Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler"

Transkript

1 Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt: predgsmål Varas: s tadardavvk: s Varasjoskoeffsset 00%. stadardavk/gjeomstt Kap 3. asylghetsregg Utfallsrom: Megde av alle mulge utfall et førsøk. Hedelse: Udermegde beståede av et eller flere mulge utfall av et forsøk. Uform sasylghet: atall gustge utfall for hedelse / atall mulge utfall Relatv frekves atall gager har har truffet / totalt atall forsøk Megdelære : utfallsrommet Ø: tom megde ge elemeter Uo: alle elemeter som er eller eller begge tt: alle elemeter som er både og Komplemet: holder alle elemeter som kke er Dsjukte megder: og er dsjukte hvs der kke har oe felles elemeter asylgheter og dsjukte 0,,... er parvs dsjukte FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde av

2 etgede sasylgheter Def. Multplkajo: Total sasylghet: E og bare e av hedelsee,,...., vl treffe. Da gjelder... ayes lov: et: Uavhegge hedelser Regel: og er uavhegge Multplkasjo: Hedelsee,,...., er uavhegge. Da gjelder Kombatorkk roduktregel: Forsøk k etapper hvor hver etappe har m mulge utfall. tall mulge utfall for hele forsøket blr m. m.... m k. otesregel: Trekker k eheter av merkede eheter med tlbakeleggg. tall mulge ordede utvalg blr k. ermutasjoer: Trekker k eheter av merkede eheter ute tlbakeleggg. tall mulge ordede utvalg blr!!..., k k k Fakultet: forskjellge elemeter ka orgaseres...! atall rekkefølger dvs. atall ordede utvalg av merkede eheter tall kombasjoer: Trekker k eheter av merkede eheter ute tlbakeleggg. Totalt atall mulge kke-ordede kombasjoer blr!!!, k k k C k Merk at per defefsjo er: 0! 0 0, 0, C FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde av

3 Kap 4. tokastske varabler tokastsk varabel: E stokastsk varabel kytter et bestemt tall tl et hvert utfall utfallsrommet Verdmegde V f : Megde av alle tallverder e stokastsk varabel ka ata. Dskret: V f består av et edelg eller tellbart megde tall Kotuerlg: V f består av alle tall et gtt tervall Dskrete sasylghetsfordelger lle verder verdmegde opptrer med e gtt puktsasylghet. uktsasylghet: er sasylghet for at de stokastske varabele får verde Egeskap: alle Kumulatv fordelgsfuksjo: F < Regler: V f <a Fa > a - <a Fa a < < b < b - < a Fb Fa Forvetgsverd: µ E Varas: E[- µ ] tadardavvk: alle alle V f µ V f alle V f µ Kotuerlge sasylghetsfordelger asylghete er gtt ved sasylghetstetthetfuksjo f som oppfyller at f d Kumulatv fordelgsfuksjo: F < f d Regler: <a Fa > a - <a Fa a < < b < b - < a Fb Fa Forvetgsverd: µ E f d Varas: E[- µ ] tadardavvk: µ f d f d µ ummasjo av stokastske varabler Regel 4. og 4.7 Gtt stokastske varaber,,... og kostater a, a,... a og b. Da gjelder alltd: Ea a... a b a E a E... a E b Hvs varablee,,... tllegg er statstsk uavhegge, gjelder også: Vara a... a b a Var a Var... a Var FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 3 av

4 Kap 5. Valge sasylghetsmodeller 5. omsk modell parametre: atall forsøk p sasylghet for suksess hvert forsøk tokastsk varabel: atall suksesser, 0 uktsasylghet: p p Forvetg og varas: E p Var p-p Typske eksempler: atall tergkast : atall 6-ere p /6 Trekg fra ure med tlbakeleggg 5.3 Hypergeometrsk modell 3 parametre: N totalt atall eheter M eheter med spes. egeskap utvalg tokastsk varabel: uktsasylghet: atall eheter utvalget med spes. egeskap M N M N Forvetg og varas: E p Var p-p N N p M/N Typske eksempler: - N atall eheter på lager M atall eheter med defekt atall stkkprøver atall stkkprøver med defekt 5.5 ossofordelge - Trekg fra ure ute tlbakeleggg lotto É parameter: tokastsk varabel: eller λ forvetet atall hedelser pr. ehet kke td λt λ er forvetet atall hedelser pr. tdsehet, t er tdstervall atall hedelser gtt ehet/tdstervall uktsasylghet: λ λ e eller! λt λt e! Forvetg og varas: E λ Var λ eller E λt Var λt Typske eksempler: tall arop tl e setral pr. mutt tall reker e boks rekesalat Tlærger hypergeomtrskn,m, bomsk,p med p M/N år N>0 bomsk,p possoλ med λ p år >0 og p< 0, FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 4 av

