Regler om normalfordelingen

Størrelse: px
Begynne med side:

Download "Regler om normalfordelingen"

Transkript

1 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset. Reglee er stort sett gtt kapttel 5 Løvås, me ltt ufullstedg og usammehegede. Jeg vl derfor dette otatet samle og utfylle de vktgste reglee som må kues, samt g oe eksempler på bruk av dem. Reglee er stort sett gtt ute bevs (som er relatvt tekske). Defsjo: V skrver kort X ~ N ( µσ, ) for e modell der X er ormalfordelt med forvetg, EX ( ) = µ, og stadardavvk, σ = var( X) = SD( X). De speselle ormalfordelge N (0, 1), kalles stadard ormalfordelg og Løvås bruker symbolkke Gz ( ) = PZ ( z) for de kumulatve fordelgsfuksjoe hvs Z ~ N (0, 1). Eksempel: Hvs du for eksempel e oppgave får oppgtt at X ~ N( 1, ), så følger speselt at EX ( ) = 1 og var( X ) = 4. Merkad. Du treger kke å kjee formele for sasylghetstetthete for X ~ N ( µσ, ) dette kurset, me for fullstedghetes skyld skrver jeg de opp her 1 ( x µ ) σ 1 f( x) = e for < x< π σ (kke pesum) Det du må vte om dee fordelge (utover det som står defsjoe) er: X er kotuerlg fordelt slk at PX ( = x) = 0 for alle x. Fordelge (grafe tl f( x )) er etoppet, klokkeformet med maksmumsverd for x = µ. Og de er symmetrsk rudt x = µ slk at de dele av f( x ) som lgger tl vestre for x = µ er et øyaktg spelblde av dele som lgger tl høyre for x = µ (jfr. fgur 5.14 Løvås). Dette mplserer bl.a. at, hvs a er et tall > 0, er PX ( µ a) = PX ( µ + a) (llustrer på e fgur!).

2 Regel R1 (står kke Løvås, me brukes mplstt flere steder): Hvs X ~ N ( µσ, ) og Y = a + bx, der a og b er kostater, er også Y ormalfordelt ( ) Y ~ N E( Y ), SD( Y ) = N( a + bµ, b σ) (Merk at uttrykkee N tl høyre følger av regler for forvetg og varas kapttel 4.) Eksempler som følger av regel R1 (sjekk): Hvs X ~ N( 1, ), er () Y = 1 X ~ N( E( Y ), SD( Y )) = N(, ). X 1 () ~ N,1 og () X ~ N ( 997, 6) +. X µ µ 1 Hvs X ~ N ( µσ, ), er Z = ~ N(0, 1) (sett a = og b = σ σ σ R1). La Gx ( ) være de kumulatve fordelgsfuksjoe for Z, dvs Gx ( ) = PZ ( x), som er tabulert tabell D.3 Løvås. Av dette får v regel 5.14 Løvås: X µ x µ x µ x µ PX ( x) = P = P Z = G σ σ σ σ Hvs X ~ N( 1, ), er, sde PX= ( 0) = 0, PX ( < 0) = PX ( 0) = G = G = 0,6915 Løvås. følge tabell D.3 Merkad. Sasylgheter e ormalfordelg ka også reges ut Excel: Bruk NORM.DIST fuksjoe Excel 010 (heter NORMDIST Excel 007). Prøv det for PX< ( 0) sste eksempel og sammelg med tabell D.3. Regel R. Summer av ormalfordelte varable (regel 5.17 Løvås pressert) La X1, X,, X være uavhegge og ormalfordelte varable slk at X ~ N ( µ, σ ) for = 1,,,. ( X - ee behøver altså kke å være detsk fordelte). La a1, a,, a være vlkårlge kostater. Da er Y= ax 1 1+ ax + + ax også ormalfordelt: ( ) = ( µ + µ + + ) 1 1 µ σ + σ σ Y~ N EY ( ), var( Y) N a a a, a a a der uttrykkee N tl høyre følger av regler om forvetg og varas kapttel 4.

3 3 Av regel R følger drekte e vktg regel om gjeomstt av ormalfordelte varable (brukt flere gager kurset, me kke satt opp eksplstt som e regel Løvås). Regel R3. Gjeomsttet av ormalfordelte varable er (eksakt) ormalfordelt. La 1 X, X,, X være uavhegge og detsk ormalfordelte varable slk at X ~ N ( µσ, ) for = 1,,,. Da er Y = X = ( X1+ X + + X) også ormalfordelt: ( ) Y~ N EY ( ), var( Y) = N µ, Bevs: R3 følger drekte av R: La R, µ 1 = µ = = µ = µ, σ1 = σ = = σ = σ (sde alle fordelgee for X1, X,, X er lke, må alle forvetger være lke og alle 1 stadardavvk være lke). La a1 = a = = a =. Da ser v at Y = X omfattes av regel R, og v ka slutte at Y er ormalfordelt. Parameterverdee de aktuelle ormalfordelge er σ gtt ved EY ( ) og var( Y ) som er fuet før kapttel 4: EY ( ) = µ og var( Y ) =. Alteratvt, kue ma få fram dsse parameterverdee fra formlee sste uttrykk regel R: a1µ 1+ aµ + + aµ = µ + µ + + µ = µ = µ σ a1σ1 + aσ + + aσ = σ + σ + + σ = σ = σ = Bevs slutt. Eksempler på bruk av R1-R3: Ata X og Z er uavhegge og ormalfordelte der X ~ N( 1, ) og Z ~ N (0, 1). F PY< ( 0) der Y = X Z. Løsg: I følge regel R er Y ormalfordelt (sett for eksempel X1 = X, X = Z, a1 = 1, a = 1 og = ). Parameterverdee fer v som EY ( ) = 1 0= 1 og regel 4.17 var( Y) = var( X) + var( Z) = = 5 Dermed er Y ~ N( 1, 5), og det adre eksemplet etter regel R1 gr: 0 ( 1) PY ( < 0) = PY ( 0) = G = G(0,45...) = 0,6736 (altså ltt 5 mdre e sasylghete fuet ovefor (= 0,6915) for at X selv

4 4 får egatv verd. Mao. å trekke fra (eller legge tl) Z på X-e er som å tlføre støy på X.). Ata X1, X,, X er uavhegge og detsk ormalfordelte med X ~ N( 1, ) for = 1,,,. For e vlkårlg har v fra R3 at gjeomsttet er ormalfordelt, X ~ N 1,. Sde spredge dee fordelge avtar med, er det rmelg å forvete at sasylghete for at X skal få egatve verder øker med. Dette bekreftes av tabell 1 uder. Som før bruker v det adre eksemplet etter R1 og fer: 0 ( 1) PX ( < 0) = G = G hvorav, følge tabell D.3 Løvås (sjekk tallee!), Tabell 1 Gjelder hvs hver X er N(-1, ) fordelt PX< ( 0) 1 0,50 0, ,1 0, ,58 0,949 0,4 0, ,74 0, ,54 > 0,9990 Egeskape tl gjeomsttet som er beskrevet regel R3 bygger på forutsetge at ekeltobservasjoee er ormalfordelte. Dette er tlsyelatede e sterk forutsetg som bare utaksvs er realstsk prakss. Imdlertd, hvs atall observasjoer () kke er for lte (v bør ha 0 som e tommelfgerregel), vl koklusjoe at gjeomsttet er ormalfordelt fortsatt gjelde tlærmet uasett hvlke fordelg ekeltobservasjoee er trukket fra. Dette er det berømte setralgreseteoremet (kjet sde hudretallet). Løvås serverer setralgreseteoremet to versjoer, regel 5.18 og 5.19, samlet regel R4 edefor. Dette betyr eksemplet ovefor at, selv om v kke vet oe mer om fordelge tl X utover at EX ( ) = 1og var( X ) =, så ka v lkevel slutte at X er tlærmet N 1, 0 ( 1) PX ( < 0) G = G fordelt år 0, slk at

5 5 (merk at de første lkhete er erstattet med ) og tabell 1 ka hvert fall delvs fylles ut: Tabell. PX< ( 0) år hver X har e vlkårlg fordelg med forvetg 1 og stadardavvk. PX< ( 0) 1 0, , , ,4 0, ,74 0, ,54 > 0,9990 Merk at v her kke ka ag oe verder for PX< ( 0) tlfellee = 1, 5 og 10 ute at v vet mer om fordelge tl ekeltobservasjoee. Det er også verdt å merke seg at tlærmelse tl ormalfordelge blr bedre og bedre dess større er. Regel R4 Setralgreseteoremet La X1, X,, X være uavhegge varabler fra samme sasylghetsfordelg (kke ødvedgvs ormalfordelg!) med forvetg, EX ( ) = µ, og stadardavvk, var( X ) = σ. Hvs er stor ( 0 ases valgvs tlstrekkelg), gjelder X ~ N EX ( ), var( X) = N µ, tlærmet (a) (regel 5.18) ( ) tlærmet (b) (regel 5.19) Y= X1 + + X ~ N( EY ( ), var( Y) ) = N( µ, σ) Merk at (b) (regel 5.19) stregt tatt er overflødg år v har tlgag tl (a) og regel R1. For, hvs X er tlærmet N µ, fordelt, følger (hvorfor?) av regel R1 at Y = X også er tlærmet ormalfordelt: tlærmet Y ~ N ( E( X ), var( X ) ) = N ( E( X ), var( X ) ) = N µ, = N ( µ, σ). I tllegg tl dsse reglee er regel 5.0 Løvås vktg som vser at ormalfordelge ofte (kke alltd) ka brukes som tlærmg tl bomske, hypergeometrske og posso-fordelger.

6 6 Jeg skrver kke opp de regele her, me oppfordrer studetee tl å øve seg på å bruke de. Speselt vktg kapttel 6. Forhåpetlgvs vl presserge av reglee ovefor gjøre dette lettere.

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 HG Revdert aprl 2 Overskt over tester Eco 23 La θ være e ukjet parameter (populasjos-størrelse e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av θ populasjoe er ukjet. Når v setter

Detaljer

Løsningskisse seminaroppgaver uke 17 ( april)

Løsningskisse seminaroppgaver uke 17 ( april) HG Aprl 14 Løsgsksse semaroppgaver uke 17 (.-5. aprl) Oppg. 5.6 (begge utgaver) La X = atall bar utvalget som har lærevasker. Adel bar med lærevasker populasjoe av bar atas å være p.15. Utvalgsstørrelse

Detaljer

Econ 2130 uke 15 (HG)

Econ 2130 uke 15 (HG) Eco 130 uke 15 (HG) Kofdestervall Løvås: 6.1., 6.3.1 3. (Avstt 6.3.4 6 leses på ege håd. Se også overskt over kofdestercvall ekstra otat på ettet.) 1 Defsjo av kofdestervall La θ være e ukjet parameter

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 217 Overskt over tester Eco 213 La være e ukjet parameter (populasjos-størrelse) e statstsk modell. Uttrykket ukjet parameter betyr at de sae verde av populasjoe er ukjet. Når v setter

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,,

som vi ønsker å si noe om basert på data Eksempel. Uid-modellen: X1, X ,,, HG Eco30 07 9/3-07 Supplemet tl forelesg uke 0 (6 mars) (Det jeg kke rakk å ta på forelesg) Termolog (estmerg) Data (kokrete tall), x, x, er ervasjoer av stokastske varable, X, X, De statstske modelle

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende?

Eksempel 1 - Er gjennomsnittshøyden for kvinner i Norge økende? ECON 3 HG a 3 Supplemet tl sste forelesg 3 vår 4 eksempler på test-dskusjoer klusve ltt om p-verder Eksempel - Er gjeomsttshøyde for kver Norge økede? et er velkjet at gjeomsttshøyde for meesker Europa

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II 1 ECON 13 HG, revdert aprl 17 Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Mars 017 Overskt over kofdestervall Eco 130 Merk at dee overskte kke er met å leses stedefor framstllge Løvås, me som et supplemet. De eholder tabeller med formler for kofdestervaller for stuasjoer

Detaljer

TMA4245 Statistikk Eksamen 21. mai 2013

TMA4245 Statistikk Eksamen 21. mai 2013 TMA445 Statstkk Eksame ma 03 Korrgert 0 ju 03 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave Et plott av sasylghetstetthee er gtt fgur Vdere har v og PX = Φ = 08849

Detaljer

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller

Econ 2130 uke 19 (HG) Inferens i enkel regresjon og diskrete modeller Eco 3 uke 9 (HG) Iferes ekel regresjo og dskrete modeller De ekle regresjosmodelle. Resultater fra 5m og 5m for me fra EM på skøyter Heerevee 4. ( er 5m-tde og y 5m-tde sekuder for løper.) Spredgdagram

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, revdert aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel (som v kaller

Detaljer

Oversikt over tester i Econ 2130

Oversikt over tester i Econ 2130 1 HG Revdert aprl 213 Overskt ver tester Ec 213 La θ være e ukjet parameter (ppulasjs-størrelse) e statstsk mdell. Uttrykket ukjet parameter betyr at de sae verde av θ ppulasje er ukjet. Når v setter pp

Detaljer

Om enkel lineær regresjon II

Om enkel lineær regresjon II ECON 3 HG, aprl Notat tl kapttel 7 Løvås Om ekel leær regresjo II Merk: Det ka løe seg først å lese avstt 4 regresjo-i-otatet på ytt. Regresjosmodelle. La Y være e stokastsk varabel som v kaller resposvarabele

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA440 Statstkk Høst 06 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg 0 Løsgssksse Oppgave a Estmatore for avstade a er gjeomsttet av uavhegge detsk fordelte målger, x; a,

Detaljer

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( )

Oppgave 1 Det er oppgitt i oppgaveteksten at estimatoren er forventningsrett, så vi vet allerede at E(ˆµ) = µ. Variansen til ˆµ er 2 2 ( ) Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Abefalt øvg Løsgssksse Oppgave Det er oppgtt oppgavetekste at estmatore er forvetgsrett, så v vet allerede at Eˆµ µ. Varase tl ˆµ er τ Varˆµ

Detaljer

Forelesning Ordnings observatorer

Forelesning Ordnings observatorer Yushu.L@ub.o Forelesg 6 + 7 Ordgs observatorer. Oppsummerg tl Forelesg 4 og 5.) Fuksjoer (trasformasjoer) av flere S.V...) Smultafordelg tl to ye S.V. Ata at v har to S.V., med smultafordelg f ( x, x )

Detaljer

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven:

Det ble orientert i plenum under eksamensdagen om følgende endringer i forhold til oppgaven: LØSNINGSFORSLAG EKSAMEN 4 MAI 007 MET00 STATISTIKK GRUNNKURS Det ble oretert pleum uder eksamesdage om følgede edrger forhold tl oppgave: Oppgave b går ut. Det vl da bl 9 oppgaver og alle oppgaver teller

Detaljer

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n.

Løsningsforslag (ST1201/ST , kontinuasjonseksamen) ln L. X i = 2n. Løsgsforslag ST20/ST620 205, kotuasjoseksame. a Rmelghetsfuksjoe blr Logartme Derverer Løser lgge Løsge er SME: L = 2 e l L = 2 l X X. X + l X. l L = 2 + 2 X = 2. ˆ = 2 X. X. b Her ka ma beytte trasformasjosformele,

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Sannsynlighetsregning med statistikk ÅMA0 Sasylghetsregg med statstkk, våre 00 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005

OBLIGATORISK OPPGAVE 1 INF 3340/4340/9340 HØSTEN 2005 OBLIGATORISK OPPGAVE INF 0/0/90 HØSTEN 005 Levergsfrst: 0. september 005 Arbedsform: Løses dvduelt Ileverg tl: Aja Bråthe Krstofferse (ajab@f.uo.o Levergskrav: Det forutsettes at du er kjet med holdet

Detaljer

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON 3 EKSAMEN VÅR TALLSVAR Det abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. Svaree er gtt

Detaljer

Statistikk med anvendelse i økonomi

Statistikk med anvendelse i økonomi A-6 og A-6-G, 6. ma 08 Emekode: Emeav: A-6 og A-6-G tatstkk med avedelse økoom Dato: 6. ma 08 Varghet: 0900-300 Atall sder kl. forsde 0 Tllatte hjelpemdler: erkader: Kalkulator med tømt me og ute kommukasjosmulgheter.

Detaljer

Econ 2130 Forelesning uke 11 (HG)

Econ 2130 Forelesning uke 11 (HG) Eco 130 Forelesig uke 11 (HG) Mer om ormalfordelige og setralgreseteoremet Uke 1 1 Fra forrige gag ~ betyr er fordelt som. ~ N( µσ, ) E( ) = µ, og var( ) = σ Normalfordelige er symmetrisk om μ og kotiuerlig

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007

ÅMA110 Sannsynlighetsregning med statistikk, våren 2007 ÅMA0 Sasylghetsregg med statstkk, våre 007 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estmerg målemodelle (kp. 5.3)

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15).

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Innleveringssted: Ekspedisjonen i 12. etasje (mellom ) OG Fronter (innen klokken 15). Øvelsesoppgave : ECON3 Statstkk Dato for utleverg: 4.3.7 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Dato for leverg: 3.3.7 e kl. 5. Ilevergssted: Ekspedsjoe. etasje (mellom.5-5.) OG Froter (e klokke 5).

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Estimering. Målemodellen. Kp. 5 Estimering. Målemodellen. ÅMA0 Sasylghetsregg med statstkk, våre 006 Kp. 5 Estmerg. Målemodelle. Estmerg. Målemodelle. Ihold:. (Pukt)Estmerg bomsk modell (kp. 5.). Målemodelle... (kp. 5.). (kp. 5.) 4. Estmere, estmat, estmator

Detaljer

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR

Oppgave 1 ECON 2130 EKSAMEN 2011 VÅR ECON 30 EKSAMEN 0 VÅR Oppgave E bedrf øsker å fordele koraker e vesergsprosjek hel lfeldg på 3 frmaer, A, B og C. Uvelgelse skjer ved loddrekg. Loddrekge er slk a hver av frmaee A, B og C, har e mulghe

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 29. mai 2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 9. ma 7 EKSAMEN I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon

STK1100 våren Estimering. Politisk meningsmåling. Svarer til sidene i læreboka. The German tank problem. Måling av lungefunksjon STK00 våre 07 Estmerg Svarer tl sdee 33-339 læreboka Poltsk megsmålg Sør et tlfeldg utvalg å 000 ersoer hva de vlle ha stemt hvs det hadde vært valg 305 vlle ha stemt A A's oslutg er Ørulf Borga Matematsk

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON: EKAMEN TALLVAR. et abefales at de 9 deloppgavee merket med A, B, teller lkt uasett varasjo vaskelghetsgrad. varee er gtt

Detaljer

EKSAMEN løsningsforslag

EKSAMEN løsningsforslag 5. aprl 017 EKSAMEN løsgsforslag Emekode: ITD0106 Emeav: Statstkk og økoom Dato:. ma 016 Eksamestd: 09.00 13.00 Hjelpemdler: - Alle trykte og skreve. - Kalkulator. Faglærer: Chrsta F Hede Om eksamesoppgave

Detaljer

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk

Forelesning 25 og 26 Introduksjon til Bayesiansk statistikk Yushu.@hh.o Forelesg 5 og 6 Itroduksjo tl Bayesask statstkk 1. Itroduksjo Fortsatt atar v har stokastsk varabel X (X ka være stokastsk varabel vektor) kommer fra e fordelg med parametere ( ka være parameter

Detaljer

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n:

Mer om Hypotesetesting (kap 5) Student t-fordelingen. Eksamen. Fordelingene blir like ved stor n: Mer om Hypotesetestg kap 5 Overskt: Små utvalg og Studet s t-fordelg Hypotesetestg for populasjosgjeomsttet, μ Med tlfeldg og stort utvalg er fordelge tl testobservatore motvert av SGT Hva skjer dersom

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Forelesning 19 og 20 Regresjon og korrelasjons (II)

Forelesning 19 og 20 Regresjon og korrelasjons (II) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 19 og 0 Regresjo og korrelasjos (II) 1. Kofdestervall (CI) og predksjostervall (PI) I uka 14, brukte v leær regresjo for å fage leær sammehege mellom Y og

Detaljer

Forelesning 3 mandag den 25. august

Forelesning 3 mandag den 25. august Forelesg adag de 5 august Merkad 171 For å bevse e propossjo o heltall so volverer to eller flere varabler, er det typsk ye lettere å beytte duksjo på e av varablee e duksjo på oe av de adre Det er for

Detaljer

Forelesning Enveis ANOVA

Forelesning Enveis ANOVA STAT111 Statstkk Metoder ushu.l@ub.o Forelesg 14 + 15 Eves ANOVA 1. troduksjo a. Z-, t- test Uka 1: tester for forvetgsdfferase to populasjoer (grupper) b. ANOVA (aalyss of varace): tester om det er forskjeller

Detaljer

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell)

Forelesning 21 og 22 Goodness of fit test and contingency table ( 2 test og krysstabell) STAT111 Statstkk Metoder Yushu.L@ub.o Forelesg 1 Goodess of ft test ad cotgecy table ( test krysstabell 1.Goodess of ft test ( test Ata at v har et utvalg med observasjoee fra e stokastsk varabel X. Goodess-of-ft

Detaljer

Analyse av sammenhenger

Analyse av sammenhenger Kapttel 7.-7.3: Aalyse av sammeheger Korrelasjo og regresjo E vktg avedelse av statstkk er å studere sammeheger mellom varabler: Avgjøre om det er sammeheger. Beskrve hvorda evetuelle sammeheger er. Eksempler:

Detaljer

STK1100 våren Konfidensintevaller

STK1100 våren Konfidensintevaller STK00 våre 07 Kofdestevaller Svarer tl avstt 8. læreboka Ørulf Borga Matematsk sttutt Uverstetet Oslo Eksempel E kjemker er teressert å bestemme kosetrasjoe µ av et stoff e løsg Hu måler kosetrasjoe fem

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 14.12.2007 Høgskole Telemark Avdelg for estetske fag, folkekultur og lærerutdag BOKMÅL 4..7 UTATT PRØVE I MATEMATIKK, Modul 5 studepoeg Td: 5 tmer Hjelpemdler: Kalkulator og vedlagt formelsamlg (bakerst oppgavesettet).

Detaljer

Notat 1: Grunnleggende statistikk og introduksjon til økonometri

Notat 1: Grunnleggende statistikk og introduksjon til økonometri Notat : Gruleggede statstkk og troduksjo tl økoometr Gruleggede statstkk Populasjo vs. utvalg Statstsk feres gjør bruk av formasjoe et utvalg tl å trekke koklusjoer (el. slutger) om populasjoe som utvalget

Detaljer

1. Konfidens intervall for

1. Konfidens intervall for Forelesg 0 + Yushu.@ub.o Kofdes tervall og Bootstrap. Kofdes tervall for ) Kofdes tervall [ ˆ, ˆ ] dekker de ukjete parametere med høy grad av skkerhet (kofdesvå): P( ˆ ˆ ), er f.eks 0.0 eller 0.05, eller

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Forelesning Punktestimering

Forelesning Punktestimering STAT Statst Metoder Yushu.L@ub.o Forelesg 8 + 9 Putestmerg. Fra sasylghetsteor tl statst feres ) Sasylghetsberegg sasylghetsteor: v jeer parametere som besrver modellee, f.es. p boms modell, ormal fordelg,

Detaljer

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesg 3 MET359 Økoometr ved Davd Kreberg Vår 0 Dverse oppgaver Oppgave. E vestor samler følgede formasjo om markedsavkastge og avkastge på det som ser ut tl å være et attraktvt aksjefod År Aksjefodets

Detaljer

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ).

(ii) Anta vi vet om en observasjon av X at den ikke er større enn 5. Hva er da sannsynligheten for at den er lik 5? (Hint: Finn PX ( = 5 X 5) ). ECON3: EKSAMEN VÅR - UTSATT PRØVE Oppgave Ata er possofordelt med parameter λ = 5 (skrevet kort, ~ pos(5), jfr. defsjo 5.8 Løvås med t = ). A. () F P= ( 5) og P ( 5), for eksempel basert på tabell D. Løvås.

Detaljer

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon)

STK1110 høsten Lineær regresjon. Svarer til avsnittene i læreboka (med unntak av stoffet om logistisk regresjon) TK høste 9 Eksempel.5 (CO og vekst av furutrær Leær regreso varer tl avsttee..4 læreboka (med utak av stoffet om logstsk regreso Ørulf Borga Matematsk sttutt Uverstetet Oslo V vl bestemme sammehege mellom

Detaljer

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering

Econ 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 011 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I 1 ECON 130 HG, revdert 017 Notat tl kapttel 7.1 7.3.3 Løvås (Jfr. forelesg uke 11) Om ekel leær regresjo I (deskrptv aalse og ltt om regresjosmodelle tl slutt) 1 Iledg Ekel regresjosaalse dreer seg om

Detaljer

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling

Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling Econ 2130 Forelesning uke 10 (HG) Geometrisk og normal fordeling 1 Geometrisk fordeling Binomisk forsøks-serie En serie likeartete forsøk med to mulige utfall, S og F, i hvert. (Modell) forutsetninger

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Visuell/grafisk presentasjon av data. Datainnsamling; utdanning og inntekt

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Visuell/grafisk presentasjon av data. Datainnsamling; utdanning og inntekt Overskt. forelesg ECON40 Statstkk og økoometr Arld Aakvk, professor Isttutt for økoom Hva er statstkk og økoometr? Hvorfor studerer v fagområdet? Statstkk Metoder, tekkker og verktøy tl å produsere lettfattelg

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 HG April 00 Oversikt over kofidesitervall i Eco 30 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. Løvås ieholder mage verdifulle kommetarer og eksempler.

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Om enkel lineær regresjon I

Om enkel lineær regresjon I ECON 30 HG, revdert 0 Notat tl kapttel 4 Løvås Om ekel leær regresjo I Iledg Ekel regresjosaalse dreer seg om å studere sammehege mellom e resposvarabel,, og e forklargsvarabel,, basert på et datamaterale

Detaljer

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.

Konfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo. Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013

) = P(Z > 0.555) = > ) = P(Z > 2.22) = 0.013 TMA4240 Statistikk Vår 2008 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Løsigsskisse Oppgave 1 a) X 1,...,X 16 er u.i.f. N(80,18 2 ). Setter Y = X. i) P(X 1 >

Detaljer

Oversikt over konfidensintervall i Econ 2130

Oversikt over konfidensintervall i Econ 2130 1 HG Revidert april 014 Oversikt over kofidesitervall i Eco 130 Merk at dee oversikte ikke er met å leses istedefor framstillige i Løvås, me som et supplemet. De ieholder tabeller med formler for kofidesitervaller

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Kapittel 9 ALGEBRA. Hva er algebra?

Kapittel 9 ALGEBRA. Hva er algebra? Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller

Detaljer

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren

Kap. 9: Inferens om én populasjon. Egenskaper ved t-fordelingen. ST0202 Statistikk for samfunnsvitere. I Kapittel 8 brukte vi observatoren 2 Kap. 9: Iferes om é populasjo I Kapittel 8 brukte vi observatore z = x μ σ/ for å trekke koklusjoer om μ. Dette krever kjet σ (urealistisk). ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA0 Sasylighetsregig med statistikk, våre 008 Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre Kp. 4 Kotiuerlige tilfeldige variable; Normalfordelig Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsfordeliger) Vi har til å sett på diskrete

Detaljer

Anvendelser. Kapittel 12. Minste kvadraters metode

Anvendelser. Kapittel 12. Minste kvadraters metode Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters

Detaljer

i B maksimal b Fundamentalteoremet for lineærprogrammering Den leksikografiske metode Blands pivoteringregel MoD233 - Geir Hasle - Leksjon 4 2

i B maksimal b Fundamentalteoremet for lineærprogrammering Den leksikografiske metode Blands pivoteringregel MoD233 - Geir Hasle - Leksjon 4 2 Lekso 4 ( k ) a ( k ) I ( k ) U ( k) B maksmal ( k ) b Sste spesaltlfelle - valg av utgåede Degeerert basstabell, degeererert pvoterg Degeerert pvoterg ka g syklsk pvoterg Eeste tlfelle der Smpleksmetode

Detaljer

Kapittel 1: Beskrivende statistikk

Kapittel 1: Beskrivende statistikk Kapttel : Bekrvede tattkk Defjoer: Populajo og utvalg Populajo: Alle mulge obervajoer v ka gjøre (,,, N ). Utvalg: Delmegde av populajoe (,,, der

Detaljer

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2

H 1 : µ 1 µ 2 > 0. t = ( x 1 x 2 ) (µ 1 µ 2 ) s p. s 2 p = s2 1 (n 1 1) + s 2 2 (n 2 1) n 1 + n 2 2 TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b4 Løsigsskisse Oppgave 1 Vi øsker å fie ut om et ytt serum ka stase leukemi. 5 mus får serumet, 4

Detaljer

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal

Emnenavn: Metode 1, statistikk deleksamen. Eksamenstid: 4 timer. Faglærer: Bjørnar Karlsen Kivedal EKSAMEN Emekode: SFB10711 Emeav: Metode 1, statistikk deleksame Dato: 10. oktober 2018 Hjelpemidler: Godkjet kalkulator og vedlagt formelsamlig m/tabeller Eksamestid: 4 timer Faglærer: Bjørar Karlse Kivedal

Detaljer

Econ 2130 uke 13 (HG)

Econ 2130 uke 13 (HG) Eco 30 uke 3 (HG) Iførg regresjo I deskrptv aalse (Løvås kap. 7. 7.3.3) DATA: Resultater fra 500m og 5000m for me fra EM på skøter Heerevee 004. Obs 5000m 500m Obs 5000m 500m r. Td Sekuder Td Sekuder r.

Detaljer

«Uncertainty of the Uncertainty» Del 4 av 6

«Uncertainty of the Uncertainty» Del 4 av 6 «Ucertaity of the Ucertaity» Del 4 av 6 v/rue Øverlad, Traior Elsikkerhet AS Iledig Dette er del fire i artikkelserie om «Ucertaity of the Ucertaity». I dag skal jeg vise deg utledige av formele: σ m s,

Detaljer

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER

OPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)

Detaljer

Løsningsforslag Oppgave 1

Løsningsforslag Oppgave 1 Løsigsforslag Oppgave 1 a X i µ 0 σ X i µ 0 2 σ 2, i 1,..., er uavhegige og stadard N0, 1 fordelte. Da er, i 1,..., uavhegige og χ 2 -fordelte med e frihetsgrad. Da er summe χ 2 -fordelt med atall frihetsgrader

Detaljer

Erling Siring INNHOLD

Erling Siring INNHOLD IN 83/4 8. februar 983 ESTIMERING AV VEKTENE TIL EN KOMBINERT ESTIMATOR FOR FYLKESTALL Av Erlg Srg INNHOLD. Iledg 2. De optmale vektee og robusthetsegeskapee tl de komberte estmatore......... 3. Problemet

Detaljer

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon

KLMED8004 Medisinsk statistikk. Del I, høst Estimering. Tidligere sett på. Eksempel hypertensjon Tidligere sett på KLMED8004 Medisisk statistikk Del I, høst 008 Estimerig Hvorda kjete sasylighetsfordeliger (biomialfordelig, ormalfordelig) med kjete populasjosparametrer (forvetig, varias osv.) ka gi

Detaljer

FORELESNINGSNOTATER I SPILLTEORI Geir B. Asheim, våren 2001 (oppdatert ).

FORELESNINGSNOTATER I SPILLTEORI Geir B. Asheim, våren 2001 (oppdatert ). OREESNINGSNOTATER I SPITEORI Ger B. Ashem, våre 00 (odatert 000.0.03. 3. STATISKE SPI MED UUSTENDIG INORMASJON (Statske Bayesaske sll Statsk sll: Sllere trekker samtdg. Ufullstedg formasjo: Mst é sllere

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag . jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018

Løsningsforslag ST1101/ST6101 kontinuasjonseksamen 2018 Løsigsforslag ST/ST6 kotiuasjoseksame Oppgave a Defier hedelsee R, B, B rød kule i første trekig, blå kule i adre trekig, blå kule i tredje trekig. Vi skal fie PR B B for to ulike situasjoer. Geerelt vet

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Høst 205 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer, blokk II Løsigsskisse Oppgave a) X bi(, p) fordi: Udersøker uavhegige delar av DNA-strukture. Fi for kvar del

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Abefalt øvig 8 Løsigsskisse Oppgave 1 a) Simuler 1000 datasett i MATLAB. Hvert datasett skal bestå av 100 utfall fra e ormalfordelig

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering.

ÅMA110 Sannsynlighetsregning med statistikk, våren Estimering. Målemodellen. Konfidensintervall, innledning. Kp. 5 Estimering. ÅMA0 Sasylighetsregig med statistikk våre 006 Kp. 5 Estimerig Estimerig. Målemodelle. Ihold:. (Pukt)Estimerig i biomisk modell (kp. 5.). Målemodelle... (kp. 5.3) 3. (Pukt)Estimerig i målemodelle (kp. 5.3)

Detaljer

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005

LØSNINGSFORSLAG TILEKSAMEN I FAG TMA4240/TMA4245 STATISTIKK 10. august 2005 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 8 LØSNINGSFORSLAG TILEKSAMEN I FAG TMA440/TMA445 STATISTIKK 0. august 005 Oppgave Smeltepuktsbestemmelse a) Vi jobber i dette

Detaljer