Sorterings- Algoritmer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Sorterings- Algoritmer"

Transkript

1 Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på en korrekt og effektv måte. ernt Ingvald Sunde ernt Ingvald Sunde Hvorfor sorterng? Den største grunnen tl at det er så vktg å kunne sortere et sett av elementer er at mange andre problem blr lettere å løse dersom elementene er sortert Applkasjoner tl sorterng Søkng: nær søkng fnner ut om et element er en ordlste O(lg n) td Å gjøre søkng raskere er vel det vktgste bruksområdet tl sorterng Nærmeste nabo: Gtt n nummer, fnn paret som er nærmest hverandre Med en gang nummerene er sortert, vl de nærmeste parene lgge ved sden av hverandre, slk at en O(n) lnjær søkng gjør jobben ernt Ingvald Sunde ernt Ingvald Sunde Applkasjoner tl sorterng Element-Unkhet: Gtt et sett av n elementer, er de alle unke eller fnnes der duplkater? Medaner og seleksjon: Hva er det k-te største elementet en lste? Frekvens dstrubsjoner: Gtt et sett av n elementer, hvlket element opptrer flest ganger settet? Hvordan kan v sortere? egrensnger tl PU Kan bare gjøre en operasjon av gangen, Sden en sammenlgnng er en operasjon, fører dette tl at v bare kan sammenlgne to elementer samtdg når v skal sortere Men kan gjøre denne sammenlgnngen veldg raskt. ernt Ingvald Sunde 5 ernt Ingvald Sunde 6

2 Hva er en Haug (Heap)? Haug-Sorterng Sorterngs-Algortmer En haug er et komplett bnærtre, der alle nvå er fylt opp, untatt eventuelt det sste, som er fylt opp fra venstre tl høyre En haug brukes tl blant annet Prortetskøer og tl Haugsorterng (Heapsort) ernt Ingvald Sunde ernt Ingvald Sunde Haug : Datastruktur Max-Heapfy : O(lg n) nærtre som er lagret ndekserbar varabel (array) rot Generelle far/barn relasjoner / x x + ernt Ingvald Sunde 9 x x (Heap-egenskapen) Subrutne som vedlkeholder Heap-egenskapen,...dvs at barna tl roten er mndre enn roten Max-Heapfy(A,) l = left() r = rght() f l heap-sze[a] and A[l] > A[] then largest = l else largest = f r heap-sze[a] and A[r] > A[largest] then largest = r f largest then exchange A[] A[largest] Max-Heapfy(A,largest) ernt Ingvald Sunde 0 Max-Heapfy : O(lg n) Subrutne som vedlkeholder Heap-egenskapen,...dvs at barna tl roten er mndre enn roten Max-Heapfy : O(lg n) Subrutne som vedlkeholder Heap-egenskapen,...dvs at barna tl roten er mndre enn roten Max-Heapfy(A,) l = left() r = rght() f l heap-sze[a] and A[l] > A[] then largest = l else largest = f r heap-sze[a] and A[r] > A[largest] then largest = r f largest then exchange A[] A[largest] Max-Heapfy(A,largest) Max-Heapfy(A,) l = left() r = rght() f l heap-sze[a] and A[l] > A[] then largest = l else largest = f r heap-sze[a] and A[r] > A[largest] then largest = r f largest then exchange A[] A[largest] Max-Heapfy(A,largest) ernt Ingvald Sunde ernt Ingvald Sunde

3 uld-max-heap : O(n) Lager en heap fra en (kke-ordnet) array, angr de ndre nodene heap en uld-max-heap : O(n) Lager en heap fra en (kke-ordnet) array, angr de ndre nodene heap en uld-max-heap(a) heap-sze[a] = length[a] for = [length[a]/] downto do heapfy(a,) uld-max-heap(a) heap-sze[a] = length[a] for = [length[a]/] downto do heapfy(a,) ernt Ingvald Sunde ernt Ingvald Sunde uld-max-heap : O(n) Lager en heap fra en (kke-ordnet) array, angr de ndre nodene heap en uld-max-heap : O(n) Lager en heap fra en (kke-ordnet) array, angr de ndre nodene heap en uld-max-heap(a) heap-sze[a] = length[a] for = [length[a]/] downto do heapfy(a,) 6 0 uld-max-heap(a) heap-sze[a] = length[a] for = [length[a]/] downto do heapfy(a,) ernt Ingvald Sunde 5 ernt Ingvald Sunde 6 Heapsort-Algortmen Prosedyre for løsnng Lag heap av tallene ( arrayet) For tall = [lengden tl arrayet] ned tl ytt første tall med array[tall] Reetabler treet for array[...tall- ] Ferdg sortert for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) Kjøretd tl heapsort Heapsort tar O(n*lg n) td Sden kallet tl uld- Max- Heap tar O(n) td og Hver av de n- kallene tl Heapfy tar O(lg n) td 6 0 for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) ernt Ingvald Sunde 9 ernt Ingvald Sunde

4 () for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) () for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) Max-Heapfy(A,) Max-Heapfy(A,) Kapplnje Kapplnje () () () () ernt Ingvald Sunde 9 ernt Ingvald Sunde 0 () for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) () for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) Max-Heapfy(A,) Max-Heapfy(A,) Kapplnje Kapplnje () () (5) (5) ernt Ingvald Sunde ernt Ingvald Sunde Prortetskøer bruker Heap (5) for = [length[a]] downto do exchange A[] A[] heap-sze[a] = heap-sze[a]- Max-Heapfy(A,) Max-Heapfy(A,) Kapplnje Sortert : A Haugsorterng er en glmrende algortme, men en god mplementasjon av qucksort, slår den som regel prakss Men selve heap-data-strukturen har et stort bruksområde. Den mest populære applkasjonen tl en heap er å bruke den som en prortetskø. () () ernt Ingvald Sunde ernt Ingvald Sunde

5 Prortetskøer bruker Heap En prortetskø er en datastruktur for å holde vedlke et sett av S elementer,...der hvert element har en assosert verd En har to typer prortetskøer: En max-prortets-kø En mn-prortets-kø Prortets-kø : Operasjoner Operasjoner tl en max-prortets-kø Insert(S,x), kjøretd O(lg n) setter et element x nn settet S Setter en node nn heapen Maxmum(S), kjøretd O() returnerer elementet S med den største verden Extract-Max(S), kjøretd O(lg n) Returnerer elementet S med den største verden...og fjerner elementet fra heapen ernt Ingvald Sunde 5 ernt Ingvald Sunde 6 Prortets-kø : Operasjoner Operasjoner tl en max-prortets-kø Increase-Key(S,x,k), kjøretd O(lg n) Øker verden tl et element x tl en ny verd k,...som en antar er mnst lke stor som x Operasjoner tl en mn-prortets-kø Insert(S,x), Mnmum(S), Extract-Mn(S), Decrease-Key(S,x,k) Merge-Sorterng Sorterngs-Algortmer ernt Ingvald Sunde ernt Ingvald Sunde Hva er Merge-Sort? Merge-Sort : Algortmen Merge-sorterng (flette-sorterng) er basert på spltt-og-hersk -paradmet Spltt: del arrayet med n elementer deler med n/ elementer Hersk: sorter de to halvdelene rekursvt ved kall tl mergesort Kombner: flett sammen de to halvdelene for å produsere det sorterte arrayet Merge-Sort(A,p,r) f p <r then q = [(p+r)/] Merge-Sort(A,p,q) Merge-Sort(A,q+,r) Merge(A,p,q,r) Dette gr oss rekurrensen: T(n) = T(n/) + c*n) O(n*lg n) spltt hersk kombner ernt Ingvald Sunde 9 ernt Ingvald Sunde 0

6 Hva er Qucksort? QuckSort Sorterngs-Algortmer Qucksort er basert på spltt-og-hersk - paradmet, slk som merge-sort....men nneholder tllegg en vktg subrutne som heter partton Kjøretden tl qucksort er O(n ) verste tlfelle, men O(n*lg n) gjennomsntt ernt Ingvald Sunde ernt Ingvald Sunde Idê bak partton Metode som deler arrayet slk at Elementet a[] en deler arrayet er på rett plass Det kke er noen større elementer tl ventre for Det kke er noen mndre elementer tl høyre for Deretter sorterer qucksort den venstre og høyre delen rekursvt Qucksort : Algortmen Qucksort(A,p,r) f p <r then q = Partton(A,p,r) Quksort(A,p,q-) Qucksort(A,q+,r) Partton(A,p,r) x = A[r] = p- for j = p to r- do f A[j] x then = + exchange A[] A[j] exchange A[] A[j] return + ernt Ingvald Sunde ernt Ingvald Sunde Kjøre- Worst case Partton Kjøre-eksempel array V få da et sortert array n n n - n - n - n Kombnerer sett sammen de sorterte subarrayene ernt Ingvald Sunde 5 Dårlg pga svært skjeve splttnger; en regon med bare ett element og den andre regonen (subarray) nneholder resten av elementene. O(n ) hvs nput-array allereder er sortert n- n n- n T(n) = T(n-) + O(n) - - O(n ) ernt Ingvald Sunde 6

7 Average-ase Partton est-ase Partton n/ n Alternerer mellom gode og dårlge delnger n/ n Gjennomsnttlg dybde I bnærtre =, lg n Konstanten er mndre enn For noen annen sorterngsrutne O(n, lg n) O(n*lg n) T(n) = T(n/) + O(n) O(n*lg n) ernt Ingvald Sunde ernt Ingvald Sunde Hva er Qucksort? Den er praktske tlfeller som oftes den beste sorterngs-algortmen Den er veldg effektv gjennomsntt. Den antatte kjøretden er O(n*ln n)...der konstantfaktoren er veldg lten Den sorterer dessuten n place,...der ngen speselle nput lokker frem worst- case- oppførsel Den fungerer også godt omgvelser med vrtuelle mnne Tellesorterng Sorterngs-Algortmer ernt Ingvald Sunde 9 ernt Ingvald Sunde 0 Telle-Sorterng (ountng-sort) Sorterngsrutnen antar at hvert av de n- elementene, som skal sorteres, er heltall mellom og k, der k er et heltall Ide: For hvert element x skal antall elementer mndre enn x fnnes. Informasjonen brukes tl å plassere x drekte det sorterte arrayet Plassforbruk Tellesorterng Sorterngsrutnen krever stor plass da array brukes Array A[..n] som skal sorteres Array [..n] er sortert resultat Array [..k] er temporært arbedslager Algortmen sorterer lnjær td O(n), k = O(n) ernt Ingvald Sunde ernt Ingvald Sunde

8 j = 5 6 j = A Array som skal sorteres j j = A Array som skal sorteres j = Antall ere A j = Antall ere A j = 5 6 Antall elementer j = Antall elementer SORTERT j = ernt Ingvald Sunde ernt Ingvald Sunde Radx-sort Radx-Sort Radx-sort er ulk andre sorterngsmetder, ettersom den tar hensyn tl strukturen tl nøklene som skal sorteres. Element: {t d, t d- t } Sorterngs-Algortmer Mnst tellende sffer Mest tellende sffer ernt Ingvald Sunde 5 ernt Ingvald Sunde 6 Radx-sort Sorterer bts fra høyre tl venstre Radx-Sort(A,d) for = to d do use a stable sort to sort array A on dgt Analyse Radx-Sort Kjøretden avhenger av hvlken sorterngsrutne som blr brukt outng-sort: Θ(dn + kd) Nar d er konstant og k = O(n) O(n) Krever ekstra lagerplass Qucksort : Θ(n*log n) Når d er konstant Krever kke ekstra lagerplass ernt Ingvald Sunde ernt Ingvald Sunde

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1

Øvingsforelesning 6. Sorteringsalgoritmer. Martin Kirkholt Melhus Basert på foiler av Kristian Veøy 30/09/14 1 Øvingsforelesning 6 Sorteringsalgoritmer Martin Kirkholt Melhus martme@stud.ntnu.no Basert på foiler av Kristian Veøy 30/09/14 1 Agenda l Spørsmål fra øving 4 l Sortering l Presentasjon av øving 6 30/09/14

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Rebus. Hva er dette? Svar: Kvadratiske sorteringsalgoritmer :-> Som vanlig relativt abstrakte beskrivelser her. Ta en titt på pseudokode i boka for mer detaljert

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

n/b log b n = (lg n) a log b n = n log b a

n/b log b n = (lg n) a log b n = n log b a Masterteoremet 1 T (n) = at (n/b) + f(n) Antall «barn»: Størrelse per «barn»: «Høyde»: a n/b log b n = (lg n) Rota har f(n) arbeid; hver løvnode har en konstant mengde arbeid. Hva vil dominere totalen?

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer

Heapsort. Lars Vidar Magnusson Kapittel 6 Heaps Heapsort Prioritetskøer Heapsort Lars Vidar Magnusson 24.1.2014 Kapittel 6 Heaps Heapsort Prioritetskøer Sorterings Problemet Sorterings problemet er et av de mest fundementalske problemene innen informatikken. Vi sorterer typisk

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

INF2220: Time 12 - Sortering

INF2220: Time 12 - Sortering INF0: Time 1 - Sortering Mathias Lohne mathialo Noen algoritmer Vi skal nå se på noen konkrete sorteringsalgoritmer. Gjennomgående i alle eksempler vil vi sortere tall etter tallverdi, men som diskutert

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda

Først litt praktisk info. Sorteringsmetoder. Nordisk mesterskap i programmering (NCPC) Agenda Først litt praktisk info Sorteringsmetoder Gruppeøvinger har startet http://selje.idi.ntnu.no:1234/tdt4120/gru ppeoving.php De som ikke har fått gruppe må velge en av de 4 gruppende og sende mail til algdat@idi.ntnu.no

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2015 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2015, forelesning

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2017 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2017, forelesning

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre

Binære Søketre. Egenskap. Egenskap : Grafisk. Egenskap : Kjøretid. Egenskap : Kjøretid. Egenskap : Oppsumering. Binære Søketre genskap inære Søketre inære Søketre t binært søketre er organisert som et binærtre, og har følgende egenskap a x være en node i et binært søketre. vis y er en node i x s venstre subtre, vil verdi[y] verdi[x]

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2016 Ingrid Chieh Yu Institutt for informatikk, Universitetet i Oslo Forelesning 4: Prioritetskø og Heap Ingrid Chieh Yu (Ifi, UiO) INF2220 H2016, forelesning

Detaljer

Logaritmiske sorteringsalgoritmer

Logaritmiske sorteringsalgoritmer Logaritmiske sorteringsalgoritmer Logaritmisk sortering Rekursive og splitt og hersk metoder: Deler verdiene i arrayen i to (helst) omtrent like store deler i henhold til et eller annet delingskriterium

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 7. desember 2013 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode Målform/språk

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statstkk H00 Statstsk nferens: 9.6: Predksjonsntervall 9.8: To utvalg, dfferanse µ µ Mette Langaas Foreleses mandag 8.oktober, 00 Predksjonsntervall for fremtdg observasjon, normalfordelng For en

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre:

Heap* En heap er et komplett binært tre: En heap er også et monotont binært tre: Heap Heap* En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger til venstre En heap er også et

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 5: Prioritetskø og Heap Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 5 1 /

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

deeegimnoorrrsstt Sjette forelesning

deeegimnoorrrsstt Sjette forelesning deeegimnoorrrsstt Sjette forelesning 1 2 Bellman-Ford BFS/DFS Binære søketrær Binærsøk Bubblesort Bucket sort Counting sort Dijkstra DAGshortest-path Edmonds- Karp Floyd- Warshall Hashing Heapsort Huffmankoding

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

ALGORITMER OG DATASTRUKTURER

ALGORITMER OG DATASTRUKTURER Stud. nr: Side 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet BOKMÅL Fakultet for informasjonsteknologi matematikk og elektroteknikk Institutt for datateknikk og informasjonsvitenskap AVSLUTTENDE

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt.

Ekstra ark kan legges ved om nødvendig, men det er meningen at svarene skal få plass i rutene på oppgavearkene. Lange svar teller ikke positivt. Side 1 av 5 Noen viktige punkter: (i) (ii) (iii) (iv) Les hele eksamenssettet nøye før du begynner! Faglærer går normalt én runde gjennom lokalet. Ha evt. spørsmål klare! Skriv svarene dine i svarrutene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Algoritmeanalyse. (og litt om datastrukturer)

Algoritmeanalyse. (og litt om datastrukturer) Algoritmeanalyse (og litt om datastrukturer) Datastrukturer definisjon En datastruktur er den måten en samling data er organisert på. Datastrukturen kan være ordnet (sortert på en eller annen måte) eller

Detaljer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer

Datastrukturer. Stakker (Stacks) Hva er en datastruktur? Fordeler / Ulemper. Generelt om Datastrukturer. Stakker (Stacks) Elementære Datastrukturer Hva er en datastruktur? Datastrukturer Elementære Datastrukturer En datastruktur er en systematisk måte å lagre og organisere data på, slik at det er lett å aksessere og modifisere dataene Eksempler på

Detaljer

Algoritmer og Datastrukturer IAI 21899

Algoritmer og Datastrukturer IAI 21899 Eksamen i Algoritmer og Datastrukturer IAI 21899 Høgskolen i Østfold Avdeling for informatikk og automatisering Torsdag 30. november 2000, kl. 09.00-14.00 LØSNINGSFORSLAG 1 Del 1, Binære søketrær Totalt

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 14. desember 2011 Eksamenstid 1500 1900 Sensurdato 14. januar Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

Dijkstras algoritme Spørsmål

Dijkstras algoritme Spørsmål :: Forside s algoritme Åsmund Eldhuset asmunde *at* stud.ntnu.no folk.ntnu.no/asmunde/algdat/dijkstra.pdf :: Vi er ofte interessert i å finne korteste, raskeste eller billigste vei mellom to punkter Gods-

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng

Detaljer

Binær heap. En heap er et komplett binært tre:

Binær heap. En heap er et komplett binært tre: Heap Binær heap En heap er et komplett binært tre: Alle nivåene i treet, unntatt (muligens) det nederste, er alltid helt fylt opp med noder Alle noder på nederste nivå ligger så langt til venstre som mulig

Detaljer

Om Kurset og Analyse av Algoritmer

Om Kurset og Analyse av Algoritmer Om Kurset og Analyse av Algoritmer Lars Vidar Magnusson 8.1.2014 Praktisk informasjon om kurset Hva er en algoritme? (kapittel 1) Hvordan analysere en algoritme? (kapittel 2) Praktisk Informasjon Introduction

Detaljer

NORGE [B] (11) UTLEGNINGSSKRIFT Ar. 131535

NORGE [B] (11) UTLEGNINGSSKRIFT Ar. 131535 NORGE [B] () UTLEGNINGSSKRIFT Ar. 3535 (5) Int. Cl. B Ol D 53/0 STYRET () Patentsøknad nr. 6/73 FOR DET INDUSTRIELLE () nngtt. RETTSVERN (3) Løpedag 5.06.73 (4) Søknaden ålment tlgjengelg fra 30..74 (44)

Detaljer

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper

Prioritetskøer. Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer Binære heaper Venstrevridde heaper (Leftist) Binomialheaper Fibonacciheaper Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A,

Detaljer

Algoritmer og datastrukturer Assignment 11 Side 1 av 5

Algoritmer og datastrukturer Assignment 11 Side 1 av 5 Assignment 11 Side 1 av 5 Oppgave 1 Utregning av ASCII summer, og hashfunksjon: Hashfunksjon: A(s) % n Nøkkel ASCII SUM (ASCII SUM) % 8 ANNE 290 2 PER 231 7 NINA 294 6 ANNI 294 6 ALI 214 6 KAREN 369 1

Detaljer

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema

Hva er en algoritme? INF HØSTEN 2006 INF1020. Kursansvarlige Ragnar Normann E-post: Dagens tema va er en algoritme? Vanlig sammenligning: Oppskrift. nput lgoritme NF1020 - ØSTEN 2006 Kursansvarlige Ragnar Normann E-post: ragnarn@ifi.uio.no Output Knuth : tillegg til å være et endelig sett med regler

Detaljer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer

Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Avsluttende eksamen i TDT4120 Algoritmer og datastrukturer Eksamensdato 3. desember 2012 Eksamenstid 0900 1300 Sensurdato 3. januar 2013 Språk/målform Bokmål Kontakt under eksamen Magnus Lie Hetland (tlf.

Detaljer

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105)

LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER (IT1105) Norges teknisk naturvitenskapelige universitet Institutt for datateknikk og informasjonsvitenskap Side 1 av 8 Faglig kontakt under eksamen: Magnus Lie Hetland LØSNINGSFORSLAG, EKSAMEN I ALGORITMER OG DATASTRUKTURER

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

INNVANDRERNE I ARBEIDSMARKEDET

INNVANDRERNE I ARBEIDSMARKEDET C v t a - n o t a t nr.7 / 2008 INNVANDRERNE I ARBEIDSMARKEDET Artkkel FNs ntnasjonale konvensjon om økonomske, sosale og kulturelle rettghet fastslår retten for enhv tl å ha en tlfredsstllende levestandard

Detaljer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer

Prioritetskøer. Prioritetskøer. Binære heaper (vanligst) Prioritetskøer Binære heaper (Leftist) Prioritetskøer Prioritetskøer er viktige i bla. operativsystemer (prosesstyring i multitaskingssystemer), og søkealgoritmer (A, A*, D*, etc.), og i simulering. Prioritetskøer Prioritetskøer

Detaljer

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre:

Sorteringsproblemet. Gitt en array A med n elementer som kan sammenlignes med hverandre: Sortering Sorteringsproblemet Gitt en array A med n elementer som kan sammenlignes med hverandre: Finn en ordning (eller permutasjon) av elementene i A slik at de står i stigende (evt. avtagende) rekkefølge

Detaljer

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi

Eksamen i IN 110, 18. mai 1993 Side 2 Del 1 (15%) Vi skal se på prioritetskøer av heltall, der vi hele tiden er interessert i å få ut den minste verdi UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 18. mai 1993 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: IN 110 Algoritmer

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner

Dagens plan: INF Algoritmer og datastrukturer. Eksempel. Binære Relasjoner Dagens plan: INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Definisjon av binær relasjon Definisjon av ekvivalens

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

INF Algoritmer og datastrukturer

INF Algoritmer og datastrukturer INF2220 - Algoritmer og datastrukturer HØSTEN 2009 Institutt for informatikk, Universitetet i Oslo INF2220, forelesning 10: Disjunkte Mengder Bjarne Holen (Ifi, UiO) INF2220 H2009, forelesning 10 1 / 27

Detaljer

Terrasser TRAPPER OG REKKVERK LAG DIN EGEN UTEPLASS! VÅRE PRODUKTER HAR LANG LEVETID OG DU VIL HA GLEDE I DET DU HAR BYGGET I MANGE ÅR FREMOVER

Terrasser TRAPPER OG REKKVERK LAG DIN EGEN UTEPLASS! VÅRE PRODUKTER HAR LANG LEVETID OG DU VIL HA GLEDE I DET DU HAR BYGGET I MANGE ÅR FREMOVER Terrasser TRAPPER OG REKKVERK LAG DIN EGEN UTEPLASS! VÅRE PRODUKTER HAR LANG LEVETID OG DU VIL HA GLEDE I DET DU HAR BYGGET I MANGE ÅR FREMOVER Malmfuru terrasse Malmfuru er den mest mljøvennlge terrassen

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Algoritmer - definisjon

Algoritmer - definisjon Algoritmeanalyse Algoritmer - definisjon En algoritme er en beskrivelse av hvordan man løser et veldefinert problem med en presist formulert sekvens av et endelig antall enkle, utvetydige og tidsbegrensede

Detaljer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer

Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Eksamensoppgave i TDT4120 Algoritmer og datastrukturer Faglig kontakt under eksamen Magnus Lie Hetland Tlf. 91851949 Eksamensdato 11. august 2014 Eksamenstid (fra til) 0900 1300 Hjelpemiddelkode D. Ingen

Detaljer

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser

Alderseffekter i NVEs kostnadsnormer. - evaluering og analyser Alderseffekter NVEs kostnadsnormer - evaluerng og analyser 2009 20 06 20 10 20 10 20 10 21 2011 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 R A P P O R T 20 10 20 10 20 10 20 10 20 10 20 10 20

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem?

Algoritme-Analyse. Asymptotisk ytelse. Sammenligning av kjøretid. Konstanter mot n. Algoritme-kompeksitet. Hva er størrelsen (n) av et problem? Hva er størrelsen (n) av et proble? Algorite-Analyse Algoriter og Datastrukturer Antall linjer i et nettverk Antall tegn i en tekst Antall tall so skal sorteres Antall poster det skal søkes blant Antall

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b

Oppgave 1 a. INF1020 Algoritmer og datastrukturer. Oppgave 1 b Oppgave 1 1 a INF1020 Algoritmer og datastrukturer Forelesning 14: Gjennomgang av eksamen vår 2001 oppgave 1,2,4 Arild Waaler Institutt for informatikk, Universitetet i Oslo Oppgave 1 a Programmer en ikke-rekursiv

Detaljer

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.)

INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/ , (lille aud.) Oppgave 1 Uavgjørbarhet INF3/4130 PRØVE-EKSAMEN MED SVARFORSLAG Gjennomgås 1/12-2005, 14.15 (lille aud.) L = {(M 1, M 2 ) M 1 og M 2 er Turingmaskiner som er ekvivalente, dvs. gir samme output for samme

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 115 og IN 110 Algoritmer og datastrukturer Eksamensdag: 14. mai 1996 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 8 sider.

Detaljer

*** Spm. 841 *** Hvilke former for sparing og pengeplasseringer for folk flest kan du nevne?

*** Spm. 841 *** Hvilke former for sparing og pengeplasseringer for folk flest kan du nevne? *** Spm. 841 *** Hvlke former for sparng og pengeplassernger for folk flest kan du nevne? Ch2 nvå(w): 5.0% Kjønn Alder Husstandsnntekt Landsdel Utdannng Radene er rangert Vderegåen Møre Ung- 60 år Under

Detaljer

1653B/1654B. Installasjonstest på et IT anlegg i drift

1653B/1654B. Installasjonstest på et IT anlegg i drift 65B/654B Installasjonstest på et IT anlegg drft Utførng av testene Spennngsmålnger Testeren kan brkes som et ac voltmeter hvor spennng og frekvens kan vses samtdg ved å sette rotasjonsbryteren tl V. Alle

Detaljer

Pensum: fra boken (H-03)+ forelesninger

Pensum: fra boken (H-03)+ forelesninger Pensum: fra boken (H-03)+ forelesninger unntatt kursorisk tema KAP. 1 KAP. 2 KAP. 3 JAVA I-110 (ikke gjennomgått) OO + ABSTRAKSJON /GENERISK PROGRAMMERING REKURSJON ALGORITME-TIDSANALYSE; O-NOTASJON KAP.

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel )

INF2220: Forelesning 1. Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel ) INF2220: Forelesning 1 Praktisk informasjon Analyse av algoritmer (kapittel 2) (Binær)trær (kapittel 4.1-4.3 + 4.6) PRAKTISK INFORMASJON 2 Praktisk informasjon Kursansvarlige Ragnhild Kobro Runde (ragnhilk@ifi.uio.no)

Detaljer

Rekursiv programmering

Rekursiv programmering Rekursiv programmering Babushka-dukker En russisk Babushkadukke er en sekvens av like dukker inne i hverandre, som kan åpnes Hver gang en dukke åpnes er det en mindre utgave av dukken inni, inntil man

Detaljer

INF2220: Forelesning 2

INF2220: Forelesning 2 INF2220: Forelesning 2 Mer om analyse av algoritmer Analyse av binære søketrær Balanserte søketrær Rød-svarte trær (kapittel12.2) B-trær (kapittel 4.7) ANALYSE AV ALGORITMER 2 Analyse av tidsforbruk Hvor

Detaljer

Norsk informatikkolympiade runde

Norsk informatikkolympiade runde Norsk informatikkolympiade 2017 2018 1. runde Sponset av Uke 46, 2017 Tid: 90 minutter Tillatte hjelpemidler: Kun skrivesaker. Det er ikke tillatt med kalkulator eller trykte eller håndskrevne hjelpemidler.

Detaljer

Sortering i Lineær Tid

Sortering i Lineær Tid Sortering i Lineær Tid Lars Vidar Magnusson 5.2.2014 Kapittel 8 Counting Sort Radix Sort Bucket Sort Sammenligningsbasert Sortering Sorteringsalgoritmene vi har sett på så langt har alle vært sammenligningsbaserte

Detaljer