5 5.7 Normalfordelge er ormalfordelt med forvetgsverd µ og stadardavvk : ~ Nµ, asylghetstetthetsfuksjo: f µ e π Kumulatv sasylghetsfordelg: F < f d Egeskaper: ymmetr omkrg µ: Fµ- Fµ 68 % sasylghet for eheter tervallet [µ-,µ] 95 % [µ-,µ] 99,7 % [µ-3,µ3] tadard ormalfordelg: Z er stadard ormalfordelt med forvetgsverd µ 0 og stadardavvk, Z ~ N0, Kumulatv stadard ormafordelg Gz Z<z fes tabeller D.3 sde 48 lærebok Regel: gtt ormalfordelt med forvetgsverd µ og stadardavvk : ~ Nµ, µ Varabele Z vl da være stadard ormalfordelt Z ~ N0, eregger: gtt ormalfordelt med forvetgsverd µ og stadardavvk : ~ Nµ, a µ <a Fa G b µ a µ a<<b Fb Fa G - G a µ >a - Fa - G Kvatler z α tabell D.4 sde 48 lærebok: Gtt e sasylghet α., z α kalles da α-kvatlet og er defert som verde z α som gr sasylgete for at e tlfeldg varabel Z ~ N0, er større e z α er lk α: Z> z α α predgstervall: Gtt ormalfordelt med forvetgsverd µ og st.avvk : ~ Nµ, 00-α% av verdee fes da tervallet µ ± z α/ 00-α% av verdee er større e µ z α. 00-α% av verdee er mdre e µ z α. ummasjo av ormalfordelte varabler: Gtt,,... uavhegge og ormalfordelte varabler ~ Nµ,,,.., og a, a,... a er kostater. Varabele Y a a... a er da ormalfordelt Y ~ Nµ, med µ a µ a µ... a µ og a a... a pesaltlfeller summasjo: umme av eheter av samme ormalfordelte varabel Nµ, vl være ormalfordelt Nµ, Gjeomsttet av eheter av samme ormalfordelte varabel ~ Nµ, vl være ormalfordelt ~ Nµ,/ FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 5 av

6 5.8 etralgreseteoremet etralgreseteoremet er et svært vktg resultat og et meget yttg verktøy statstkke. Det ka bevses matematsk at hvs ma summerer flere varabler fra samme sasylghetsfordelg vl dee summe ærme seg e ormalfordelg. Dette gjelder uasett hvlke fordelg de opprelge varabele tlhørte. Regel 5.8 La,,... være uavhegge varabler fra samme sasylghetsfordelg med forvetg µ og stadardavkk. Da er... tlærmet ormalfordelt ~ N µ, Regel 5.9 La,,... være uavhegge varabler fra samme sasylghetsfordelg med forvetg µ og stadardavkk. Da er summe Y... tlærmet ormalfordelt Y ~ Nµ, Normaltlærmg Ved tlstrekkelg store tall ka omalfrodelge yttes som e tlærmg tl adre kjete fordelger: Regel 5.0 Hvs er bomsk, hypergeometrsk elle possofordelt med forvetg µ og stadardavkk, da er tlærmet ormalfordelt år v forusetter at > 5. Da gjelder < F omsk: Hypergeomertsk: µ G µ p p-p µ p N p-p N p M/N osso: µ λ λ alt. µ λ t λ t Tlleggsbetgelser: - omsk fordelg: p bør kke være for ær 0 eller - Hypergeometrsk: N mye større e, og p M/N bør kke være for ær 0 eller - ossofordelg: bør helst ha oppfylt at λt > 0 Heltallskorreksjo: ved ormaltlærmg tl e dskret heltallsvarabel oppås best tlærg ved å erstatte med 0,5 kumulatv stadard ormalfordelg G. FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 6 av

