Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Størrelse: px
Begynne med side:

Download "Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18)."

Transkript

1 Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + + Xn, av uavhengge og dentsk fordelte (ud) tlnærmet, er tlnærmet normalfordelt, ~ ( ( ), Var( )) varable, X1, X2,, Xn er for lten (tommelfngerregel n 20 ). Dette gjelder uansett hvlken fordelng Y N EY Y, når n kke enkeltvarablene ( X ) har! Om fordelngen tl X er det nok å vte hva forventnngen ( µ = EX ( )) er og hva standardavvket ( σ = SD( X) = Var( X) ) er. I så fall kjenner v også forventnngen og standardavvket for Y: Regel 4.12 og 4.17 gr nemlg at ( ) EY = E X + X + + X = µ + µ + + µ = nµ ( ) 1 2 n ( ) Var( Y) = Var X + X + + Xn = σ + σ + + σ = nσ = σ n 1 2 tlnærmet Dermed har v at Y ~ N( n, n) µσ når n 20 kumulatve sannsynlgheter for Y tlnærmet: 1. Tlnærmelsen brukes tl å beregne (1) Y nµ y nµ y nµ y nµ PY ( y) = P P Z = G σ n σ n σ n σ n der Z ~ N (0, 1) med kumulatv fordelngsfunksjon, Gz ( ) = PZ ( z), som er tabulert tabell D3. boka. Dette teoremet er særdeles nyttg prakss sden den eksakte fordelngen tl Y ofte er meget komplsert og vanskelg å beregne. 1 Av dette følger drekte den tlsvarende regelen 5.18 om gjennomsntt, nemlg at tlnærmet ( ) ( µ σ ) X ~ N E( X), Var( X) = N, n når n 20. Dette skyldes regel 1 notatet om normalfordelng (på kurssden på web) som ser at at hvs Y er (tlnærmet) normalfordelt, må også en konstant ganger Y være det, hvorav X = ( 1 n) Y ~ tlnærmet normalfordelt med E( X) = ( 1 n) EY ( ) og ( ) 2 Var X (1 n) Var( Y) =.

2 2 Som llustrasjon vl v se på et par tlfeller der denne tlnærmelsen vrker dårlg og et par tlfeller der den vrker bra. La oss se nærmere på eksempelet v dskuterte på forelesnngen om de statstske egenskapene tl sum antall øyne ved flere kast med en rettferdg ternng. På forelesnngen dskuterte v gjennomsnttlg antall øyne, mens v her skal se på sum antall øyne. La X være antall øyne v får kast nr. med ternngen, og Y = X1+ X2 + + Xn antall øyne for n kast. Alle er sum X -ene har samme fordelng beskrevet tabell 1 og er uavhengge. Tabell 1 Fordelng for X x PX ( = x) 1/6 1/6 1/6 1/6 1/6 1/6 Sjekk selv at forventnng, varans og standardavvk er gtt ved 2 = E( X ) = 3.5, = Var ( X ) = , og ( ) µ σ σ = Var = X 1. Tlfellet n = 1 kast La oss først se på tlfellet med bare ett kast ( n = 1), slk at Y = X1. Dette er et tlfelle der normaltlnærmelsen antakelg kke fungerer bra. La oss lkevel prøve å tlnærme fordelngen for Y (som er gtt tabell 1) med en normalfordelng. Det er mange normalfordelnger å velge blant, men, som antydet regel 5.19, den normalfordelngen som vanlgvs anses som gr den beste tlnærmelsen, er den som har samme forventnng og standardavvk som Y, som dette tlfellet blr ( ) ( ) EY ( ) = E X = 3.5, SD( Y) = SD X = Den beste tlnærmngen er derfor normalfordelngen N (3.5,1.7078). I fgur 1 har jeg plottet både den eksakte fordelngen for Y fra tabell 1 sammen med den beste normale tlnærmngstettheten. Det er vanskelg å få tl et slkt dobbeltplott Excel, så jeg brukte stedet STATA som bl.a. brukes Statstkk Plottet er ltt msvsende og med at normaltettheten egentlg fortsetter på begge sder av ntervallet mellom 1 og 6.

3 3 Fgur 1 Eksakt fordelng for Y = sum øyne ved 1 kast med ternng og tlnærmet normalfordelng N(EY, SD(Y)) = N(3.5, ) Densty y De eksakte sannsynlghetene fra tabell 1 framkommer som flatennholdet av søylene hstogrammet. Merk at flatennholdet av en søyle også er lk høyden på søylen sden lengden av grunnlnjen søylen er lk 1. Anta v er nteressert å se hvor god tlnærmelse normalfordelngen gr for PY ( 2) = / 6 = 1/ 3 = I hstogrammet er denne (eksakte) sannsynlgheten lk flatennholdet av de to første søylene tl sammen. I normalfordelngen framkommer den tlsvarende sannsynlgheten som flatennholdet under tetthetsfunksjonen opp tl 2. V ser mdlertd av fguren at denne beregnngen mster halvparten av sste søyle som er over ntervallet 1.5 tl 2.5. En bedre tlnærmelse vlle være å ta flatennholdet under normaltettheten opp tl 2.5 stedet. Det er dette som kalles heltallskorreksjon (Løvås sde 188), som er aktuelt når man forsøker å tlnærme en dskret fordelng for en stokastsk varabel som bare kan ta hele tall som mulge verder. Merk at begvenhetene ( Y 2) og ( Y 2.5) er logsk ekvvalente 3 og derfor lke sannsynlge, PY ( 2) = PY ( 2.5), sden Y kun kan ta hele tall som verder. 3 Hvs den ene begvenheten nntreffer så må den andre nntreffe og omvendt.

4 4 Med heltallskorreksjon blr derfor tlnærmelsen (1) generelt seende ut som (2) Y nµ y+ 0.5 nµ y+ 0.5 nµ y+ 0.5 nµ PY ( y) = PY ( y+ 0.5) = P P Z = G σ n σ n σ n σ n der y er et helt tall og Z ~ N (0, 1). Bruker v (2), får v (3.5) Tabell D3. PY ( 2) = PY ( 2.5) G = G( 0.59) = (1.7078) 1 som er betydelg forskjellg fra den eksakte verden ( men kke så altfor galt). Ved bruk av (1) uten heltallskorreksjon får v (sjekk selv) tlnærmelsen G( 0.88) = som er betydelg verre. 2. Tlfellet n = 2 kast Her er Y = X1+ X2, og, sden X1, X 2 er uavhengge og dentsk fordelte (ud), har de samme forventnng og varans, og v får av regel 4.12 og 4.17 Løvås EY ( ) = 2 E( X) = 2(3.5) = 7, Var( Y) = 2 Var( X) = og 1 1 SD( Y) = Var( Y) = Hvs v vl tlnærme fordelngen tl Y med en normalfordelng, bør v altså bruke N(7, ) -fordelngen. V trenger også den eksakte fordelngen tl Y for å kunne sammenlgne. Dette er kke så 2 vanskelg dette tlfellet. Det er 6 = 36 mulge kombnasjoner av verder for paret ( X1, X2) som alle er lke sannsynlge (1 36 ). De mulge verdene for Y = X1+ X2 er 2, 3, 4,,11, og 12. Tabell 2 vser hvlke kombnasjoner som gr en gtt verd av Y. For eksempel ser v at begvenheten ( Y = 8) nntreffer for 5 forskjellge kombnasjoner, slk at PY= ( 8) = 5 36.

5 5 Tabell 2 Verder av Y for forskjellge kombnasjoner av X1 og X 2. X 1 X Den eksakte fordelngen for den dskrete varabelen Y blr derfor som gtt tabell 3. Tabell 3 Eksakt fordelng for sum øyne, Y, ved to kast. y PY ( = y) I fgur 2 har jeg plottet denne sammen med den beste normal-tlnærmelsen Fgur 2 Eksakt fordelng for Y = sum øyne ved 2 kast med ternng og tlnærmet normalfordelng N(EY, SD(Y))=N(7, ) Densty y

6 6 Regneeksempel: Eksakt blr etter tabell PY ( 4) = = = Med normaltlnærmelsen, Med heltallskorreksjon som (2) tlnærmet Y ~ N (7, ), får v: Y PY ( 4) = PY ( 4.5) = P P Z = G( 1.04) = , altså en fel på ca 0.016, som kke er så verst. Uten heltallskorreksjon (1) får v 4 7 PY ( 4) P Z = G( 1.24) = , altså en fel på ca Tlfellet n = 5 kast Her er Y = X1+ X2 + X3+ X4 + X5, og, sden X1, X2,, X5 er uavhengge og dentsk fordelte (ud), har de samme forventnng og varans, og v får av regel 4.12 og 4.17 Løvås EY ( ) = 5 E( X) = 5(3.5) = 17.5, Var( Y) = 5 Var( X) = og 1 1 SD( Y) = Var( Y) = Hvs v vl tlnærme fordelngen tl Y med en normalfordelng, bør v altså bruke N(17.5, ) -fordelngen. V trenger også den eksakte fordelngen tl Y for å kunne sammenlgne. Dette er ltt verre nå. 5 Det er 6 = 7776 mulge kombnasjoner av verder for ( X1, X2,, X5) som alle er lke sannsynlge ( ). De mulge verdene for Y = X1+ X2 + + X5 er 5,6,7,,29,30. Å gå gjennom alle dsse for å fnne ut hvor mange som gr en gtt verd av Y er kjedelg å gjøre manuelt, så jeg laget et lte program GAUSS (et kraftg og elegant

7 7 programmerngsspråk som flere på nsttuttet benytter) som løste oppgaven for meg 4. Resultatet er gtt tabell 4. Tabell 4 Antall kombnasjoner av X, X,, X som gr gtte verder av summen Y y Antall kombn. med Y = y Antall kombn. med Y y y Antall kombn med Y = y Antall kombn med Y y 5 Sannsynlgheter for Y får v ved å dele tallene tabell 4 med 6 = La oss for eksempel se på sannsynlgheten for at PY ( 15). I følge tabellen er det 2373 kombnasjoner av X -ene som har sum 15. Sden alle kombnasjoner er lke sannsynlge, blr den eksakte sannsynlgheten 2373 PY ( 15) = = I fgur 3 har jeg plottet både den eksakte fordelngen for Y og den normalfordelngstettheten som passer best henhold tl regel Det er mulg at dette kan gjøres Excel, men jeg tror kke det er lett. I stedenfor å kaste bort tden på å prøve å fnne på noe lurt Excel, brukte jeg heller GAUSS med en gang der programmerngen kke var vanskelg.

8 8 Fgur 3 Eksakt fordelng for Y = sum øyne for 5 kast med ternng og tlnærmet normalfordelng N(EY, SD(Y))=N(17.5, ) Densty y V ser at normaltlnærmelsen begynner å bl bedre. Med normaltlnærmelsen, Med heltallskorreksjon som (2): tlnærmet Y ~ N (17.5, ), får v: Y PY ( 15) = PY ( 15.5) = P P Z = G( 0.52) = , altså en fel på ca som er ganske bra. Uten heltallskorreksjon (1) får v: PY ( 15) P Z = G( 0.65) = , altså en fel på ca som kke er så bra.

9 9 4. Tlfellet n = 10 kast Her er Y = X1 + X2 + + X10, og, sden X1, X2,, X10 er uavhengge og dentsk fordelte (ud), har de samme forventnng og varans, og v får av regel 4.12 og 4.17 Løvås EY ( ) = 10 E( X) = 10(3.5) = 35, Var( Y) = 10 Var( X) = og 1 1 SD( Y) = Var( Y) = Hvs v vl tlnærme fordelngen tl Y med en normalfordelng, bør v altså bruke N(35, ) -fordelngen. V trenger også den eksakte fordelngen tl Y for å kunne sammenlgne. Dette mye verre nå. 10 Det er 6 = mulge kombnasjoner av verder for ( X1, X2,, X10) som alle er 10 lke sannsynlge ( 16 ). De mulge verdene for Y = X1 + X2 + + X10 er 10,11,12,,59,60. Som regneeksempel skal v se på PY ( 30). Jeg lot GAUSS-programmet gå gjennom dsse 60.5 mllonene kombnasjoner (det tok laptop-en mn ca 30 sekunder (!)) og laget en tabell som tabell 4 (kke rapportert her). Ifølge den tabellen var det kombnasjoner som hadde sum 30. Den eksakte sannsynlgheten blr derfor PY ( 30) = = I fgur 4 har jeg plottet både den eksakte fordelngen for Y og den normalfordelngstettheten som passer best henhold tl regel 5.19.

10 10 Fgur 4 Densty Eksakt fordelng for Y = sum øyne for 10 kast med ternng og tlnærmet normalfordelng N(EY, SD(Y)) = N(35, ) y V ser at normaltlnærmelsen har bltt enda bedre. Med normaltlnærmelsen, Med heltallskorreksjon som (2): tlnærmet Y ~ N (35, ), får v: Tabell D3 Y PY ( 30) = PY ( 30.5) = P P Z = G( 0.83) = , altså en fel på ca , som er ganske bra og bedre enn for n = 5. Uten heltallskorreksjon (1) får v: PY ( 30) P Z = G( 0.93) = , altså en fel på ca 0.028, som vser at heltallskorreksjon fortsatt lønner seg.

11 11 4. Tlfellet n = 20 kast Her er Y = X1 + X2 + + X20, og, sden X1, X2,, X20 er uavhengge og dentsk fordelte (ud), har de samme forventnng og varans, og v får av regel 4.12 og 4.17 Løvås EY ( ) = 20 E( X) = 20(3.5) = 70, Var( Y) = 20 Var( X) = og 1 1 SD( Y) = Var( Y) = Hvs v vl tlnærme fordelngen tl Y med en normalfordelng, bør v altså bruke N(70, ) -fordelngen. Å fnne den eksakte fordelngen for Y for sammenlgnng blr svært mye vanskelgere nå. Det er ( ) = 6 = ( ) mulge kombnasjoner av verder for ( X1, X2,, X20) som 20 alle er lke sannsynlge ( 16 ). De mulge verdene for Y = X1 + X2 + + X20 er 20, 21, 22,,119,120. Som regneeksempel skal v se på PY ( 60). Her kommer nok det fne GAUSS-programmet mtt tl kort. Hvs v regner med ca et halvt mnutt på å gå gjennom 60.5 mlloner 20 kombnasjoner med mn laptop, vl det ta ca 60.5 mlloner halvmnutter å gå gjennom 6 kombnasjoner, dvs ca tmer som svarer tl ca 58 år. Nå er det skkert mulg å utvkle smarte formler og algortmer for å redusere beregnngstden tl et praktsk nvå for akkurat denne stuasjonen, men jeg gjorde kke noe forsøk på det. Grunnen tl det er ganske enkelt at denne oppgaven er komplett overflødg når formålet er å beregne sannsynlgheter for Y. V har nemlg sentralgrenseteoremet som formulert regel 5.19, og beregnngene ovenfor som vser at v kan regne (med kun neglsjerbar tap av realsme) at Y ~ N (70, ) fordelt Med denne normaltlnærmelsen får v: Med heltallskorreksjon som (2) Tabell D3 Y PY ( 60) = PY ( 60.5) = P P Z = G( 1.24) = V kan regne at felen lgger godt under felen (0.002) som v hadde når n = 10. Uten heltallskorreksjon (1) får v PY ( 60) P Z = G( 1.31) =

12 12 V ser at forskjellen på beregnngen med og uten heltallskorreksjon er redusert tl ca 0.012, slk at poenget med heltallskorreksjon har nesten bltt borte. Når n blr enda større, vl forbedrngen som oppnås med heltallskorreksjon forsvnne etter hvert. Dette poenget er relevant ved forståelse av regel 5.20 som ser at v kan bruke tlsvarende normalfordelngstlnærmelser for bnomske, hypergeometrske og possonfordelte stokastske varable. Det er først og fremst grenseområdet for n der normaltlnærmelsen begynner å bl 2 effektv, at heltallskorreksjon har noe for seg. For større n (eller varans, σ, regel 5.20) er den overflødg. Sluttmerknad. I dette eksemplet vste normaltlnærmelsen seg å g akseptable resultater selv for så lten n som 5. Dette skyldes først og fremst symmetren og formen på utgangsfordelngen tabell 1. For andre fordelnger, for eksempel skjeve og flertoppete fordelnger, vl n måtte være større før normaltlnærmelsen skal være tlfredstllende. En mengde av smulernger og beregnnger lgger bak tommelfngerregelen, n 20 Løvås. Denne tommelfngerregelen burde g akseptable sannsynlghetsberegnnger basert på normalfordelngen de fleste stuasjoner man kan havne, og, kke mnst, stuasjoner der man vet lte eller ngentng om fordelngen tl enkeltvarablene, X.

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20). Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statstkk H00 Statstsk nferens: 9.6: Predksjonsntervall 9.8: To utvalg, dfferanse µ µ Mette Langaas Foreleses mandag 8.oktober, 00 Predksjonsntervall for fremtdg observasjon, normalfordelng For en

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

Hvordan får man data og modell til å passe sammen?

Hvordan får man data og modell til å passe sammen? Hvordan får man data og modell tl å passe sammen? Ekstremverd-analyse Målet er å estmere T-års-ekstremen (flommen). T-års-ekstremen er slk at etter T år vl det forventnng være én overskrdelse av T-års-ekstremen.

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

Overvåking hjortevilt - rein Årsrapport Hardangervidda og Snøhetta 1991

Overvåking hjortevilt - rein Årsrapport Hardangervidda og Snøhetta 1991 "k Overvåkng hjortevlt - ren Årsrapport Hardangervdda og Snøhetta 1991 Terje Skogland Olav Strand Morten Hem '. NORSK NSTTUTT FOR NATURFORSKN1NG Overvåkng hjortevlt- ren Årsrapport Hardangervdda og Snøhetta

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

Analyse av strukturerte spareprodukt

Analyse av strukturerte spareprodukt NORGES HANDELSHØYSKOLE Bergen, Høst 2007 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe Veleder: Professor Petter Bjerksund Utrednng fordypnngs-/spesalområdet: Fnansell

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

SNF-rapport nr. 23/05

SNF-rapport nr. 23/05 Sykefravær offentlg og prvat sektor av Margt Auestad SNF-prosjekt nr. 4370 Endrng arbedsforhold Norge Prosjektet er fnansert av Norges forsknngsråd SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er: Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

DEN NORSKE AKTUARFORENING

DEN NORSKE AKTUARFORENING DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske

Detaljer

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20

Detaljer

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657

Masteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657 Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng

Detaljer

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen: STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf

Detaljer

Kultur- og mediebruk blant personer med innvandrerbakgrunn Statistisk sentralbyrå Statistics Norway

Kultur- og mediebruk blant personer med innvandrerbakgrunn Statistisk sentralbyrå Statistics Norway Odd Frank Vaage Kultur- og medebruk blant personer med nnvandrerbakgrunn Resultater Kultur- og medebruksundersøkelsen 2008 og tlleggsutvalg blant nnvandrere og norskfødte med nnvandrerforeldre Statstsk

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

SNF-rapport nr. 19/07

SNF-rapport nr. 19/07 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe SNF-prosjekt nr. 7000 SAMFUNNS- OG NÆRINGSLIVSFORSKNING AS BERGEN, OKTOBER 2007 Dette eksemplar er fremstlt etter avtale

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

Litt om empirisk Markedsavgrensning i form av sjokkanalyse

Litt om empirisk Markedsavgrensning i form av sjokkanalyse Ltt om emprsk Markedsavgrensnng form av sjokkanalyse Frode Steen Konkurransetlsynet, 27 ma 2011 KT - 27.05.2011 1 Sjokkanalyse som markedsavgrensnngsredskap Tradsjonell korrelasjonsanalyse av prser utnytter

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 NA Dok. 5 Angvelse av måleuskkerhet ved kalbrernger Dokument kategor: Krav Fagområde: Kalbrerngslaboratorer Dette dokumentet er en oversettelse av EA-4/0 European Cooperaton for Accrédtaton of

Detaljer

Lise Dalen, Pål Marius Bergh, Jenny-Anne Sigstad Lie og Anne Vedø. Energibruk î. næringsbygg 1995-1997 98/47. 11 Notater

Lise Dalen, Pål Marius Bergh, Jenny-Anne Sigstad Lie og Anne Vedø. Energibruk î. næringsbygg 1995-1997 98/47. 11 Notater 98/47 Notater 998 Lse Dalen, Pål Marus Bergh, Jenny-Anne Sgstad Le og Anne Vedø Energbruk î. nærngsbygg 995-997 Avdelng for økonomsk statstkk/seksjon for utenrkshandel, energ og ndustrstatstkk Innhold.

Detaljer

Sorterings- Algoritmer

Sorterings- Algoritmer Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg

Detaljer

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814

KVIKKSØLVEKSPONERING VED DENTALLABORATORIER. Nils Gundersen og Arve Lie HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 KVIKKSØLVEKSPONERING VED DENTALLABORATORIER Nls Gundersen og Arve Le HD 807/790814 l SAMMENDRAG: Rapporten omhandler bruk

Detaljer

Oppvarming og innetemperaturer i norske barnefamilier

Oppvarming og innetemperaturer i norske barnefamilier Ovarmng og nnetemeraturer norske barnefamler En analyse av husholdnngenes valg av nnetemeratur Henrette Brkelund Masterogave samfunnsøkonom ved Økonomsk Insttutt UNIVERSITETET I OSLO 13.05.2013 II ) Ovarmng

Detaljer

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS

EKSAMENSOPPGAVE I SØK1004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS NTNU Norges teknsk-naturvtenskapelge unverstet Insttutt for samfunnsøkonom EKSAMENSOPPGAVE I SØK004 STATISTIKK FOR ØKONOMER STATISTICS FOR ECONOMISTS Faglg kontakt under eksamen: Hldegunn E Stokke Tlf:

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

- 1 - Total Arbeidsmiljøundersøkelse blant Vitales konsulenter

- 1 - Total Arbeidsmiljøundersøkelse blant Vitales konsulenter - 1 - Arbedsmljøundersøkelse blant Vtales konsulenter Gjennomført mars 2016 - 2 - Innholdsfortegnelse Forsden 1 Innholdsfortegnelse 2 Indeksoverskt 3 Jobbtlfredshet 4 Kompetanse og opplærng 5 Samarbed

Detaljer

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater 008/57 Notater Anna-Karn Mevk Notater Estmerng av månedlg omsetnng nnenfor bergverksdrft og ndustr Stabsavdelngen/Seksjon for statstske metoder og standarder 1. Innlednng.... Omsetnngsstatstkken for ndustren...

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Dårligere enn svenskene?

Dårligere enn svenskene? Økonomske analyser 2/2001 Dårlgere enn svenskene? Dårlgere enn svenskene? En sammenlgnng av produktvtetsveksten norsk og svensk ndustr * "Productvty sn t everythng, but n the long run t s almost everythng."

Detaljer

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214 A "..'. REW~~~~~OO ~slnmtlre STATENS ARBESMLJØNSTTUTT Postadresse: Pb. 8149 ep. 0033 Oslo 1. Kontoradresse: Gydas ve 8 - Tlf. 02-466850. Bankgro 0629.05.81247 - Postgro 2 00 0214 Tttel: OPPLEE AV HEE OG

Detaljer

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april)

Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) HG April 010 Løsningskisse for oppgaver til undervisningsfri uke 14 (6.-9. april) Innledende merknad. De fleste oppgavene denne uka er øvelser i bruk av den viktige regel 5.0, som er sentral i dette kurset,

Detaljer

U-land eller i-land hvor ligger løsningen på klimaproblemet?

U-land eller i-land hvor ligger løsningen på klimaproblemet? Uland eller land hvor lgger løsnngen på klmaproblemet? Økonomske analyser 3/2008 Uland eller land hvor lgger løsnngen på klmaproblemet? Bjart Holtsmark Løsnngen på klmautfordrngen lgger lten grad begrensnng

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer