TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Størrelse: px
Begynne med side:

Download "TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>."

Transkript

1 ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt <<. Oppgave Et større amerkask fagbok-forlag som blat aet publserer lærebøker statstkk, deler se publserte lærebøker statstkk (dsjukte) suksesskategorer ettersom hvorda bøkee lkkes markedet. uksess-kategoree er: (meget suksessfull), (suksessfull), (mddels suksessfull) og (mslkket). Basert på legre tds markedserfarg fra tdlgere publserte lærebøker statstkk opererer forlaget med følgede saslgheter (se tabell ) for forskjellge suksess-kategorer for et vlkårlg tt bokmauskrpt som kommer tl forlaget for publkasjo: Tabell Kategor P ( j ).... Før publserg av et tt mauskrpt lar alltd forlaget mauskrptet gjeomgå e fagfellevurderg. Resultatet av dee klassfseres som ete god (G) eller svak (dvs kke-god, eller med smbol, G ). Basert på erfarg fra publserte lærebøker aslår forlaget følgede saslgheter (se tabell ) for G de forskjellge suksess-kategoree: Tabell Kategor P( G j ) A.. Bestem P P ( ) og ( ).. Forklar ved Ve-dagram, eller på ae måte, at G G ( G ). F P G ( ).

2 << var:. de og er dsjukte begveheter, følger at P og P P P. Ve-dagram.. ( ) ( ) ( ).7. ( ),. P( G ) P( G ) P( G ) P( ) P( G ) P( ) P( G ) P( ) P( ) B. Ata at et tt bok-mauskrpt som kommer tl forlaget faktsk får god fagfellevurderg (G). Hva blr da saslghetee for at boka faller de forskjellge suksess-kategoree markedet? (Ht: F saslghetee P( j G) for j,,,.) var: Multplkasjossetge brukt på tabell og gr Kategor um PG ( ) P( G j ) der, pga dsjukt uo, ermed blr P( j G) P( j G).59 j =.59. j P( G) P( G ), som gr Kategor P( j G )...5. um. (pga avrudg) Oppgave Regjerge har tlselatede hatt e tedes tl å aslå løsvekste Norge lavere e de faktsk realserte løsvekste. Afteposte hadde et oppslag om dette fjor,. ma, der det blat aet sto,

3 tat Afteposte: Regjerge og Fasdepartemetet har lag prakss å spå for lav løsvekst. Fasmster gbjør Johse har se revderte asjoalbudsjetter udervurdert løsvekste hvert år sde 6. Artkkele uderbgger påstade med data gtt tabell, der varabele beteger regjerges spådom et vlkårlg år, de realserte løsvekste samme år og d dfferase. Tek deg at du befer deg ma og at de faktske løsvekste for eå kke er kjet. Tabell Løsvekst % Observasjo År lk spådde regjerge lk gkk det fferase d For å lette regge seere oppgave oppgs oe deskrptve størrelser tabell. Klde. Revdert asjoalbudsjett - og rapporter fra et Tekske bereggsutvalg for tektsoppgjøree og.

4 Tabell Noe deskrptve størrelser for perode (Atall observasjoer) d d.78 s ( ).587 s ( ).89 s ( d d ) d.66 s ( )( ).66 A.. Bereg de emprske korrelasjoskoeffsete, r, mellom og basert på data tabell.. Gjør kort rede for hva r uttrkker. << var:. s.66 r ss (.587) (.89) B. Ata å at, og d er observasjoer av stokastske varable,, Y og Y, der paree (, Y),,,, atas å være uavhegge av hveradre og detsk fordelte. Beteg forvetgee med, Y og heholdsvs og varasee med, Y og heholdsvs. I tllegg atar v at,,, er uavhegge og detsk ormalfordelte, N for,,, ~ (, ). ette ebærer at -er og Y -er fra forskjellge par er uavhegge. være avhegge. og Y fra samme par ka mdlertd

5 5. Forklar hvorda sammehege d tabell følger av regeregler for summer brukt på tall tabell.. Forklar hvorfor Y.. es du at det vlle være rmelg å forutsette e sammeheg Y mellom varasee, eller ses du kke det? Begru svaret dtt. << var:. Av regereglee for summer appedkset regresjo-i-otatet følger d ( ) regel.. E( ) E( Y ) E( Y ) E( ). Y forutsetter at og Y er ukorrelerte populasjoe. I de forelggede modelle ka r pukt A oppfattes som et estmat for korrelasjoe mellom og Y, som er så stor at forutsetge vrker høst urmelg. C.. ett opp e forvetgsrett estmator for og begru forvetgsretthete.. ett opp e test for hpotese H : mot H : med sgfkasvå 5%.. Gjeomfør teste ut fra data tabell og og formuler e koklusjo. Kommeter resultatet. << var:. ˆ er forvetgsrett sde regel. gr. E( ) E ( ) E Testobservator: T ˆ E( ˆ ) er t-fordelt med frhetsgrader hvs. 5%-kvatle t -fordelge er.796. Test: Forkast H hvs T.796. ˆ, obs obs.78, E( ˆ ).9, som gr Tobs.9. Koklusjo: Forkast H. Kommetar: Resultatet bekrefter påstade artkkele.

6 6. V øsker å uttte dee tedese tl å korrgere regjerges spådom (.75) for. E ekel måte å gjøre dette er å postulere e regresjosmodell for Y med som (kke-stokastsk) forklargsvarable. V atar altså () Y e for,,, der restleddee e, e,, e atas uavhegge og detsk ormalfordelte med forvetg og varas.. La Y betege realsert løsvekst et vlkårlg år der regjerge spår e løsvekst på %. Bereg et estmat for regresjosfuksjoe, E( Y) ( ), basert på mste kvadraters estmatorer for og.. Bruk regresjosaalse pukt. tl å foreslå et korrgert estmat på forvetet løsvekst, basert på regjerges spådom.75. << var:. ˆ.66., ˆ Y ˆ.58 (.)(.75).567 s.587 Y e estmerte regresjosfuksjoe blr ˆ( ).567 (.). Korrgert estmat på forvetet løsvekst : ˆ(.75).567 (.)(.75). E. Bereg et 95% kofdestervall for forvetet løsvekst basert på regresjosmodelle og dtt korrgerte estmat pukt. << var: ˆ(.75) (.75) de T ~ t -fordelt, blr kofdestervallet E( ˆ (.75)) ˆ (.75) t E ˆ (.75) ˆ (.75) (.8) E ˆ (.75),.5 om kurostet ka eves at et tekske bereggsutvalget for tektsoppgjøree seere på året fastsatte gjeomsttlg løsvekst tl %.

7 7 der E ˆ(.75) og.75 ˆ (.75) (.8) ˆ Løvås regel 7.5 ˆ ( ˆ E ) (.75 ) ˆ (.75) (.8) ˆ HG regresjosotat II ( ) s ˆ regresjosotat II E ˆ ( s Løvås) s.89 (.) (.587).95 ˆ.8 ermed E ˆ som gr 95% KI for (.75) (.75 ) (.75.75) (.75) ˆ (.8). ( ) s.587 : ˆ ˆ (.75) (.8) E (.75)..87.8,.7 Oppgave E ae måte å se på regjerges tedes tl å udervurdere løsvekste, er å betrakte hvert år som et bomsk forsøk der v deferer suksessbegvehete () som begvehete at regjerges spådom lgger uder de realserte løsvekste. Ata at saslghete for at regjerges spådom lgger uder de realserte, er kostat lk p, og at forskjellge år er uavhegg av hveradre. La være atall gager treffer løpet av e perode på år. V atar således at er bomsk fordelt, ~ b(, p ). I dee modelle ka tedese tl å udervurdere løsvekste uttrkkes ved hpotese p.5 fravær av e slk tedes uttrkkes ved p.5 I dee oppgave skal v ata år (dvs. ku se på perode -). (ette for å kue uttte tabellee Løvås.) A. V øsker å teste :.5 blr foreslått: () Forkast H hvs 7. H p mot :.5 H p basert på. Følgede test, mes

8 8. Bereg sgfkasvået for teste () tlærmet basert på ormaltlærmelse tl bomske fordelger med heltallskorreksjo.. Bereg sgfkasvået for teste () eksakt ved bruk av tabeller over de bomske fordelge.. Gjeomfør teste basert på perode - tabell ( oppgave ) og formuler e koklusjo. << var:. Nvået er gtt ved Pp.5 (forkast H) Pp.5 ( 7). Ved ormaltlærmelse får v heltallskorreksjo p.5 p.5 p.5 P ( 7) P ( 7) P ( 7.5) 7.5 (.5) P Z G(.58) (.5)(.5). Eksakt beregg ved tabell. Løvås: p.5 p.5 tabell. P ( 7) P ( 7) I følge tabell er obs 9 slk at koklusjoe blr: Forkast H. (Også obs 8 bør aksepteres sde det er e observasjo d =, og er kke helt press oppgavetekste.) B. Bereg både saslghete for fel av tpe I og saslghete for fel av tpe II hvs de sae verde av p er.. Gjør det samme hvs de sae p =.5 og hvs p =.7. u ka selv velge om du vl bruke eksakt beregg (tabell. Løvås) eller ormaltlærmelse. << var: Eksakt (tabell.) Med ormaltlærmg

9 9 p P(forkast H ) P ( 7) p P(fel I) P(fel II) z P(forkast H ) Gz ( )

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame : ECON0 tatstkk Exam: ECON0 tatstcs UNIVERITETET I OLO ØKONOMIK INTITUTT Eksamesdag: 050 esur blr aosert: 0060 ate for exam: 050 Grades wll be gve: 0060 Td for eksame: kl 0 70 Tme for exam: 0 70

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende?

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende? ECON 3 HG a 3 Supplemet tl sste forelesg 3 vår 4 eksempler på test-dskusjoer klusve ltt om p-verder Eksempel - Er gjeomsttshøyde for kver Norge økede? et er velkjet at gjeomsttshøyde for meesker Europa

Detaljer

Statistikk med anvendelse i økonomi

Statistikk med anvendelse i økonomi A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator

Detaljer

1. Konfidens intervall for

1. Konfidens intervall for Forelesg 0 + Yushu.@ub.o Kofdes tervall og Bootstrap. Kofdes tervall for ) Kofdes tervall [ ˆ, ˆ ] dekker de ukjete parametere med høy grad av skkerhet (kofdesvå): P( ˆ ˆ ), er f.eks 0.0 eller 0.05, eller

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Mars 017 Overskt over kofdestervall Eco 130 Merk at dee overskte kke er met å leses stedefor framstllge Løvås, me som et supplemet. De eholder tabeller med formler for kofdestervaller for stuasjoer

Detaljer

TMA4245 Statistikk Eksamen 21. mai 2013

TMA4245 Statistikk Eksamen 21. mai 2013 TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Analyse av sammenhenger

Analyse av sammenhenger Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ).

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ). ECON3: EKSAMEN VÅR - UTSATT PRØVE Oppgave Ata er possofordelt med parameter λ = 5 (skrevet kort, ~ pos(5), jfr. defsjo 5.8 Løvås med t = ). A. () F P= ( 5) og P ( 5), for eksempel basert på tabell D. Løvås.

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15).

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15). Øvelsesoppgave : ECON3 Statstkk Dato for utleverg: 4.3.7 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Dato for leverg: 3.3.7 e kl. 5. Ilevergssted: Ekspedsjoe. etasje (mellom.5-5.) OG Froter (e klokke 5).

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

Econ 2130 uke 13 (HG)

Econ 2130 uke 13 (HG) Eco 30 uke 3 (HG) Iførg regresjo I deskrptv aalse (Løvås kap. 7. 7.3.3) DATA: Resultater fra 500m og 5000m for me fra EM på skøter Heerevee 004. Obs 5000m 500m Obs 5000m 500m r. Td Sekuder Td Sekuder r.

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon) TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner Itroduksjo tl økoometr, kap 8, 9.1 og 9. Hva er formålet med økoometr? Utvalgskorrelasjoer To-varabel regresjoer Iformasjo fra data Målet med økoometr er å lære oe fra data Øke vår kuskap ved å oppdage

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n:

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n: Mer om Hypotesetestg kap 5 Overskt: Små utvalg og Studet s t-fordelg Hypotesetestg for populasjosgjeomsttet, μ Med tlfeldg og stort utvalg er fordelge tl testobservatore motvert av SGT Hva skjer dersom

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>.

Oppgaven består av 9 delspørsmål, A,B,C,., som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<.. >>. ECON 130 EKSAMEN 008 VÅR - UTSATT PRØVE SENSORVEILEDNING Oppgave består av 9 delspørsmål, A,B,C,., som abefales å veie like mye, Kommetarer og tallsvar er skrevet i mellom . Oppgave 1 Ved e spørreudersøkelse

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I 1 ECON 130 HG, revdert 017 Notat tl kapttel 7.1 7.3.3 Løvås (Jfr. forelesg uke 11) Om ekel leær regresjo I (deskrptv aalse og ltt om regresjosmodelle tl slutt) 1 Iledg Ekel regresjosaalse dreer seg om

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale

Detaljer

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg MET359 Økoomer ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. Aa følgede o varabler: gpa: (Grade Po Average) Gjeomsskaraker for amerkaske sudeer. gpa fes ervalle [0;4], hvor 0 er lavese gjeomsskaraker

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II I dee siste øvige fokuserer vi på lieær regresjo, der vi har kjete kovariater

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

betegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til

betegne begivenheten at det trekkes et billedkort i trekning j (for j=1,2,3), og komplementet til 1 ECON1: EKSAMEN 17v SENSORVEILEDNING. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variaso i vaskelighetsgrad. Svaree er gitt i

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

Erling Siring INNHOLD

Erling Siring INNHOLD IN 83/4 8. februar 983 ESTIMERING AV VEKTENE TIL EN KOMBINERT ESTIMATOR FOR FYLKESTALL Av Erlg Srg INNHOLD. Iledg 2. De optmale vektee og robusthetsegeskapee tl de komberte estmatore......... 3. Problemet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares.

EKSAMEN. Oppgavesettet består av 5 oppgaver, hvor vekten til hver oppgave er angitt i prosent i oppgaveteksten. Alle oppgavene skal besvares. EKSAMEN Emekode: SFB12003 Eme: Metodekurs II: Samfusviteskapelig metode og avedt statistikk Dato: 2.6.2014 Eksamestid: kl. 09.00 til kl. 13.00 Hjelpemidler: Kalkulator Faglærer: Bjørar Karlse Kivedal Eksamesoppgave:

Detaljer

Enveis variansanalyse (One-way ANOVA, fixed effects model) (Notat til Kap. 12 i Rosner)

Enveis variansanalyse (One-way ANOVA, fixed effects model) (Notat til Kap. 12 i Rosner) Eves varasaalyse (Oe-way ANOVA, fxed effects model) (Notat tl Kap. Roser) V reaptulerer først t-teste for to uavhegge utvalg. Stuasjoe var at v hadde to grupper, f.es. G og G og et sett uavhegge og dets

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

ØVINGER 2017 Løsninger til oppgaver

ØVINGER 2017 Løsninger til oppgaver ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1

Detaljer

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon?

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon? Medssk statstkk, del II, vår 008 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

Randi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001

Randi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001 2/64 Notater 2 Rad Johaesse Mkrodeksformel kosumprsdekse Avdelg for økoomsk statstkk/sekso for økoomske dkatorer Emegruppe: 8.2. Ihold. Bakgru og kokluso...3 2. Levekostadsdekser...4 2.. Kosumetes tlpasg...4

Detaljer

Medisinsk statistikk, del II, vår 2009 KLMED 8005

Medisinsk statistikk, del II, vår 2009 KLMED 8005 Medssk statstkk, del II, vår 009 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Statistikk Gruppe(r): Alle ( 2. årskull) Eksamesoppgav Atall sider (ikl. e består av: forside): 5 Tillatte hjelpemidler: Emekode: LO070A Dato: 11.06.2004

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

ARBEIDSNOTAT ARBEIDSNOTAT

ARBEIDSNOTAT ARBEIDSNOTAT A r b e d s o t a t e r f r a H øg s k o l e B u s k e r u d r. 67 ARBEIDSNOTAT ARBEIDSNOTAT Avedt statstkk Jo Reertse Arbedsotater fra Høgskole Buskerud Nr. 67 Avedt statstkk Av Jo Reertse Høefoss 8

Detaljer