7 Kap 6. Estmerg og hypotesetestg uktestmatorer Forvetgsverd: µ... gjeomstt Varas: tadardavvk: asylghet p: p {at. gustge utfall / totalt atall forsøk} Rate λ: λ {at. hedelser tdsrom t / t } t Kofdestervaller. Gtt observasjoer,,... fra fordelg med ukjet µ og kjet. 00-α% kofdestervall for forvetgsverde µ er da gtt ved: z z α /, α / - z α / er α/-kvatle stadard ormalfordelg - forutsetter ormalfordelt eller > 0. tall observasjoer for å oppå tervallegde L: z L α /. Gtt observasjoer,,... fra fordelg med ukjet µ og ukjet. 00-α% kofdestervall for forvetgsverde µ er da gtt ved: t t α /, α / - t α / er α/-kvatle t-fordelge med - frhetsgrader - forutsetter ormalfordelt eller > 30. tall observasjoer for å oppå tervallegde L: z L α / { fra plotstude} FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 7 av

8 C. omsk modell med forsøk og gustge utfall 00-α% tlærmet kofdestervall for sasylghete p er gtt ved: p z p p, p z α / α / p p - z α / er α/-kvatle stadard ormalfordelg p - forutsetter at er tlærmet ormalfordelt p p > 5 tall observasjoer for å oppå tervallegde L: z α / L D. ossofordelg med hedelser tdsrom t 00-α% tlærmet kofdestervall for rate λ er gtt ved: λ z λ α /, λ zα / t λ t λ t - z α / er α/-kvatle stadard ormalfordelg - forutsetter at er tlærmet ormalfordelt λ > 0 t Hypotesetestg p-verd sgfkassasylghet: sasylghete, hvs ullhypotese H 0 er sa, for å få et resultat lk det observerte eller legre bort fra ullhypotese. Geerelt gjelder at hvs ma fer p < α, så ka ullhypotese H 0 forkastes med sgfkasvå α.. Hypotesetest av µ år er kjet Z-test kal teste forvetgsverd tl et materale forhold tl e gtt verd µ 0. Gtt observasjoer,,..., med forutsetg om at er ormalfordelt eller > 0, og valgt sgfkasvå α. µ - Testobservator Z 0 - Fer z α α-kvatle stadard ormalfordelge eller z α/ α/-kvatle for -sdg test Test : H 0 : µ < µ 0 H : µ > µ 0 Forkast H 0 hvs Z > z α p GZ Test : H 0 : µ > µ 0 H : µ < µ 0 Forkast H 0 hvs Z <-z α p GZ Test 3: H 0 : µ µ 0 H : µ µ 0 Forkast H 0 hvs Z > z α/ p GZ hvs Z<0 p G-Z hvs Z>0 FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 8 av

9 . Hypotesetest av µ år er ukjet t-test kal teste forvetgsverd tl et materale forhold tl e gtt verd µ 0. Gtt observasjoer,,..., med forutsetg om at er ormalfordelt eller > 30, og valgt sgfkasvå α. - uktestmatorer for forvetg og stadardavvk og µ 0 - Testobservator T - Fer t α α-kvatle t-fordelge med - frhetsgrader Test : H 0 : µ < µ 0 H : µ > µ 0 Forkast H 0 hvs T > t α p < α hvs T > t α Test : H 0 : µ > µ 0 H : µ < µ 0 Forkast H 0 hvs T <-t α p < α hvs T < - t α Test 3: H 0 : µ µ 0 H : µ µ 0 Forkast H 0 hvs T > t α/ p < α hvs T > t α/ C. Hypotesetest av sasylghet p kal teste sasylghet p e bomsk modell forhold tl e gtt verd p 0. Gtt forsøk med atall øskede resultat, med forutsetg om at er tlærmet ormalfordelt <> p-p > 5, og valgt sgfkasvå α. - uktestmator for sasylghet p {at. gustge utfall / totalt atall forsøk} p p0 p0 - Testobservator Z p 0 p0 p0 p0 - Fer z α α-kvatle stadard ormalfordelge eller z α/ α/-kvatle for -sdg test sgfkassasylghet p-verd Test : H 0 : p < p 0 H : p > p 0 Forkast H 0 hvs Z > z α p GZ Test : H 0 : p > p 0 H : p < p 0 Forkast H 0 hvs Z <-z α p GZ Test 3: H 0 : p p 0 H : p p0 Forkast H 0 hvs Z > z α/ p GZ hvs Z<0 p G-Z hvs Z>0 FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 9 av

10 Kap 7. alyse av sammeheger Korrelasjo Gtt observasjospar,y,,y,...,,y. Kovaras samvarasjo bereges ved Y Y Y Korrelasjoskoeffsete r eller R utrykker grade av leær rettljet samsvar mellom - og Y verder, og bereges ved Y r Y Y Y Y Y For r gjelder: o verde er alltd mellom og r <,0 o r ær 0 agr ge eller lte leær sammeheg, r ær agr sterk leær sammeheg o r < 0 agr at Y avtar med voksede r > 0 agr at Y øker med voksede Korrelasjo utrykkes ofte ved r eller R, eksempler: r -0,7 > r 0,49 r 0,9 > r 0,8 Ekel leær regresjo Mste kvadraters rette lje Gtt observasjospar,y,,y,...,,y. Mste kvadraters metode gr de lje som er best tlpasset observasjoee ved Y a b med b Y Y og a Y b r Y Kap 8. ammelgg av grupper Radomserg: skre represetatvt utvalg for aalyse ved tlfeldg utvalg og rekkefølge, aoymserg, bld og dobbelt bld udersøkelse. arg og blokkg: Idelg av observasjoee par, eller grupper som represeter blokker. alyser av ormalfordelte data: - T-test: paret eller uparet sammelgg av forvetgsverd to grupper - Varasaalyse NOV: sammelgg av forvetgsverd flere e to grupper alyser av kke ormalfordelte data: Ma-Whtey-Wlcoo, aret Wlcoo, Fortegstest, Kruskal-Walls og Fredma alyse av gruppelkhet krysstabeller spørreudersøkelser: Kj-kvadrattest FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde 0 av

11 T-test for sammelgg av forvetet gjeomstt for to grupper Gtt observasjoer,,... og Y, Y,... Y med forutsetg om at -er og Y-er er ormalfordelte stokastske varabler. kal udersøke om gruppees gjeomstt, µ for og µ for Y, er forskjellge.. Uparet t-test med atatt lke varaser tagelse: og Y har samme varas Iterpolert varas: Testobservator: p T Y p Forkastgsgrese: t α α-kvatle t-fordelge med frhetsgrader eller t α/ α/-kvatle for -sdg test. Uparet t-test med atatt ulke varaser Forutsetg: > 30 og > 30 Testobservator: T Y Forkastgsgrese: t α α-kvatle t-fordelge med frhetsgrader eller t α/ α/-kvatle for -sdg test C. aret t-test Forutsetg: Data par, Y for,.., Dfferaser: D - Y Testobservator: D T D Forkastgsgrese: t α α-kvatle t-fordelge med - frhetsgrader eller t α/ α/-kvatle for -sdg test Test : H 0 : µ < µ H : µ > µ Forkast H 0 hvs T > t α p < α hvs T > t α Test : H 0 : µ > µ H : µ < µ Forkast H 0 hvs T <-t α p < α hvs T < - t α Test 3: H 0 : µ µ H : µ µ Forkast H 0 hvs T > t α/ p < α hvs T > t α/ pped: Overskt over statstkkfuksjoer på kalkulator hp 30 [mode] - TT - -VR: gr og mm. [mode] - TT - -VR: gr r, a og b mm. korrelasjo og regresjo [mode] - TT - CLR-DT: ullstller statstkkmet [R] gr kombatorkk: r,r Cr C,r! fakultet r FO4N tatstkk, Mattekologsk utdag, MMT, HT høst 006 sde av

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

1. Konfidens intervall for

1. Konfidens intervall for Forelesg 0 + Yushu.@ub.o Kofdes tervall og Bootstrap. Kofdes tervall for ) Kofdes tervall [ ˆ, ˆ ] dekker de ukjete parametere med høy grad av skkerhet (kofdesvå): P( ˆ ˆ ), er f.eks 0.0 eller 0.05, eller

Detaljer

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting

Estimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting 3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre (,,, N ). Utvalg: Delmegde av populajoe (,,, der

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 Kp. 6, del 4. Hypotesetesting, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 27 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 19. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 27 Bjør

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Mars 017 Overskt over kofdestervall Eco 130 Merk at dee overskte kke er met å leses stedefor framstllge Løvås, me som et supplemet. De eholder tabeller med formler for kofdestervaller for stuasjoer

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

Econ 2130 uke 13 (HG)

Econ 2130 uke 13 (HG) Eco 30 uke 3 (HG) Iførg regresjo I deskrptv aalse (Løvås kap. 7. 7.3.3) DATA: Resultater fra 500m og 5000m for me fra EM på skøter Heerevee 004. Obs 5000m 500m Obs 5000m 500m r. Td Sekuder Td Sekuder r.

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ).

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ). ECON3: EKSAMEN VÅR - UTSATT PRØVE Oppgave Ata er possofordelt med parameter λ = 5 (skrevet kort, ~ pos(5), jfr. defsjo 5.8 Løvås med t = ). A. () F P= ( 5) og P ( 5), for eksempel basert på tabell D. Løvås.

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 20. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. mai 8 EKSAMEN I MATEMATIKK Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig). Hjelemidler:

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre, (,,, N ). Utvalg: Delmegde av populajoe (,,,, der

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 ÅMA110 Sasylighetsregig med statistikk, våre 2006 Kp. 6, del 2 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 1/ 38 Bjør H. Auestad Kp. 6: Hypotesetesig del 2 2/ 38 Oversikt 1. Hva er hypotesetestig? 2. Hypotesetestig

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4240 STATISTIKK 5.august 2004 Oppgave Foruresig X er e stokastisk variabel som agir

Detaljer

Kapittel 7: Noen viktige sannsynlighetsfordelinger

Kapittel 7: Noen viktige sannsynlighetsfordelinger Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av

Detaljer

Hypotesetesting, del 5

Hypotesetesting, del 5 Oversikt, del 5 Kofidesitervall p-verdi Kofidesitervall E (tosidig test ka gjeomføres vha. av et kofidesitervall. For eksempel, dersom vi i målemodell 1 vil teste: H 0 : μ = μ 0 mot H 1 : μ μ 0, ka vi

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians

Introduksjon. Hypotesetesting / inferens (kap 3) Populasjon og utvalg. Populasjon og utvalg. Populasjonsvarians Hypotesetestig / iferes (kap ) Itroduksjo Populasjo og utvalg Statistisk iferes Utvalgsfordelig (samplig distributio) Utvalgsfordelige til gjeomsittet Itroduksjo Vi øsker å få iformasjo om størrelsee i

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende?

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende? ECON 3 HG a 3 Supplemet tl sste forelesg 3 vår 4 eksempler på test-dskusjoer klusve ltt om p-verder Eksempel - Er gjeomsttshøyde for kver Norge økede? et er velkjet at gjeomsttshøyde for meesker Europa

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksame : ECON Statstkk Exam: ECON Statstcs UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: Fredag. ma 8 Sesur kugjøres: Torsdag. ju Date of exam: Frday, May, 8 Grades wll be gve: Thursday Jue Td for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Medisinsk statistikk, del II, vår 2009 KLMED 8005

Medisinsk statistikk, del II, vår 2009 KLMED 8005 Medssk statstkk, del II, vår 009 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Randi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001

Randi Johannessen. Mikroindeksformel i konsumprisindeksen. 2001/64 Notater 2001 2/64 Notater 2 Rad Johaesse Mkrodeksformel kosumprsdekse Avdelg for økoomsk statstkk/sekso for økoomske dkatorer Emegruppe: 8.2. Ihold. Bakgru og kokluso...3 2. Levekostadsdekser...4 2.. Kosumetes tlpasg...4

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 19 des. 2014 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdelig for tekologi Målform: Bokmål Eksamesdato: 5 jui 2015 Varighet/eksamestid: Emekode: 3 timer TALM1005 Emeav: Statistikk og Økoomi statistikkdele Klasser: Logistikk 1 Kjemi

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2.

2. Hypotesetesting i ulike sitausjoner: i. for forventingen, μ, i målemodellen med normalantakelse og kjent varians, σ 2. Oversikt 1. Hva er hypotesetestig? 2. i ulike sitausjoer: i. for forvetige, μ, med ormalatakelse og kjet varias, σ 2. ii. for forvetige, μ, med stor og ormaltilærmig (variase, σ 2, ukjet). iii. for suksessasylighete,

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015

LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015 NTNU Norges tekisk-aturviteskapelige uiversitet Fakultet for aturviteskap og tekologi Istitutt for aterialtekologi TT4110 KJEI LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 015 OPPGAVE 1 Vi starter ALLTID ed å

Detaljer

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram

Kort repetisjon fra kapittel 4. Oppsummering kapittel ST0202 Statistikk for samfunnsvitere. Betinget sannsynlighet og trediagram 2 Kort reetisjo fra kaittel 4 Betiget sasylighet og trediagram Eksemel: Fra e oulasjo av idrettsfolk trekkes e erso tilfeldig og testes for doig. De iteressate hedelsee er D=ersoe er doet, A=teste er ositiv.

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer