500 ml eller 1000 ml pose/flaske med prmngløsnng (0,9 % NaCl med 1 U/ml heparn tlsatt) Én 500 ml eller 1000 ml pose med normalt

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer