Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Størrelse: px
Begynne med side:

Download "Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:"

Transkript

1 Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE Matrsen leses som følger: Tenk deg at forslagene fra hver av de åtte regjerngene ordens to grupper Alle forslag som ble endret stlles opp først, deretter alle forslag som kke ble endret Hvlken rekkefølge forslagene ordnes nnen de to gruppene er kke av betydnng (Sannerstedt- og Sjöln 1990 gr heller kke grunnlag for en slk ordnng) Den første regjerngen Sannerstedt- og Sjölns materale er den sosalstske regjerngen som satt 1972 Denne fremla tl sammen 258 forslag Av dsse ble

2 (258*026)=67 forslag endret av Rksdagen Enhetene 1 tl 67 er følgelg kodet 1 for «endret» på avhengg varabel, som er «SKJEBNE» De resterende =191 forslagene som denne regjerngen la frem for Rksdagen ble kke endret Enhetene f o m 68 t o m 258 er følgelg kodet 0 for «ngen endrng» på avhengg varabel De første 258 forslagene flen ble fremmet av den sosalstske regjerngen som satt 1972 For dsse enhetene er varabelen «FARGE» følgelg kodet 0 for sosalstsk Vdere, den sosalstske regjerngen som satt 1972 var en ettpartregjerng Varabelen «ANTALL» er av denne grunn kodet 1 på de første 258 enhetene Tl sst, 47 pst av ledamötene Rksdagen var valgt nn på regjerngspartets lste Varabelen «BASIS» er følgelg kodet 047 på de 258 første enhetene Matrsen kompletteres ved å regstrere data på tlsvarende måte for de syv etterfølgende regjerngene materalet Datamatrsen utvser en forholdsvs begrenset varasjonen de uavhengge varablene Dette kan synes som et problem for sgnfkanstestng av modellen Det avgjørende for dette spørsmålet er mdlertd kke varasjonene varablene men spørsmålet om hvorvdt v har «celletomhet» eller kke Dette kan v sjekke SPSS ved å se på frekvensfordelngen av datakategorene våre I vårt tlfelle får v 16 kategorer (SKJEBNE ANTALL FARGE BASIS) Den laveste frekvensen er på 67 observasjoner (SKJEBNE=1; ANTALL=1;FARGE=0;BASIS=047), den høyeste frekvensen er på 256 observasjoner (SKJEBNE=0; ANTALL=1;FARGE=0;BASIS=048) Som en tommelfngerregel bør laveste frekvens hvert fall ha observasjoner Appendks 2: Kontrollspørsmål I det følgende presenteres en sere kontrollspørsmål Umerkede spørsmål kan besvares med utgangspunkt umerket tekst Spørsmål merket * er for den speselt nteresserte Du bør jobbe frem og tlbake med tekst og spørsmål nntl du føler deg fortrolg med de umerkede spørsmålene 1 Hvlke verder regstreres på avhengg varabel logtanalysen? 2 Hva er tolknngen av dsse verdene? 3 Hva bør en sjekke før en kjører logtanalyse på et sett av uavhengge varable? 4 Hva slags struktur har logtlgnngen?

3 5 Hvlke hovedforskjeller er det mellom en logtlgnng og en OLS lgnng? 6 Gr resultatet av logtlgnngen uttrykk for en sannsynlghet? Hvorfor/Hvorfor kke? 7 Hvordan defneres logten? 8 Hva er en «odds»? 9 Hva gr en odds svarende tl 4 uttrykk for? 10 Hva med en odds svarende tl 1? 11 Hva med en odds svarende tl 1/6? 12 Hva er varasjonsområdet tl log(odds)? 13 Hva skjer med log(odds) når høyresden tl logtlgnngen antar store postve verder? 14 Hva skjer med log(odds) når høyresden tl logtlgnngen antar store negatve verder? 15 Hvordan løser en ut oddsen uttrykket log(odds)? 16 Hva ser en log(odds)=4 oss om oddsen for suksess? 17 Hva med en log(odds)=1? 18 En log(odds)=0? 19 En log(odds)=-4? 20 En log(odds)=-1? 21 Betrakt Rksdagsdata teksten: * (a) Hva blr endrngen oddsen for suksess ved en enhets endrng varabelen ANTALL? (b) Hva blr endrngen oddsen for suksess ved en enhets endrng varabelen BASIS? Besvar spørsmålene på to ulke måter 22 Vs hvordan en kan løse ut P fra uttrykket log(p/(1-p))=z 23 Skrv uttrykket for P på tre ulke måter når Z=α+bX 24 Er det noen substansell forskjell de tre måtene å skrve P på? 25 Vs at den P du har løst ut fra uttrykket log(p/(1-p))=z gr P+(1-P)=1 26 Hva skjer med P når Z går mot uendelg postv? 27 Hva skjer med P når Z går mot uendelg negatv? 28 Kan P noen gang bl lk 0? 29 Kan P noen gang bl lk 1? 30 Er P en lneær funksjon av Z? Begrunn svaret 31 For hvlken verd på Z er P lke en halv? 32 Hvlke symmetr egenskaper har P? 33 Endres P med lke mye dersom v øker Z med en enhet fra et utgangspunkt på null, som fra et utgangspunkt på 10?

4 34 Endres P med lke mye dersom v reduserer Z med en enhet fra et utgangspunkt på null, som fra et utgangspunkt på -10? 35 Er det noen forskjell på analyse av dskrete og kontnuerlge uavhengge avhengge varable logtanalysen? 36 Hva består eventuelt forskjellen? 37 Betrakt data for Rksdagen teksten Hva er endrngen sannsynlgheten for at forslaget endres dersom en går fra : (a) en sosalstsk tl en borgerlg regjerng, begge ettpartregjernger med 40 pst oppslutnng Rksdagen? (b) en sosalstske ettpartregjerng med 45 pst oppslutnng Rksdagen tl en borgerlg topartregjerng med 29 pst oppslutnng Rksdagen? (c) en borgerlg trepartregjerng med 50 pst oppslutnng Rksdagen tl en borgerlg trepartregjerng med 52 pst oppslutnng Rksdagen? (d) en sosalstsk ettpartregjerng med 45 pst oppslutnng Rksdagen tl en sosalstsk ettpartregjerng med 48 pst oppslutnng Rksdagen? 38 Hva forstår v med en punkteffekt? 39 Hva forstår v med en maksmal punkteffekt? 40 Betrakt data for Rksdagen teksten Hva er den maksmale punkteffekten for: (a) en borgerlg topartregjerng? (b) en borgerlg ettpartregjerng? 41 Betrakt data for Rksdagen teksten Hva er punkteffekten med (a) et nvå på 33 pst for en borgerlg topartregjerng? (b) et nvå på 15 pst for en borgerlg topartregjerng? 42 Hva kjennetegner en bnomsk forsøksrekke? 43 Hva gr «bnomalkoeffsenten» uttrykk for? 44 Hva kalles den fordelng en bnomsk forsøksrekke gr opphav tl? 45 Hva kjennetegner denne fordelngen når v lar N anta store verder? 46 Hvor stor bør N-K være før v benytter antagelsen om normalfordelng logtanalysen? 47 Etter hvlket prnspp estmeres koeffsentene logtlgnngen? 48 Etter hvlket prnspp estmeres koeffsentene OLS lgnngen? 49 Gjør nærmere rede for prnsppet for estmerng av koeffsentene logtlgnngen* 50 Fnnes det en eksplstt løsnng for estmatene tl koeffsentene en logtlgnng? * 51 Hvordan fnner programvaren frem tl estmatet for koeffsentene? * 52 Hva er betngelsen for å benytte T- statstkk tl hypotesetestng av logtkoeffsenter? 53 Betrakt data for Rksdagen teksten: v

5 (a) Bruk tommelfngerregelen tl å fnne ut om ANTALL er sgnfkant forskjellg fra null på 5 pst nvået (b) Bruk tommelfngerregelen for å fnne ut om FARGE er sgnfkant forskjellg fra null på 5 pst nvået 54 Hvlke tre metoder er det vanlg å benytte logtanlyse når v ønsker å s noe om hvorvdt data og modell passer sammen? 55 Hva uttrykker høy verd på L- statstkken? 56 Hva uttrykker lav verd på L- statstkken? 57 Hva lgger utsagnet «75 pst treff»? 58 Hva er hovedproblemet med målet «pst treff»? 59 Hvlke problemer støter v på dersom v velger en lneær sannsynlghetsmodell? 60 Kan en lneær sannsynlghetsmodell lkevel ha sn berettgelse? Dersom ja, under hvlke betngelser? Appendks 3 Nærmere om MLE prnsppet: Et eksempel Betrakt en bnær logtlgnng Tl en slk lgnng hører en datamatrse av følgende form: Tabell III1 1 Observasjon Y X 1 y 1 x 1 2 y 2 x 2 N y N x N Y er avhengg varabel og y står for den regstrerte verden tl avhengg varabel på observasjon nummer, ( = 1,, N ) Y regstreres med verdene 1 eller 0, 1 for høy verd på avhengg varabel (suksess), og 0 for lav verd på uavhengg varabel (fasko) X er den uavhengge varabelen og står for den regstrerte verden tl avhengg varabel på observasjon nummer, ( = 1,, N ) Det er ngen bånd på de verder X kan regstreres med x 1 I stedet for betegnelsen «observasjon» kunne v lke gjerne brukt betegnelsen «enhet» Observasjon gr mdlertd bedre assosasjoner dette avsnttet v

6 Når logtlgnngen estmeres er de kjente størrelsene Y og X Det som er ukjent for oss er sannsynlgheten for at en gtt observasjon har høy henholdsvs lav verd på Y Som v allerede har sett er denne sannsynlgheten betnget av observasjonens verd på høyresden logtlgnngen For observasjon nummer kan v uttrykke den betngede sannsynlgheten for suksess på følgende måte: p = P( y = 1 x, b) Den betngede sannsynlgheten for fasko på observasjon nummer blr ( 1 p) = 1 P( y = 1 x, b) = P( y = 0 x, b) Fra tdlgere kjenner v den presse betngelsen: p exp( α + bx ) = henholdsvs p = + exp( + bx ), ( ) α 1 + exp( α + bx ) Sannsynlgheten for høy henholdsvs lav verd på Y er altså kke den samme for alle observasjoner 2 V kan lkevel regne oss frem tl sannsynlgheten for å ha observert et bestemt datasett: Først legger v merke tl at sannsynlgheten for høy verd på y 1 y observasjon nummer ( y = 1 ) svarer tl p ( 1 p) = p Sannsynlgheten for lav 1 y verd på observasjon nummer ( y = 0 ) svarer på sn sde tl p ( 1 p) = 1 p Observasjonene antas å være uavhengge av hverandre Sannsynlgheten for en bestemt kombnasjon av observasjoner bestående av totalt m høye og (N-m) lave verder på Y er da gtt ved produktet av sannsynlghetene for at hver enkelt av de N observasjonene ender med høy henholdsvs lav verd på Y Med ltt økonomserende notasjon kan v skrve dette på følgende måte: y N y 1 y p ( 1 p ), [III1] = 1 hvor N = 1 står for produktet av sannsynlghetene for at enkeltobservasjonene =1,N skal ende med suksess henholdsvs fasko Med dsse nnledende betraktnngene som bakteppe llustrerer v prnsppet for estmerngen av koeffsentene tlknytnng tl et enkelt eksempel Betrakt følgende (sparsommelge) datamatrse for en bvarat logtlgnng: 2 V har derfor kke med en bnomsk forsøksrekke å gjøre estmerngen av logtkoeffsentene Dette skaper kke problemer for antagelsen om at Y er Bernoull fordelt v

7 Tabell III2 Observasjon Y X Som en pedagogsk forenklng estmerer v lgnngen uten konstantledd V puncher data fra tabell III2 en SPSS fle og kjører lgnngen: Z returnerer resultatet Z = X Logten for observasjon 1 er z 1 = ( 3) = 1218 svarende tl: = bx SPSS prosedyren Dette gr en sannsynlghet for høy verd på avhengg varabel exp( 1218 ) p 1 = = exp( 1218 ) Sannsynlgheten for lav verd på observasjon 1 svarer da tl ( 1 p 1) = 0 23 Ved å gjennomføre tlsvarende utregnnger for observasjonene 2 tl og med 5 produseres følgende tabell over betngede sannsynlgheter for suksess og fasko på de fem observasjonene: Tabell III3 Observasjon p (1- p ) V er nå klar tl å benytte formel [III1] Innsettng for Y verdene fra tabell III2 og de betngede sannsynlghetene fra tabell III3 gr: N p = 1 y ( 1 p) 1 y = p ( 1 p ) p ( 1 p ) p ( 1 p ) p ( 1 p ) p ( 1 p ) = ( 0771 ) ( 0691 ) ( 1040 ) ( 1031 ) ( 0771 ) = v

8 Hva forteller dette oss? Dette forteller oss at sannsynlgheten for å realsere de observerte verdene på Y og X tabell III2 er PYXb (, ) = Kanskje blr dette enda klarere dersom v skrver sannsynlgheten som vektorer av observasjonene tabell III2 og estmatet for logtlgnngen tl dsse observasjonene: PY ( = (,, 11 0,,) 0 1 X= ( 3, 2,, 1 2,), 3 b= 0 406) = La oss undersøke hva som skjer med denne sannsynlgheten dersom v holder observasjonene konstant men lar estmatet anta andre verder enn den verden SPSS prosedyren returnerte Resultatet av et slkt eksperment er vst fgur III1 3 3 Et regneark er her nokså nyttg v

9 Fgur III1 0,06 0,04 P(Y X,b) 0,02 0-0,494-0,194 0,106 0,406 0,706 1,006 1,306 1,606 b Av fguren ser v at estmatet b = 0 406, som SPSS prosedyren returnerte, maksmerer sannsynlgheten for å observere datasettet tabell 8 Dersom v velger et lavere eller et høyere estmat enn dette så reduseres sannsynlgheten for at de observerte verdene tabell III2 kan opptre sammen Et begrep som benyttes forbndelse med estmerng av logtkoeffsenter er «lkelhood funksjon» (L- funksjon) En slk tlordner sannsynlgheter for å ha observert et bestemt datasett som en funksjon av logtkoeffsenten For en gtt verdkombnasjon på avhengg varabel er sannsynlgheten som L- funksjonen tlordner betnget av de observerte verdene på uavhengg varabel, samt av den koeffsenten som velges Funksjonen som er tegnet nn fgur III1 er et eksempel på en slk L- funksjon Formelt kan funksjonen uttrykkes som L = P( Y X, b) Estmatet tl logtkoeffsentene kalles et «maxmum lkelhood estmate» (MLE) og er altså gtt ved: b = max L = P ( Y X, b ), b x

10 MLE prnsppet er det samme for en bvarat og en multvarat logtlgnng Sden koeffsentene kke er lneære verdene på de uavhengge varablene fnnes det mdlertd kke en eksplstt løsnng for de lgnngssystemer som MLE gr opphav tl I prakss gjennomfører derfor programvaren en søkeprosedyre, hvor verdene på koeffsentene endres nntl det punkt der vdere endrnger av koeffsentene kke endrer L -funksjonen med mer enn et bestemt nkrement ( programvaren kalles slke endrnger koeffsentene «teratons») Fgur III1 antyder at søkeprosedyren er effektv x

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat 07 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Erlng Berge 2004 Forelesng VII Logstsk regresjon I Hamlton Kap 7 s27-234

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Oppvarming og innetemperaturer i norske barnefamilier

Oppvarming og innetemperaturer i norske barnefamilier Ovarmng og nnetemeraturer norske barnefamler En analyse av husholdnngenes valg av nnetemeratur Henrette Brkelund Masterogave samfunnsøkonom ved Økonomsk Insttutt UNIVERSITETET I OSLO 13.05.2013 II ) Ovarmng

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Analyse av strukturerte spareprodukt

Analyse av strukturerte spareprodukt NORGES HANDELSHØYSKOLE Bergen, Høst 2007 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe Veleder: Professor Petter Bjerksund Utrednng fordypnngs-/spesalområdet: Fnansell

Detaljer

SNF-rapport nr. 23/05

SNF-rapport nr. 23/05 Sykefravær offentlg og prvat sektor av Margt Auestad SNF-prosjekt nr. 4370 Endrng arbedsforhold Norge Prosjektet er fnansert av Norges forsknngsråd SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657 Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 11. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 11. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Erlng Berge 2004 Forelesng XI Logstsk regresjon II Hamlton Kap 7 s27-235 Erlng

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

Utvalgsseleksjon og manglende data: Noen metodemessige utfordringer

Utvalgsseleksjon og manglende data: Noen metodemessige utfordringer ARBEIDSNOTAT 48/2006 Bjarne Strøm Utvalgsseleksjon og manglende data: Noen metodemessge utfordrnger NIFU STEP Studer av nnovasjon, forsknng og utdannng Wergelandsveen 7, 0167 Oslo Arbedsnotat 48/2006 ISSN

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

SNF-rapport nr. 19/07

SNF-rapport nr. 19/07 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe SNF-prosjekt nr. 7000 SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER 2007 Dette eksemplar er fremstlt etter avtale

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 NA Dok. 5 Angvelse av måleuskkerhet ved kalbrernger Dokument kategor: Krav Fagområde: Kalbrerngslaboratorer Dette dokumentet er en oversettelse av EA-4/0 European Cooperaton for Accrédtaton of

Detaljer

Hvordan får man data og modell til å passe sammen?

Hvordan får man data og modell til å passe sammen? Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.

Detaljer

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Avvisning av klage på offentlig anskaffelse

Avvisning av klage på offentlig anskaffelse Klagenemnda for offentlge anskaffelser Advokatfrmaet Haavnd AS Att. Maranne H. Dragsten Postboks 359 Sentrum 0101 Oslo Deres referanse Vår referanse Dato 1484867/2 2010/128 08.03.2011 Avvsnng av klage

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

DEN NORSKE AKTUARFORENING

DEN NORSKE AKTUARFORENING DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske

Detaljer

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214 A "..'. REW~~~~~OO ~slnmtlre STATENS ARBESMLJØNSTTUTT Postadresse: Pb. 8149 ep. 0033 Oslo 1. Kontoradresse: Gydas ve 8 - Tlf. 02-466850. Bankgro 0629.05.81247 - Postgro 2 00 0214 Tttel: OPPLEE AV HEE OG

Detaljer

Kapitalbeskatning og investeringer i norsk næringsliv

Kapitalbeskatning og investeringer i norsk næringsliv Rapport Kaptalbeskatnng og nvesternger norsk nærngslv MENON-PUBLIKASJON NR. 28/2015 August 2015 av Leo A. Grünfeld, Gjermund Grmsby og Marcus Gjems Thee Forord Denne rapporten er utarbedet av Menon Busness

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2007/7 Raorter Reorts Bente alvorsen, Bodl M. Larsen og Runa Nesbakken Smulerng av usoldnngenes elektrstetsforbruk Dokumentason og anvendelser av mkrosmulerngsmodellen SE Statstsk sentralbyrå Statstcs

Detaljer

Litt om empirisk Markedsavgrensning i form av sjokkanalyse

Litt om empirisk Markedsavgrensning i form av sjokkanalyse Ltt om emprsk Markedsavgrensnng form av sjokkanalyse Frode Steen Konkurransetlsynet, 27 ma 2011 KT - 27.05.2011 1 Sjokkanalyse som markedsavgrensnngsredskap Tradsjonell korrelasjonsanalyse av prser utnytter

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Påvirket Science -saken etterspørselen etter fersk laks i EU

Påvirket Science -saken etterspørselen etter fersk laks i EU Påvrket Scence -saken etterspørselen etter fersk laks EU av Anders Wesener Mastergradsoppgave Samfunnsøkonom (30 stp) Insttutt for økonom Norges Fskerhøgskole Unverstetet Tromsø Desember 2006 Innholdsfortegnelse

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2005/8 Rapporter Reports Bente Halvorsen, Bodl M. Larsen og Runa Nesbakken Prs- og nntektsfølsomet ulke usoldnngers etterspørsel etter elektrstet, fyrngsoler og ved Statstsk sentralbyrå Statstcs Norway

Detaljer

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er: Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat, vår 2003 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Vår 2004 Erlng Berge 2004 1 Forelesng IX Robust Regresjon Hamlton

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT. prisbestemmelsen

DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT. prisbestemmelsen DET KONGELIGE FISKERI- OG KYSTDEPARTEMENT Fskebãtredernes forbund Postboks 67 6001 ALESUND Deres ref Var ref Dato 200600063- /BSS Leverngsplkt for torsketrálere - prsbestemmelsen V vser tl Deres brev av

Detaljer

Audun Langørgen Alternative metoder for beregning av kostnadsnøkler for utgiftsutjevning mellom kommuner

Audun Langørgen Alternative metoder for beregning av kostnadsnøkler for utgiftsutjevning mellom kommuner Rapporter 23/2011 Audun Langørgen Alternatve metoder for beregnng av kostnadsnøkler for utgftsutjevnng mellom kommuner Statstsk sentralbyrå Statstcs Norway Oslo Kongsvnger Rapporter I denne seren publseres

Detaljer

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport Onlne Rapport Introduksjon Onlne Rapport www.olr.ccl.com Dn trnn for trnn-gude tl den nye Onlne Rapporten (OLR) Vktg nfo tl alle mengheter og organsasjoner Ingen flere program som skal lastes ned Fortløpende

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

Statens vegvesen. Vegpakke Salten fase 1 - Nye takst- og rabattordninger. Utvidet garanti for bompengeselskapets lån.

Statens vegvesen. Vegpakke Salten fase 1 - Nye takst- og rabattordninger. Utvidet garanti for bompengeselskapets lån. Fauske kommune Torggt. 21/11 Postboks 93 8201 FAUSKE. r 1'1(;,. ',rw) J lf)!ùl/~~q _! -~ k"ch' t ~ j OlS S~kÖ)Ch. F t6 (o/3_~ - f' D - tf /5Cr8 l Behandlende enhet Regon nord Sa ksbeha nd er/ n nva gsn

Detaljer

FAUSKE KOMMUNE INNSTILLING: Sammendrag: TIL KOMMNE. II Sak nr.: 097/12 I DRIFTSUTVALG REFERATSAKER I PERIODEN SAKSPAPIR. orientering.

FAUSKE KOMMUNE INNSTILLING: Sammendrag: TIL KOMMNE. II Sak nr.: 097/12 I DRIFTSUTVALG REFERATSAKER I PERIODEN SAKSPAPIR. orientering. ' SAKSPAPIR FAUSKE KOMMUNE JouralpostID: 12/8728 I Arkv sakld.: 12/2060 Sluttbehandlede vedtaksnstans: Drftsutvalget II Sak nr.: 097/12 I DRIFTSUTVALG I I Saksansvarlg: Bert Vestvann Johnsen Dato: 17.10.2012

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 l SAMMENDRAG: Rapporten omhandler bruk

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

En teoretisk studie av tv-markedets effisiens

En teoretisk studie av tv-markedets effisiens NORGES HANDELSHØYSKOLE Bergen, våren 007 Utrednng fordypnng: Økonomsk analyse Veleder: Hans Jarle Knd En teoretsk stude av tv-markedets effsens av Odd Hennng Aure og Harald Nygård Bergh Denne utrednngen

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

Er verditaksten til å stole på?

Er verditaksten til å stole på? NORGES HANDELSHØYSKOLE Bergen, våren 2006 Er verdtaksten tl å stole på? En analyse av takstmannens økonomske relasjon tl eendomsmegler av Krstan Gull Larsen Veleder: Professor Guttorm Schjelderup Utrednng

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

Rapport 2008-031. Benchmarkingmodeller. incentiver

Rapport 2008-031. Benchmarkingmodeller. incentiver Rapport 28-3 Benchmarkngmodeller og ncentver CO-rapport nr. 28-3, Prosjekt nr. 552 ISS: 83-53, ISB 82-7645-xxx-x LM/ÅJ, 29. februar 28 Offentlg Benchmarkngmodeller og ncentver Utarbedet for orges vassdrags-

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Lise Dalen, Pål Marius Bergh, Jenny-Anne Sigstad Lie og Anne Vedø. Energibruk î. næringsbygg 1995-1997 98/47. 11 Notater

Lise Dalen, Pål Marius Bergh, Jenny-Anne Sigstad Lie og Anne Vedø. Energibruk î. næringsbygg 1995-1997 98/47. 11 Notater 98/47 Notater 998 Lse Dalen, Pål Marus Bergh, Jenny-Anne Sgstad Le og Anne Vedø Energbruk î. nærngsbygg 995-997 Avdelng for økonomsk statstkk/seksjon for utenrkshandel, energ og ndustrstatstkk Innhold.

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

Sektoromstilling og arbeidsledighet: en tilnærming til arbeidsmarkedet 1

Sektoromstilling og arbeidsledighet: en tilnærming til arbeidsmarkedet 1 Sektoromstllng og arbedsledghet: en tlnærmng tl arbedsmarkedet 1 Joachm Thøgersen Høgskolen Østfold Arbedsrapport 2004:5 1 Takk tl Trond Arne Borgersen, Rolf Jens Brunstad og Øysten Thøgersen for nyttge

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer