Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Størrelse: px
Begynne med side:

Download "Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller"

Transkript

1 Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller

2 De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram med mste kvadraters regresjoslje 5m mot 5m (ute Ervk) y R y R.4576 vser at ca. 45% av varasjoe y -ee det forelggede datamateralet er "forklart" av -ee.

3 Data: (, y ),(, y ),,(, y ), 7 Alle formler ekel leær regresjo ka reges ut ekelt med kalkulator ut fra følgede 5 størrelser, ys,,, s, s. y y y y.4 s ( ) sy ( y y) 8.4 sy sy ( )( y y) r.676 ss Mste kvadraters regresjoslje data: m( ) a + b, der sy b.46 a y b m( ) (.46) s y yˆ + d der yˆ a + b m( ) kalles predkert, og d y yˆ resduale (de "uforklarte" dele). Itutvt aslag på gjeomsttstde på 5m for e løper med tde 6:3 (39 sek.) på 5m (dage før): m (39) a+ b(39) sek. (: 5 m) y y 3

4 MODELL (som Løvås avstt 7.3. Se også kommetarer otatet «Regresjo I») La Y betege e stokastsk varabel som represeterer tde på 5m for e skøyteløper som (dage før) har oppådd e td på 5m. V har observasjoer, y, y,, y, og v treger derfor stokastske varable Y, Y,, Y, e for hver skøyteløper. Y represeterer dermed e løper som har oppådd tde på 5m. Tallee,,, betraktes som gtte tall modelle. V atar geerelt Y α + β+ e for e vlkårlg skøyteløper på dette vået, og for de aktuelle skøyteløpere, der e, e,, e med Y α + β + e for,,, atas uavhegge og detsk ormalfordelte restledd Ee ( ) og var( e) σ. Fuksjoe µ ( ) α + β kalles regresjosfuksjoe, og beteger forvetet td på 5m år oppådd td på 5m er sekuder. Altså, for e vlkårlg skøyteløper, Y µ ( ) + e, og Y µ ( ) + e,,,, for de aktuelle skøyteløpere. 4

5 I tllegg tl α og β øsker v å estmere µ (39) α + β 3 9 (39sek. 6:3 m.) Mste kvadraters estmatorer (som ka vses å være optmale dee modelle) er rett og slett estmatorer som har a, b og m(39) som estmater: De 5 gruleggede størrelsee, ys s s,,, y, y,,, y, y, ter, y, y, y ( ), oppfattes å som observerte verder av s YS S, der s er kosta, mes YS S er stokastske varable: Y Y S Y Y o g S ( ) ( Y Y) y Regel (følger av regel 4. og 4.7 pluss e del algebra) (a) Mste kvadraters estmatorer for αβ, og µ ( ) er (der er e valgt -verd, f.eks. 39) ˆ Sy β, ˆ α Y ˆ β, ˆ µ ( ˆ ˆ ) α + β s (b) ˆ βα, ˆ, og ˆ µ ( ) er alle forvetgsrette. (c) Varaser: var( ˆ β ) σ ( ) s var( ) ( ) ˆ µ σ + var( ( )) ( ) s ˆ α σ + ( ) s 5

6 Bevs for βˆ (som eksempel kke pesum): Merk først at Tlsvarede: S ( Y ) y sde ( )( Y Y) ( ) Y Y ( ) ( ) Y, der v bruker: ( ) s ( )( ) ( ) S ( ) ( ) ( ) ( )( + ) s kostat regel 4. ˆ y E( β ) E E Y E Y α β s s s s første sum ( ) ( ) ( ) ( α + β β β s β s s s altså forvetgsrett) 4 s σ regel 4.7 ˆ var( β ) var ( ) ( ) var( ) ( ) Y 4 Y σ 4 s s ( ) s ( ) σ σ s ( ) ( ) s Merkad: Uttrykket oppgtt for var( ˆ α) regel, er ltt forskjellg fra uttrykket Løvås avs , me de to uttrykkee er lke (prøv å vse det selv): 6

7 Estmerg av σ. Modellrelasjo: Y α + β + e µ ( ) + e Restledd: Resdual: e Y µ ( ) Y α β (kke-observerbar (sde α og β er ukjete) stokastsk varabe l) (Felaktg kalt «resdual» Løvås sde 87 ederst (sde 7 øverst)) eˆ Y ˆ α ˆ β (kalt regresjo-i-otatet) d SS E eˆ eholder formasjo ok tl å estmere σ. Regeformel (se regel 3 regresjo-i-otatet) SS S r S S S S S s Regel ( ˆ β ) y y E ( ) y( ) ( ) y ( ) ( ) y y ss y s E forvetgsrett estmator for σ. er SS ( S y β s) ˆ E ˆ eˆ (kalt s Lø vås) σ 7

8 Iferes. La og stå for e av de ukjete populasjosstørrelsee, θˆ for mkv estmatore. αβµ,, ( ) θ Populasjosstørrelse Mkv estmator Estmert stadardfel θ ˆ θ SE( ˆ θ ) α ˆ α Y ˆ β y β β s ˆ S ˆ σ + ( ) s s ˆ σ µ ( ) ˆ( µ ) ˆ α + ˆ β ˆ σ ( ) + ( ) s I eksemplet: ( β ) ˆ σ S ˆ s 7 og obs y gr obs θ α β µ(39) Mkv estmat sek (:5 m) ˆobs θ SE( ˆ θ )

9 Regel 3. La θ være e av αβµ,, ( ), ˆ θ mkv-estmatore og SE( ˆ θ ) estmert stadardfel. a. Uder modelle på sde 4 gjelder for > : ˆ W θ θ ~ t ( ) ( t-fordelt med - frhetsgrader) uasett hva θ er. SE( ˆ θ ) b. Hvs 3 omtret, er W tlærmet N(,) uasett hva θ er selv om (eller -ee) kke er ormalfordelte (!). e -ee Y Kofdestervall: La t α være α/-kvatle t ( )-fordelge. α P( t W t ) som før P( ˆ θ t SE( ˆ θ) θ ˆ θ + t SE( ˆ θ) ) α α α α tabell E5 (D5) 7 atall frhetsgrader er 5 et 95% KI er, ˆ θ ± t SE( ˆ θ) ˆ θ ± (.6) SE( ˆ θ).5 95% kofdestervall Parameter θ Nedre grese Øvre grese α β µ(39) (6 : 3m) sek (:48 m).8 sek (:5 m) 9

10 Hypotesetestg. La θ være e av αβµ,, ( ), og θ e kjet hypotetsk verd av θ. Om de sae verde av θ er lk eller kke, vet v kke. θ Testobservator: ˆ θ θ θ θ T (Merk at T W + ) T ~ t( ) hvs (og bare hvs) θ θ. SE( ˆ θ ) SE( ˆ θ ) t, α er α-kvatle t ( )-fordelge. Teststuasjo 3 H H θ θ Testobservator α-vå test: Forkast hvs T t α θ > θ T, θ θ T t α θ < θ, θ θ θ θ ˆ θ θ SE( ˆ θ ) ˆ θ θ T SE( ˆ θ ) ˆ θ θ T SE( ˆ θ ) H T t T t, α eller, α θ θ P-verd ( t o er observert verd av T) P ( T t ) θ θ o P ( T t ) θ θ o P ( T t o )

11 Testeksempel. E test for om det er e sammeheg mellom Y og populasjoe. H : β (ge sammeheg) H : β (sammeheg) ( β ) Testobservator: 5% test: T ˆ β β ˆ β SE( ˆ β) SE( ˆ β) tabell E5 (D5) "For ka st H hvs T t eller T t " "Forkast H hvs T.6 eller T.6" 5,.5 5,.5.44 Observert: t T obs Koklusjo: Forkast H. (dvs. det er sterk evdes data for at β. ) V kue ha tolket problemet esdg ved: H : β mot H : β >, om v hadde sagt «hvs det er e sammeheg det hele tatt, bør de være postv» 5% test: tabell E5 (D5) "Forkast H hv s T t " "Forkast H hvs T.78" 5,.5 Koklusjo: Forkast H sde T obs (dvs. det er sterk evdes data for at ) β >

12 -tervall struktur (for dskrete modeller). La θ være e ukjet parameter, ˆ θ estmator og SE( ˆ θ ) stadardfel ( SD( ˆ θ ) hvs ˆ θ er forvetgsrett). ˆ θ θ -test og -tervall er aktuelt hvs (*) W ~ N(,) (eksakt eller tlærmet) SE( ˆ θ ) SE( ˆ θ ) er ofte ukjet, me ka som oftest estmeres ute at (*) blr vesetlg berørt (ka vses). -α kofdestervall: ( ) α P( z W z ) som før P( ˆ θ z SE( ˆ θ) θ ˆ θ + z SE( ˆ θ) ) α α α α Modell X~ b( p, ) X ~ hypergeom. ( M,, N) p M N X ~ pos( tλ) Estmator θˆ X X ˆ λ X t Betgelse for ormal-tl. var( X ) 5 p( p) 5 N p( p) 5 N tλ 5 Tlærmet fordelg basert på regel 5. p p( p) tl. ~ N (,) p tl. ~ N (,) p( p) N N ˆ λ λ tl. ~ N (,) λ t ˆ θ θ SE( ˆ θ ) (med estmert SE) p ( ) p ( ) N N ˆ λ λ ˆ λ t

13 -test struktur (for dskrete modeller). La θ være e ukjet parameter, ˆ θ estmator og SE( ˆ θ ) stadardfel. La θ være e kjet hypotetsk parameterverd. Grulaget for -test (Løvås versjo): ˆ θ θ tlærmet ~ N(,) hvs θ SE ( ˆ θ θ θ ) θ Alteratv H H θ θ θ > θ Testobservator ˆ θ θ ( ˆ θ ) SE θ θ α-vå test: Forkast H hvs z α P-verd z o er observert verd av P ( z ) θ θ θ θ θ < θ ˆ θ θ ( ˆ θ ) SE θ θ z α P ( z ) θ θ 3 θ θ θ θ ˆ θ θ ( ˆ θ ) SE θ θ z z α α eller P ( z ) θ θ 3

14 -tester for alteratv (sde 3). Sgfkasvå tlærmet α. Tlsvarede for alteratv og 3 sde 3. Modell Estmator θˆ Betgelse for ormal-tl. var( X ) 5 Testobservator ˆ θ θ SE θ θ ( ˆ θ ) Forkastgskrterum z o P-verd er observert verd av X~ b( p, ) X ~ hypergeom. ( M,, N) p M N X ~ pos( tλ) ˆ λ X X X t p( p) 5 N p( p) 5 N tλ 5 p p p( p) N N p ( p ) ˆ λ λ λ t z α z α z α P ( θ θ z ) o P ( θ θ z ) o P ( θ θ z ) o Eksempel. (Jfr. forelesg uke 3) I et farlg kryss har ma tdlgere reget med gjeomsttlg ca..4 ulykker pr. uke. Sste år var det alt 6 ulykker krysset. Tyder dette på at ulykkesrate har gått ed? La X være atall ulykker et år (5 uker). Atar ~ pos(5 ) der λ E( ˆ λ) E X 5 er ulykkesrate (ukjet) X λ ( ) Skal teste H: λ.4 mot H: λ <.4 4

15 Testobservator: ˆ λ λ ˆ λ.4 tlærmet N λ λ t.4 t ~ (,) hvs.4 ˆ X ˆ 6 λ og estmatet: λobs % test: " Forkast H hvs z.5(. 645) " Observert: z o.5.4 obs Koklusjo: Ikke forkast H. (Det er kke formasjo ok data tl å kokludere at ulykkesrate pr. uke har gått ed.) P-verd: ˆ α Pλ.4( zo ) Pλ.4(.5) G(.5).64 (der Gz ( ) er de kumulatve fordelgsfuksjoe N(,).) Mage vlle ok lkevel tolke e p-verd på 6.4% som rmelg sterk evdes for at ulykkesrate hadde gått ed. 5

16 Eksempel 3. V øsker å teste om e terg er rettferdg med hesy på å produsere 6-ere. V kaster terge gager og oterer X atall 6-ere. Rmelg modell X ~ b(, p) der p P(6-er et kast). Øsker å kostruere e 5% test for H: p 6 mot H: p 6 Testobservator: p som er ~ (,) hvs 6. p ( p ) tlærmet N p p 5% test: " Forkast H hvs z.5 eller z.5 " " Forkast H hvs.96 eller.96" Sjekk selv at dette krteret er ekvvalet med " Forkast H hvs X 9 eller X 4" V har altså fått e regel som ser at X-verder blat tallee,,,,3 er forelg med hypotese at terge er rettferdg m.h.p. seksere, mes X-verder utefor dsse gr sterk evdes (med vå tlærmet 5%) for at terge kke er rettferdg. 6

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

Econ 2130 uke 13 (HG)

Econ 2130 uke 13 (HG) Eco 30 uke 3 (HG) Iførg regresjo I deskrptv aalse (Løvås kap. 7. 7.3.3) DATA: Resultater fra 500m og 5000m for me fra EM på skøter Heerevee 004. Obs 5000m 500m Obs 5000m 500m r. Td Sekuder Td Sekuder r.

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende?

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende? ECON 3 HG a 3 Supplemet tl sste forelesg 3 vår 4 eksempler på test-dskusjoer klusve ltt om p-verder Eksempel - Er gjeomsttshøyde for kver Norge økede? et er velkjet at gjeomsttshøyde for meesker Europa

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

1. Konfidens intervall for

1. Konfidens intervall for Forelesg 0 + Yushu.@ub.o Kofdes tervall og Bootstrap. Kofdes tervall for ) Kofdes tervall [ ˆ, ˆ ] dekker de ukjete parametere med høy grad av skkerhet (kofdesvå): P( ˆ ˆ ), er f.eks 0.0 eller 0.05, eller

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon) TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Mars 017 Overskt over kofdestervall Eco 130 Merk at dee overskte kke er met å leses stedefor framstllge Løvås, me som et supplemet. De eholder tabeller med formler for kofdestervaller for stuasjoer

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Analyse av sammenhenger

Analyse av sammenhenger Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Statistikk med anvendelse i økonomi

Statistikk med anvendelse i økonomi A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15).

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15). Øvelsesoppgave : ECON3 Statstkk Dato for utleverg: 4.3.7 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Dato for leverg: 3.3.7 e kl. 5. Ilevergssted: Ekspedsjoe. etasje (mellom.5-5.) OG Froter (e klokke 5).

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner

Introduksjon til økonometri, kap 8, 9.1 og 9.2. Hva er formålet med økonometri? Utvalgskorrelasjoner To-variabel regresjoner Itroduksjo tl økoometr, kap 8, 9.1 og 9. Hva er formålet med økoometr? Utvalgskorrelasjoer To-varabel regresjoer Iformasjo fra data Målet med økoometr er å lære oe fra data Øke vår kuskap ved å oppdage

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Medisinsk statistikk, del II, vår 2009 KLMED 8005

Medisinsk statistikk, del II, vår 2009 KLMED 8005 Medssk statstkk, del II, vår 009 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

TMA4245 Statistikk Eksamen 21. mai 2013

TMA4245 Statistikk Eksamen 21. mai 2013 TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ).

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ). ECON3: EKSAMEN VÅR - UTSATT PRØVE Oppgave Ata er possofordelt med parameter λ = 5 (skrevet kort, ~ pos(5), jfr. defsjo 5.8 Løvås med t = ). A. () F P= ( 5) og P ( 5), for eksempel basert på tabell D. Løvås.

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon?

Medisinsk statistikk, del II, vår 2008 KLMED Lineær regresjon, Rosner Regresjon? Medssk statstkk, del II, vår 008 KLMED 8005 Erk Skogvoll Førsteamauess dr. med. Ehet for Avedt klsk forskg Det medsske fakultet Leær regresjo, Roser..6 Bakgru (.) Modell (.) Estmerg av parametre modelle

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 2 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg MET359 Økoomer ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. Aa følgede o varabler: gpa: (Grade Po Average) Gjeomsskaraker for amerkaske sudeer. gpa fes ervalle [0;4], hvor 0 er lavese gjeomsskaraker

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I 1 ECON 130 HG, revdert 017 Notat tl kapttel 7.1 7.3.3 Løvås (Jfr. forelesg uke 11) Om ekel leær regresjo I (deskrptv aalse og ltt om regresjosmodelle tl slutt) 1 Iledg Ekel regresjosaalse dreer seg om

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Estimering 1 -Punktestimering

Estimering 1 -Punktestimering Estimerig 1 -Puktestimerig Dekkes av kap. 8, 9.1-9.3 og 9.15/9.14. Vi har til å settpå e rekke forskjellige sasylighetsfordeliger og sett hvorda disse ka brukes til å modellere mage forskjellige typer

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2008 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2008 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 26. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 5 1/ 53

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

ECON240 Statistikk og økonometri

ECON240 Statistikk og økonometri ECON240 Statistikk og økoometri Arild Aakvik, Istitutt for økoomi 1 Mellomregig MKM Model: Y i = a i + bx i + e i MKM-estimator for b: b = = Xi Y i 1 Xi Yi Xi 1 ( X i ) 2 (Xi X)(Y i Ȳi) (Xi X) 2 hvor vi

Detaljer

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er

X = 1 5. X i, i=1. som vil være normalfordelt med forventningsverdi E( X) = µ og varians Var( X) = σ 2 /5. En rimelig estimator for variansen er Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalte oppgaver 11, blokk II Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1)

Oppgaver fra boka: Med lik men ukjent varians antatt har vi fra pensum at. t n1 +n 2 2 under H 0 (12 1) (12 1) MOT30 Statistiske metoder, høste00 Løsiger til regeøvig r. 5 (s. ) Oppgaver fra boka: Oppgave 0.36 (0.0:8) Dekkslitasje X,..., X u.i.f. N(µ, σ ) og X,..., X u.i.f. N(µ, σ ) og alle variable er uavhegige.

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Løsningsforslag til eksamen i STK desember 2010

Løsningsforslag til eksamen i STK desember 2010 Løsigsforslag til eksame i STK0 0. desember 200 Løsigsforslaget har med flere detaljer e det vil bli krevd til eksame. Oppgave a Det er tilpasset e multippel lieær regresjosmodell av forme β 0 + β x i

Detaljer

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n:

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n: Mer om Hypotesetestg kap 5 Overskt: Små utvalg og Studet s t-fordelg Hypotesetestg for populasjosgjeomsttet, μ Med tlfeldg og stort utvalg er fordelge tl testobservatore motvert av SGT Hva skjer dersom

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

Hypotesetesting, del 4

Hypotesetesting, del 4 Oversikt, del 4 t-fordelig t-test t-itervall Del 5 Kofidesitervall vs. test p-verdi t-fordelig Rett på defiisjo: Utgagspuktet er målemodelle med ormalatakelse: X 1,...,X,u.i.f.tilf.var.derX i Nμ, σ 2 ).La

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer

Lineær regresjonsanalyse (13.4)

Lineær regresjonsanalyse (13.4) 2 Kap. 13: Lieær korrelasjos- og regresjosaalyse ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Kap. 13.1-13.3: Lieær korrelasjosaalyse. Disse avsitt er ikke pesum, me de lieære

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

Estimering 2. -Konfidensintervall

Estimering 2. -Konfidensintervall Estimerig 2 -Kofidesitervall Dekkes av kap. 9.4-9.5, 9.10, 9.12 og forelesigsotatee. Dersom forsøket gjetas mage gager vil (1 α)100% av itervallee [ ˆΘ L, ˆΘ U ] ieholde de ukjete parametere θ (som er

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 11 Løsigsskisse Oppgave 1 a) E rimelig estimator for forvetigsverdie µ er gjeomsittet X = 1 X i, som vil være ormalfordelt

Detaljer

STK1100 våren 2017 Estimering

STK1100 våren 2017 Estimering STK1100 våre 017 Estimerig Svarer til sidee 331-339 i læreboka Ørulf Borga Matematisk istitutt Uiversitetet i Oslo 1 Politisk meigsmålig Spør et tilfeldig utvalg på 1000 persoer hva de ville ha stemt hvis

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA Sasylighetsregig med statistikk, våre 27 Kp. 6 (kp. 6) Tre deler av faget/kurset:. Beskrivede statistikk 2. Sasylighetsteori, sasylighetsregig 3. Statistisk iferes estimerig kofidesitervall hypotesetestig

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 4 ÅMA11 Sasylighetsregig med statistikk, våre 21 Kp. 6, del 4 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 22. mars Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 29 Bjør

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03).

LØSNING, EKSAMEN I STATISTIKK, TMA4240, DESEMBER Anta at sann porøsitet er r. Måling med utstyret gir da X n(x; r, 0,03). LØSNING, EKSAMEN I STATISTIKK, TMA440, DESEMBER 006 OPPGAVE 1 Ata at sa porøsitet er r. Målig med utstyret gir da X (x; r, 0,03). a) ( ) X r P(X > r) P 0,03 > 0 P(Z > 0) 0,5. ( X r P(X r > 0,05) P 0,03

Detaljer

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3

Rep.: generelle begrep og definisjoner Kp. 10.1, 10.2 og 10.3 Kp. 1, oversikt ; oversikt, t- ; oversikt ; stor ; Hypoteseig; ett- og to-utvalg Rep.: geerelle begrep og defiisjoer Kp. 1.1, 1.2 og 1.3 Rep.: ett-utvalgser for μ (...), p Kp. 1 og 1.8 Nytt: ett-utvalgs

Detaljer

ARBEIDSNOTAT ARBEIDSNOTAT

ARBEIDSNOTAT ARBEIDSNOTAT A r b e d s o t a t e r f r a H øg s k o l e B u s k e r u d r. 67 ARBEIDSNOTAT ARBEIDSNOTAT Avedt statstkk Jo Reertse Arbedsotater fra Høgskole Buskerud Nr. 67 Avedt statstkk Av Jo Reertse Høefoss 8

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer