Løsningsforslag ST2301 Øving 8

Størrelse: px
Begynne med side:

Download "Løsningsforslag ST2301 Øving 8"

Transkript

1 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de heterozygote genotypene, dersom v ser på et utvalg fra begge populasjonene. Har et utvalg fra to populasjoner. Sannsynlgheten for at et ndvd kommer fra populasjon 1 er m, og sannsynlgheten for at det kommer fra populasjon er 1 m. La p j være frekvens av allel populasjon j. De forventa allel-frekvensene utvalget er gtt ved E[p 1 ] = mp 11 + (1 m)p 1 E[p ] = mp 1 + (1 m)p E[p 3 ] = mp 31 + (1 m)p 3 Frekvensen heterozygoter av type j utvalget er gtt ved P j = mp 1 p j1 + (1 m)p p j = E[p p j ] = E[p ]E[p j ] + Cov(p, p j ) Hvs utvalget hadde vært Hardy-Wenberglkvekt vlle P j = E[p ]E[p j ] De fleste allel-par har negatv kovarans (sde 131), slk at for de fleste heterozygotene oppstår et underskudd av heterozygoter forhold tl Hardy-Wenbergandeler. Dersom andelen heterozygoter skal være større, må kovaransen være postv. Kravet blr derfor at Cov(p, p j ) > 0 E[p p j ] E[p ]E[p j ] > 0 E[p p j ] > E[p ]E[p j ] 1

2 V trenger bare å fnne ett sett med genotypefrekvenser som tlfredsstller kravet. For eksempel, la m = 0.5 og la genfrekvensene de to populasjonene være p 1 p p 3 Pop Pop Det gr E[p 1 p 3 ] = mp 11 p 31 + (1 m)p 1 p 3 = = 0.1 E[p 1 ] = mp 11 + (1 m)p 1 = = 0. E[p 3 ] = mp 31 + (1 m)p 3 = = 0.6 E[p 1 ]E[p 3 ] = = 0.1 > 0.1 Dvs ndvdene utvalget kommer fra populasjoner med genfrekvensene over, har allefall én heterozygot (type 13) større andel en forventa utfra Hardywenbergandeler. Exercse Dersom koplngsulkevekt D blr skapt ved at to populasjoner blandes, hva er uttrykket for endrng av D over td? Antar to loc A og B, og lar D = D AB (t) være koplngsulkevekten ved generasjon t etter blandng, mens D AB (0) er koplngsulkevekten rett etter blandng. Antar tlfeldg parrng etter at populasjonene har bltt blandet og at r er rekombnasjonsraten mellom locene. Da gjelder lknng I-44 sde 18: D AB (t) = (1 r) t D AB (0) = (1 r) t Cov(p, q)

3 Exercse 3 Har en modell med to øyer, med mmgrasjonsrater m 1 = 0.1 fra øy tl øy 1, og m = 0. fra øy 1 tl øy. Dersom start-genfrekvensene er hhv. p 1 (0) = 0 og p (0) = 1, hva er lkevektsgenfrekvensen? (Hnt: Fnn en størrelse a som har egenskapen at dersom p 1 (t) og p (t) er genfrekvensene på hhv. øy 1 og, så vl det vektede gjennomsnttet ap 1 (t) + (1 a)p (t) være uendra fra en generasjon tl neste. Frekvensen av allel A ved øy 1 er p 1 (t) etter t generasjoner, mens frekvensen ved øy er p (t). La lkevektsfrekvensene på øy 1 og for hhv. p 1 og p. Frekvensen av A ved øy 1 er lk frekvensen blant ndvdene som ble værende fra forrge generasjon, pluss frekvensen blant nye ndvder som kom fra øy. Samme argument gjelder frekvensen ved øy. Lknngene for endrng av genfrekvensen fra en generasjon tl neste er derfor p 1 (t) = (1 m 1 ) p 1 (t 1) + m 1 p (t 1) p (t) = m p 1 (t 1) + (1 m ) p (t 1) Har at p 1 (t) p (t) = (1 m 1 m )p 1 (t 1) (1 m 1 m )p (t 1) = (1 m 1 m )[p 1 (t 1) p (t 1)] Nå kan v bruke hntet, dvs fnne en a som gjør at ap 1 (t) + (1 a)p (t) blr uforandra fra en generasjon tl neste. 3

4 ap 1 (t) + (1 a)p (t) = ap 1 (t 1) + (1 a)p (t 1) a[p 1 (t) p (t)] + p (t) = a[p 1 (t 1) p (t 1)] + p (t 1) a(1 m 1 m )[p 1 (t 1) p (t 1)] + m [p 1 (t 1) p (t 1)] = a[p 1 (t 1) p (t 1)] a(1 m 1 m ) + m = a m a(m 1 m ) = 0 m a = m 1 + m 0. = = 3 Nå kan v fnne lkevektsfrekvensen p uttrykt ved p 1, sden ap 1 (t)+(1 a)p (t) kke forandres med t. ap 1 (t) + (1 a)p (t) = ap 1 (t 1) + (1 a)p (t 1) = ap 1 (t ) + (1 a)p (t ). = ap 1 (0) + (1 a)p (0) ap 1 + (1 a)p = ap 1 (0) + (1 a)p (0) ap 1 + (1 a)p = 1 a p = 1 a 1 a p 1 p = 1 p 1 Lkevektsfrekvensene må også oppfylle de første lknngene, dvs p 1 = (1 m 1 ) p 1 + m 1 p p = m p 1 + (1 m ) p Setter nn p = 1 p 1. p 1 = p 1 m 1 p 1 + m 1 m 1 p 1 3m 1 p 1 = m 1 p 1 = 1 3 p = 1 p 1 = 1 3 4

5 Exercse 5 Anta at v har to kontnenter. Frekvensen av allel A er lk 1 ved det ene, og 0 ved det andre. Mellom kontnentene er en rekke øyer, som lager en perfekt steppng stone -modell med mgrasjonsrate m/ mellom naboøyer, og mgrasjonsrate m/ fra hvert av kontnentene tl nærmeste øy. Genfrekvensen på kontnentene antas uforandret ford populasjonen er mye større her enn på øyene. Det er hverken seleksjon eller mutasjon. Hva er lkevekts-rekkefølgen av genfrekvenser på øyene? (Hnt: Mønsteret er det samme uavhengg av antall øyer. Det kan være lurt å gjøre en kvalfsert gjetnng og så vse at denne stemmer.) Sden mgrasjonsraten er den samme på alle øyer vrker det logsk at lkevektsfrekvensen endres lke mye fra en øy tl den neste. Dersom det bare er én øy, for eksempel, er lkevektsfrekvensen antakelg p 1 = 1/. Dersom det er to øyer, tpper v at lkevektsfrekvensene er p 1 = /3 og p = 1/3. For tre øyer får v: p k1 = 1 p 1 = 3 4 = n p = 4 = n 1 p 3 = 1 4 = n p k = 0 Det ser ut som at lkevektsfrekvensen ved øy er gtt ved p = ( ) Dette er en gjetnng, og det gjenstår å vse at det stemmer. Setter først nn = 0 ( ). 5

6 p 0 = 0 = 1 = p k1 Setter nn = ( ). p n+1 = n 1 = 0 = p k Ser på øy nummer, 1 n. Rekursjonslknngen for endrng av genfrekvens fra en generasjon tl neste er p (t) = (1 m)p (t 1) + m p 1(t 1) + m p +1(t 1) ( ) Ved lkevekt: p = (1 m)p + m p 1 + m p +1 Setter nn ( ) rekursjonslknngen ( ) for å se om dette er løsnngen. Høyre sde: (1 m)p + m p 1 + m p +1 = (1 m) + m n + + m n = 1 ((1 m)( ) + m (n + ) + m ) (n ) = 1 = ( mn m m + mn + m m + mn m ) Venstre sde: p = Høyre og venstre sde er lke, så v har vst at p = n+1 n+1 er løsnng på ( ). 6

7 Complement I en blandng gameter som kommer fra populasjoner som kke er koplngslkevekt, 1. Hva er uttrykket for D som funksjon av m, p, q, og D?. Hva er uttrykket for D som funksjon av kovaransene mellom og nnen populasjoner? Dersom populasjonene hadde vært koplngslkevekt, kunne v brukt lknngene sde 13 for å fnne D. Sden populasjonene kke er koplngslkevekt kan kke lknngene brukes drekte, men v kan bruke en lknende fremgangsmåte. La P AB være frekvensen av gamet AB den blandede populasjonen, og P AB være frekvensen populasjon. La p og q være frekvensen av hhv. allel A og B populasjon, og la m være andelen av blandngspopulasjonen som kommer fra populasjon. Dersom blandngspopulasjonen hadde vært koplngslkevekt, vlle verden av gametfrekvensen P AB ha vært ( ) ( m p m q ) Koplngsulkevekten D er den vrkelge gametfrekvensen P AB over. mnus verden ( ) ( D = P AB m p m q ) V trenger altså et uttrykk for P AB. I populasjon er koplngsulkevekten gtt ved (fra kapttel 1, sde 18) D = P AB p q P AB = D + p q I blandngspopulasjonen er gametfrekvensen dermed P AB = = m P AB m (D + p q ) 7

8 Koplngsulkevekten blandngspopulasjonen blr D = ( ) ( m (D + p q ) m p m q ) For å skrve om uttrykket som funksjon av kovaransene mellom og nnen populasjoner, bruk lknngene sde 13. Det gr E[p] = m p E[q] = m q E[pq] = m p q D = = = = ( ) ( ) m (D + p q ) m p m q m D + ( ) ( ) m p q m p m q m D + E[pq] E[p]E[q] m D + Cov(p, q) Ekstra oppgave Anta at v har en populasjon raps som er geografsk fordelt et lneært habtat. I en del av populasjonen ( geografske possjoner x < 0) dyrkes det hvert år en genmodfsert rapsvarant. Frekvensen av genet nnsatt ved genmodfserng A (dette kalles et transgen) denne delen av populasjonen er dermed hele tden p(x) = 1. Inntl den genmodfserte delen av populasjonen befnner det seg (for x > 0) en naturlg forekommende rapsvarant som krysser seg med den genmodfserte varanten. Anta at mgrasjon og seleksjon vrker som beskrevet ved lknng IV-56 og IV-59 og at seleksjonskoeffsenten er s(x) = s området x > 0 (slk at det er seleksjon mot transgenet den naturlge delen av populasjonen). Anta at s og σ er små slk at genfrekvensgradenten som oppstår ved mgrasjon-seleksjonsbalanse tlfredsstller IV-66 (men merk at nå har s skftet fortegn). Hva blr nå de nye randbetngelsene og tlhørende løsnng av IV-66? Hva blr stgnngstallet tl gradenten grensen x 0? Bruk dette tl å defnere et 8

9 passende karakterstsk mål l på hvor langt nn den naturlge populasjonen transgenet vl etablere seg når mgrasjons-seleksjonsbalanse har nntruffet. Hva blr l dersom σ = 100 m år 1/ og s = 0.01 år 1? Har at y = d p(x) d x dvs y er stgnngstallet tl gradenten. Lknng IV-66 gr (for s(x) = s) y(x) d y(x) d p(x) = s p(x)(1 p(x)) σ Tar ntegralet på begge sder. y(x) + C = s ( ) p(x) σ p(x)3 3 Nye randbetngelser: Ser av fguren at ettersom x vl stgnngstallet y(x) = 0 for p(x) = 0. Dette gr C = 0, og y(x) = s ( ) p(x) σ p(x)3 3 9

10 I grensa når x 0 er p(0) = 1, y(x) = s ( 1 σ 1 ) 3 s y(0) = ± 3σ Her er det den negatve løsnngen som er relevant, dvs stgnngstallet tl p(x) x = 0 er s y(0) = 3σ Som mål på hvor langt nn populasjonen de genmodfserte plantene etablerer seg, kan man bruke l = 1/y(0), dvs l = 3σ s Dersom σ = 100 m år 1/ og s = 0.01 år 1 får v l = m /år = m 387 m 1/år Dvs ca 387 m. 10

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Løsningsforslag ST2301 Øving 2

Løsningsforslag ST2301 Øving 2 Løsningsforslag ST2301 Øving 2 Kapittel 1 Exercise 6 Har et utvalg på 200 individer, fra en populasjon med forventa Hardy-Weinbergandeler for et locus med tre alleler, A 1, A 2 og A 3. Antall individer

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Løsningsforslag ST2301 Øving 4

Løsningsforslag ST2301 Øving 4 Løsningsforslag ST301 Øving 4 Kapittel 1 Complement Anta at det er n allel med samme frekvens. Som funksjon av n, hva er andelen homozygoter og heterozygoter i populasjonen? Har at p 1 p... p n p p i p

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer

Løsningsforslag ST2301 Øving 6

Løsningsforslag ST2301 Øving 6 Løsningsforslag ST2301 Øving 6 Kapittel 2 Exercise 10 Anta at tre genotyper har tnesser A 1 A 1 A 1 A 2 A 2 A 2 4 0 3 1. Hva er likevektsfrekvensen? 2. Er denne stabil? 3. Hvorfor kan vi ikke bare bruke

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

DEN NORSKE AKTUARFORENING

DEN NORSKE AKTUARFORENING DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA Det nnkalles herved tl ordnær generalforsamlng FARA ASA den 24. aprl 2014, kl. 16.30 selskapets lokaler O.H. Bangs ve 70, 1363 Høvk. DAGSORDEN Generalforsamlngen

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Matematisk evolusjonær genetikk (ST2301)

Matematisk evolusjonær genetikk (ST2301) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 9 Matematisk evolusjonær genetikk (ST2301) Tirsdag 19. mai 2009 Løsningsforslag (For flere av oppgavene finnes det

Detaljer

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen: STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Løsningsforslag ST2301 Øving 10

Løsningsforslag ST2301 Øving 10 Løsningsforslag ST2301 Øving 10 Kapittel 5 Exercise 6 Hva er innavlskoeffisienten for individ I i følgende stamtre? Svar: Her er det best å bruke en annen metode enn løkkemetoden. Slektskapskoeffisientmetoden

Detaljer

HI-FI KOMPONENTSYSTEM

HI-FI KOMPONENTSYSTEM VENNLIGST MERK: Dne høyttalere (følger kke med) kan være forskjellge fra de som er llustrert dette nstruksjonsheftet. modell RNV70 HI-FI KOMPONENTSYSTEM Vedlkehold og spesfkasjoner Du MÅ lese bruksanvsnngen

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

Eksamensoppgave i SØK2900 Empirisk metode

Eksamensoppgave i SØK2900 Empirisk metode Insttutt for samfunnsøkonom Eksamensoppgave SØK900 Emprsk metode Faglg kontakt under eksamen: Bjarne Strøm Tlf.: 73 59 9 33 Eksamensdato: 3. jun 05 Eksamenstd (fra-tl): 4 tmer (09.00 3.00) Sensurdato:

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

En teoretisk studie av tv-markedets effisiens

En teoretisk studie av tv-markedets effisiens NORGES HANDELSHØYSKOLE Bergen, våren 007 Utrednng fordypnng: Økonomsk analyse Veleder: Hans Jarle Knd En teoretsk stude av tv-markedets effsens av Odd Hennng Aure og Harald Nygård Bergh Denne utrednngen

Detaljer

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, 2004

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

NO kapittel 3.5 Næringsstruktur og faktoravlønning, Stolper Samuelson, Rybczynski

NO kapittel 3.5 Næringsstruktur og faktoravlønning, Stolper Samuelson, Rybczynski 1 Frelesnng 10 NO kapttel 3.5 Nærngsstruktur g faktravlønnng, Stlper Samuelsn, Rybczynsk 3.5 Lang skt Lkevekt arbeds g kaptalmarkeder Relevansen av langtdslkevekt Ikke skkert v får knvergens, en dynamsk

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

FOLKETELLINGEN 1. NOVEMBER 1960. Tellingsresultater Tilbakegående tall - Prognoser SARPSBORG 0102 STATISTISK SENTRALBYRÅ - OSLO

FOLKETELLINGEN 1. NOVEMBER 1960. Tellingsresultater Tilbakegående tall - Prognoser SARPSBORG 0102 STATISTISK SENTRALBYRÅ - OSLO FOLETELLINGEN. NOVEBER 0 Tellngsresultater Tlbakegående tall - Prognoser SARPSBORG 00 STATISTIS SENTRALBYRÅ - OSLO ERNADER TIL ART OG TABELLER I seren "Tellngsresultater - Tlbakegående tall - Prognoser"

Detaljer

Analyse av strukturerte spareprodukt

Analyse av strukturerte spareprodukt NORGES HANDELSHØYSKOLE Bergen, Høst 2007 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe Veleder: Professor Petter Bjerksund Utrednng fordypnngs-/spesalområdet: Fnansell

Detaljer

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1 5 eegelsesmengde Fyskk for ngenører 5 eegelsesmengde og massesenter Sde 5 - Httl har forutsatt at åre legemer kan oppfattes som partkler Stort sett har behandlet dsse partklene som solerte legemer som

Detaljer

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6.

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6. forelesnng 3 Malthus teor. Befolknngsvekst ECON 2915 forelesnng 3 Malthus teor. Befolknngsvekst Solow-modellen. Fredag 6.september, 2013 forelesnng 3 Malthus teor. Befolknngsvekst Fgure 4.1: Relatonshp

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ kó=ñê~w MSKOMNO pfabufp=ud aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ 0123 Dette produktet bærer CE-merket overensstemmelse med bestemmelsene drektvet 93/42EEC av 14 jun 1993

Detaljer

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5

Innholdsfortegnelse. Innledning. I. Teorigrunnlag, s. 5 Innholdsfortegnelse Innlednng I. Teorgrunnlag, s. 5 a) Nyklasssk nytteteor, s. 5 b) Utvdet nyttebegrep, s. 6 c) Lneære utgftssystemer, s. 7 d) Mellom-menneskelg påvrknng, s. 8 e) Modernserng og bostedspåvrknng,

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Eksamensoppgave i SØK2900 Empirisk metode Empirical methods in Economics

Eksamensoppgave i SØK2900 Empirisk metode Empirical methods in Economics Insttutt for samfunnsøkonom Eksamensoppgave SØK2900 Emprsk metode Emprcal methods n Economcs Faglg kontakt under eksamen: Lars-Erk Borge Tlf.: 73 59 19 41 Eksamensdato: 5. jun 2013 Eksamenstd: 4 tmer Sensurdato:

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Oppgaven dekker ideell opamp, bodeplot og resonans.

Oppgaven dekker ideell opamp, bodeplot og resonans. Lønngfrlg fr ktvt flter gve FYS3 H9 Uke 4 H.Blk Aktvt flter Ogven ekker eell m, elt g renn. Dette flteret er ert å en relerng v et Sllen ey flter. Ref : Sllen, R. P.; E. L. ey 955-3. "A Prtl Meth f Degnng

Detaljer

12 Løsningsmetoder i elastisitetsteori

12 Løsningsmetoder i elastisitetsteori 12 Løsnngsmetoder elaststetsteor Innhold: Eksakt løsnng lnærmede løsnnger Prnsppet om vrtuelt arbed 3D Prnsppet om stasjonær potensell energ 3D Raylegh-Rtz metode 2D og 3D kver kontra plater Eksakte skveløsnnger

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

Oppsummering Mekanikk. Newtons 2. lov: masse akselerasjon = kraft (total ytre kraft) Posisjon x [m] dx dt. v x. a x () t dt. Hastighet v x [m/s]

Oppsummering Mekanikk. Newtons 2. lov: masse akselerasjon = kraft (total ytre kraft) Posisjon x [m] dx dt. v x. a x () t dt. Hastighet v x [m/s] Oppsummerng Mekankk Sde av 6 Newtons. lov: masse akselerasjon kraft (total ytre kraft) Possjon x [m] Hastghet v x [m/s] Akselerasjon a x [m/s ] v x dx ----- dx v x x() t x( 0) a x t 0 v x () t dv -------

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelenng nr.3 INF 4 Elektronke ytemer Parallelle og parallell-erelle kreter Krchhoff trømlo Dagen temaer Krchhoff trømlo Parallelle kreter Kreter med parallelle og erelle ter Effekt parallelle kreter

Detaljer

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport Onlne Rapport Introduksjon Onlne Rapport www.olr.ccl.com Dn trnn for trnn-gude tl den nye Onlne Rapporten (OLR) Vktg nfo tl alle mengheter og organsasjoner Ingen flere program som skal lastes ned Fortløpende

Detaljer

Atferdsbasert risikoklassifisering

Atferdsbasert risikoklassifisering Masteroppgave Samfunnsøkonom Atferdsbasert rskoklassfserng endogen kategorserng forskrngsmarkedet Smen A. Enarson Ma 2006 Økonomsk Insttutt Unverstetet Oslo Forord Jeg ønsker å takke mn veleder, professor

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005

BIO 1000 LAB-ØVELSE 2. Populasjonsgenetikk 20. september 2005 Navn: Parti: Journalen leveres senest tirsdag 27. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 2 Populasjonsgenetikk 20. september 2005 Faglig ansvarlig: Eli K. Rueness Hovedansvarlig for

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17 Eksamen 31.05.2016 NOR1211-NOR1231 Norsk hovudmål/hovedmål NOR1218-NOR1238 Norsk elev samsk som andrespråk Elevar og prvatstar / Elev og prvatst Nynorsk sde 2 4. Bokmål sde 5 7. Felles vedlegg sde 9 17

Detaljer

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng

Detaljer

Eksamensoppgave i TFY4125 Fysikk

Eksamensoppgave i TFY4125 Fysikk de av 3 Insttutt for fyskk Eksamensoppgave TFY45 Fyskk Faglg kontakt under eksamen: Evnd Hs Hauge Tlf.: 98 5 3 Eksamensdato: 8. jun 3 Eksamenstd (fra-tl): 9: 3: Hjelpemddelkode/Tllatte hjelpemdler: Kode

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

ECON 2915 Høst 2009 Forelesning 8 Kapittel 1-2.5, Bævre og Vislie (2007)

ECON 2915 Høst 2009 Forelesning 8 Kapittel 1-2.5, Bævre og Vislie (2007) ECON 2915 Høst 2009 Frelesnng 8 Kapttel 1-2.5, Bævre g Vsle (2007) Freleser Fnn R. Førsund Frelesnng 8 1 Vekst med flere nærngssektrer Tre sektr analyser Prmærnærnger jrdbruk skgbruk, fske Sekundærnærnger

Detaljer

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er:

Sannsynlighet seier noko om kor truleg det er at ei hending får eit bestemt utfall. Ein matematisk definisjon på sannsynlighet er: Dette notatet bygger på Append C I Dngamn, og er et forsøk på å gje en kort og enkel nnførng vktge statskske begrep me vl få bruk for GF-GG4. Sannsynlghet seer noko om kor truleg det er at e hendng får

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall.

Løsningsforslag Eksamen i Statistikk Nov 2001 Oppgave 1 a) Det fins 8 mulige kombinasjoner. Disse finnes ved å utelate ett og ett tall. Løsgsforslag Eksame Statstkk Nov 00 Oppgave a) Det fs 8 mulge kombasjoer. Dsse fes ved å utelate ett og ett tall. Atall utvalg av størrelse 7 blat m er ( m 7 ). b) Prs Atall Rekker 3 kr. ( 7 ) 3 kr....

Detaljer

Anders Skonhoft Institutt for Samfunnsøkonomi Norges Teknisk-Naturvitenskapelige Universitet N-7491 Trondheim

Anders Skonhoft Institutt for Samfunnsøkonomi Norges Teknisk-Naturvitenskapelige Universitet N-7491 Trondheim OM OVERBEITINGSPROBLEMET av Anders Skonhoft Insttutt for Samfunnsøkonom Norges Teknsk-Naturvtenskapelge Unverstet N-7491 Trondhem og Anne Borge Johannesen Insttutt for Samfunnsøkonom Norges Teknsk-Naturvtenskapelge

Detaljer