MoD233 - Geir Hasle - Leksjon 10 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "MoD233 - Geir Hasle - Leksjon 10 2"

Transkript

1 Leksjon 10

2 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt MoD233 - Ger Hasle - Leksjon 10 2

3 Fra forrge gang Repetsjon Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt Nytt stoff: Heltallsprogrammerng Tdsplanleggng (skedulerng, schedulng) Handelsresende-problemet (TSP) Mer generelle kostnadsfunksjoner Forgrenngs- og begrensnngsmetoden (Branch&Bound) MoD233 - Ger Hasle - Leksjon 10 3

4 ! Transport Skpnngsproblemet Transportproblemet Htchcocks transportproblem Tlordnngsproblemet Korteste-ve problemet Varanter av nettverksflyt Beskranknnger på flyt Maksmum flyt beskranket nettverk MoD233 - Ger Hasle - Leksjon 10 4

5 " # Mn-kostnad NFP der flyt tolkes som transport av varer kalles Skpnngsproblemet Vktg spesaltlfelle: Sklle mellom fra-noder og tl-noder Enhver kant går fra en fra-node tl tl-node Kalles Transportproblemet MoD233 - Ger Hasle - Leksjon 10 5

6 " # Nodene er partsjonert klder og sluk: =, = Bparttt flytgraf: {(, j) : j } MoD233 - Ger Hasle - Leksjon 10 6

7 " # Krav tl konsstens: postv tlgang kldenoder, negatv tlgang sluk b 0, b 0, MoD233 - Ger Hasle - Leksjon 10 7

8 " # $ Behov * * 9 * Tlgang 12 * 3 6 Kostnad MoD233 - Ger Hasle - Leksjon 10 8

9 " # % # Duale varable 1. rad/kolonne Indkasjon på spenntre [ 7 ] 5 * [ 3] [ 8] 4 * [ 18 ] * * [ 3] [ 15] MoD233 - Ger Hasle - Leksjon 10 9

10 &'('' # Transportproblem med komplett graf (alle klder er forbundet med alle sluk) b = s 0, b = d 0, MoD233 - Ger Hasle - Leksjon 10 10

11 &'('' # mn j b = s 0, j j slk at 0,, j c = s = d j b = d 0, Flytbalanse ut fra hver klde Flytbalanse nn tl hvert sluk MoD233 - Ger Hasle - Leksjon 10 11

12 " # )# Gtt m personer og m oppgaver Kjent kostnad ved at gtt person utfører gtt oppgave Fnn den tlordnng av person tl oppgave som gr mnst kostnad MoD233 - Ger Hasle - Leksjon 10 12

13 " # = { 1,, m} personer = { m} 1,, oppgaver 1 hvs person allokeres tl oppgave j = 0 ellers mn c slk at j Alle personer får en og bare en oppgave = 1 j = 1 { } 0,1,, j j Alle oppgaver får en og bare en person Heltallghetsførng! MoD233 - Ger Hasle - Leksjon 10 13

14 # ( * +) Generelt kan kke heltallsførnger gnoreres gjør slke førnger problemet langt hardere beregnngsmessg Det LP som fremkommer ved å gnorere heltallghetsførngene et optmerngsproblem med lneær kostnadsfunksjon og lneære førnger kalles LP-relaksasjonen tl problemet. LP-relaksasjonen har bedre eller lke god løsnng som det orgnale problem. MoD233 - Ger Hasle - Leksjon 10 14

15 " # *,*+) -. LP-relaksasjonen H tl et gtt Tlordnngsproblem T er et spesaltlfelle av Htchcock-problemet (der alle tlganger og alle behov er lk 1 og antall klder er lk antall sluk) Enhver brukbar (heltallg, 0-1) løsnng av T vl også være en brukbar løsnng for H Enhver heltallg brukbar løsnng på H vl også være brukbar for T Optmal løsnng for tlsvarende H er heltallg (Heltallghetsteoremet!), og derved brukbar for T, dersom v benytter Nettverks Smpleks Optmal løsnng for H er også optmal løsnng for T For et vlkårlg Tlordnngsproblem kan v neglsjere heltallsførngene og bruke Nettverks Smpleksmetode tl å løse LPrelaksasjonen og derved få optmal løsnng. mn j mn j Tlordnng, T j slk at 0,, j MoD233 - Ger Hasle - Leksjon j { } = 1 = 1 j c = s = d j slk at 0,1,, j c j Htchcock, H

16 #.((#.)) Oppgave: fnne korteste (raskeste, bllgste,...) ve fra A tl B gtt nettverk (rettet graf) Postv lengde (kostnad) på hver lenke er gtt Respektere enveskjørng, fnne bllgste rettede st Eksempel: korteste rettede st fra a tl b nettverket tl høyre (a,e,b) kostnad 17 a c 108 f d b e 19 g Mange anvendelser MoD233 - Ger Hasle - Leksjon 10 16

17 # Fnn korteste ve fra alle noder dgraf tl gtt node r (rotnoden) Kan formuleres som mnmum kostnad nettverksflytproblem Hvordan? MoD233 - Ger Hasle - Leksjon 10 17

18 # -! Tlgang lk 1 på alle noder unntatt rotnoden Behov lk summen av tlgang (negert) rotnoden Kostnad lk lengden (eller resetd, - kostnad) på hver kant Mnmum kostnad flyt vl g flyt på 1 ut fra hver node Korteste ve fra vlkårlg node lgger langs et optmalt spenntre Lengden på korteste ve fra en gtt node er forskjellen dual verd mellom rotnoden og denne noden 1 1 f a MoD233 - Ger Hasle - Leksjon c d b e g -6 0

19 # Nettverksflyt-formulerng og løsnng med Nettverks Smpleksmetoden er kke den mest effektve beregnngsmessg Merkelapp (label)-baserte algortmer merkelapp-settng merkelapp-korrgerng MoD233 - Ger Hasle - Leksjon 10 19

20 # /! ) Merkelapp på hver node (verdfunksjon) avstand for korteste ve tl rotnoden: v, V må ha, for vlkårlg merkelapp: v r = 0 { } { } v = mn c + v : (, j) r j Bellman s lgnng Prnsppet om Dynamsk programmerng Rekursjon! v f v a a 56 f c 28 v c 48 v d d b 33 7 v b v e e 19 g v g MoD233 - Ger Hasle - Leksjon 10 20

21 v # r = 0 { } { } v = mn c + v : (, j) r j Korteste ve fra node tl rotnoden er karaktersert ved: {(, j) : v c v j} = = + Ikke alltd tre f a c 28 d b 33 e 19 g MoD233 - Ger Hasle - Leksjon 10 21

22 #. vr = 0 a 10 v = mn { c + v j : (, j) } { r} d 48 Gjetter på løsnng: v (0) r (0) = 0 { } v =, r Itererer fram bedre tlnærmnger, helt tl ngen endrng skjer: v ( k + 1) r = 0 ( k + 1) ( ) j { k } { } v = mn c + v : (, j) r f 108 c b Antall terasjoner: O( ) e 19 g 0 MoD233 - Ger Hasle - Leksjon 10 22

23 # 0 Vktge datastrukturer: v j, j noder som har fått rktg merkelapp ( ferdge ) h, merkelapper neste node korteste ve a c 28 d b 7 e 19 Intalserng: v (0) r (0) = 0 { } v =, r f g 0 MoD233 - Ger Hasle - Leksjon 10 23

24 # 0 Så lenge { k } { j} { j } j arg mn v : k for alle : (, ) hvs c + v < v så shv rof j v c + v j h j a f c d b e 19 g 0 ås MoD233 - Ger Hasle - Leksjon 10 24

25 -!* Kapastetsbegrensnnger på kanter mn (, j ) k kj k :(, k ) j:( k, j) c slk at = b, k 0, (, j) Nye førnger: u, (, j) 9 f MoD233 - Ger Hasle - Leksjon a c d Kan løses drekte med modfsert Nettverks Smpleks Kan reduseres tl Nettverksflyt uten begrensnnger! Skal vse Maksmal-flyt Mnmalt-kutt teoremet 38 b e g 5

26 j? -!* Kant (,j) med øvre skranke: 0 u, (, j) Kan omskrves ved bruk av slakkvarabel: Flytbalanse og øvre skranke: = b + = b + t = u j = b t = b u + t = u j b j k + t = u c u, t 0 bj j Fås ved å subtrahere sste lgnng b u j k b c 0 = k jk = t + u j MoD233 - Ger Hasle - Leksjon 10 26

27 -!* # " # Ser på optmal løsnng for transformerte. 1. Dersom k =0 er dualslakken kkenegatv og jk lk u : b u j k b c 0 = k jk = t + u j = 0 z = y + c y 0 = u > 0 z = y y = 0 k k k jk jk j k y + c y j 2. Dersom k =u er dualslakken 0 og jk lk 0: ( = u > 0 = 0) ( z = y + c y = 0 z = y y 0) k jk k k jk j k y + c y j MoD233 - Ger Hasle - Leksjon 10 27

28 -!* # 1)#2* 3. Dersom 0< k <u er det postv flyt på begge kanter: ( ) 0 < < u > 0 z = y + c y = 0 z = y y = 0 k y + c = y j jk k k jk j k Gjelder også motsatt ve! For optmal løsnng på orgnalt problem har v: b c = 0 y + c y 0 j = u y + c y j < < u y + c = y j b u j MoD233 - Ger Hasle - Leksjon k b c 0 = u k jk = t bj Vl bruke dette teorem for Maksmum-flyt problem j + u j

29 !# Vktg problem Delproblem mange Nettverksflyt-problemer Svært effektve algortmer fns V skal se på vktg teorem for dette problemet: Maksmum-flyt Mnmum-kutt teoremet MoD233 - Ger Hasle - Leksjon 10 29

30 !# = (, ) b s = s { s, d} b d = d u,(, j) Nettverk Klde s og sluk d Øvre begrensnnger på (noen) kanter Mål: Presse så mye flyt som mulg gjennom fra klde tl sluk! MoD233 - Ger Hasle - Leksjon 10 30

31 !# " -3 s { s, d} d Kan omformes tl Mnmum-kostnad Nettverks Flyt med øvre begrensnnger { d s } c = 0, (, j) (, (, ) ) = c ds = 1 u ds = b = 0, MoD233 - Ger Hasle - Leksjon 10 31

32 Et kutt er en partsjonerng av nodemengden to delmengder slk at klden er den ene delmengden og sluket den andre. Kuttet representeres av den delmengden som nneholder klden. s d Et kutt C MoD233 - Ger Hasle - Leksjon 10 32

33 Kapasteten tl et kutt (kuttkapastet) defneres som den samlete kapasteten tl de kanter som spenner over kuttet rktg retnng. κ ( C) = u C j C C C s d MoD233 - Ger Hasle - Leksjon 10 33

34 3!# C C s d = κ ( C) ds C C j C j C Brukbar flyt MoD233 - Ger Hasle - Leksjon 10 34

35 ! C C s d Teorem 14.1: Maksmum-flyt Mnmum kutt Maksmum flyt er lk mnmal kuttkapastet for nettverket. ds = mn κ ( C) alle C MoD233 - Ger Hasle - Leksjon 10 35

36 ! 4 C C s d ds = mn κ ( C) alle C For vlkårlg kutt C og brukbar flyt har v: = u = κ ( C) ds C C C C j C j C j C j C Nok å fnne kutt C* og brukbar flyt slk at: ds = κ * ( C ) MoD233 - Ger Hasle - Leksjon 10 36

37 ! 4 C C s d ds = mn κ ( C) alle C * Vl fnne kutt C* og brukbar flyt slk at: = κ C I optmal flyt har v følge tdlgere resultat: Ser på kant fra sluk tl klde: * * * * * ds ds d = s d s 0 < < u = y + ( 1) y y > y ( ) MoD233 - Ger Hasle - Leksjon ds * * * = 0 + j y c y * * * = + j u y c y * * * j 0 < < u y + c = y

38 ! 4 s C C d ds = mn κ ( C) alle C Vl fnne kutt C* og brukbar flyt slk at: * * Defner kutt C* slk at: C { k : y * * } k ys * * * = 0 + j y c y * * * = + j u y c y ds = κ ( C ) = Gyldg kutt? * * * j 0 < < u y + c = y Kanter som spenner rktg ve: = {(, j) : C * j C * } Kanter som spenner fel ve: = {(, j) : C * j C * } * * * * s j (, j) y y < y = u c = 0 * * * * j s (, j) y y < y = 0 c = 0 MoD233 - Ger Hasle - Leksjon 10 38

39 ! 45 C C s d ds = mn κ ( C) alle C Vl fnne kuttsett C* og brukbar flyt slk at: * ds = κ ( C ) { : * * } k s * C = k y y * * * * s j (, j) y y < y = u c = 0 * * * * j s (, j) y y < y = 0 c = 0 * * * * ds = = = κ (, j) (, j) (, j) (, j) u 0 ( C ) QED! MoD233 - Ger Hasle - Leksjon 10 39

40 + Fra forrge gang Repetsjon Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt Neste gang: Heltallsprogrammerng Tdsplanleggng (skedulerng, schedulng) Planleggng av turer (rotasjoner) for flymannskap og fly Mengdedelngs- og mengdedeknngsproblemet Handelsresende-problemet (TSP) Mer generelle kostnadsfunksjoner Forgrenngs- og begrensnngsmetoden (Branch&Bound) MoD233 - Ger Hasle - Leksjon 10 40

Korteste-vei problemet Nettverksflyt med øvre begrensninger Maksimum-flyt problemet Teorem: Maksimum-flyt Minimum-kutt

Korteste-vei problemet Nettverksflyt med øvre begrensninger Maksimum-flyt problemet Teorem: Maksimum-flyt Minimum-kutt Lekson 11 Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt MoD233 - Ger Hasle - Lekson 11 2 Heltallsprogrammerng Tdsplanleggng (skedulerng,

Detaljer

Mål. MoD233 - Geir Hasle - Repetisjon 2

Mål. MoD233 - Geir Hasle - Repetisjon 2 Repetson Mål teoretsk forståelse, grunnleggende optmerng løsnngsmetoder LP og utvdelser algortmsk forståelse anvendelser LP og utvdelser modellerng og løsnng v.h.a. verktøy Innhold og forelesnngsplan Eksempler

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Heltallighetsteoremet for nettverksflyt Königs teorem Denne gang: Anvendelser nettverksflyt

Heltallighetsteoremet for nettverksflyt Königs teorem Denne gang: Anvendelser nettverksflyt Leksjon 9 Begreper nettverk / grafteori Minimum-kost nettverksflyt Moellering Spesialvariant av Simpleksmetoen Heltallighetsteoremet for nettverksflyt Königs teorem Denne gang: Anvenelser nettverksflyt

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

Løsningsforslag for regneøving 2

Løsningsforslag for regneøving 2 TFE4 Dgtalteknkk med kretsteknkk Løsnngsforslag tl regneøng årsemester 8 Løsnngsforslag for regneøng Utleert: fredag 5. februar 8 Oppgae : a b Krets Benytt følgende erder: a A, b A, Ω, Ω, 5Ω a) Fnn spennngene

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Leica DISTO TM D410 The original laser distance meter

Leica DISTO TM D410 The original laser distance meter Leca DISTO TM D410 The orgnal laser dstance meter Innholdsfortegnelse Oppsett av nstrumentet - - - - - - - - - - - - - - - - - - - 2 Introduksjon - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Detaljer

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2

ingen Fase I nødvendig konvergerer dersom LP er begrenset og konsistent skifter mellom primal og dual pivotering MoD233 - Geir Hasle - Leksjon 8 2 Leksjon 8 Ofte behov for å løse mange relaterte LP Regnetid kan spares ved å bruke informasjon fra tidligere løsninger Parametrisk analyse homotopi-metoden Den Parametriske Selv-duale Simpleksmetoden ingen

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Sorterings- Algoritmer

Sorterings- Algoritmer Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2

LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 LP. Leksjon 9: Kapittel 13: Nettverk strøm problemer, forts.2 Vi tar siste runde om (MKS): minimum kost nettverk strøm problemet. Skal oppsummere algoritmen. Se på noen detaljer. Noen kombinatorisk anvendelser

Detaljer

Løsning til seminar 3

Løsning til seminar 3 Løsnng tl semnar 3 Oppgave ) Investerngsfunksjonen Investerngene påvrkes hovesaklg av renta og av aktvtetsnvået økonomen. Når renta går opp øker kostnaen ve å fnansere nvesternger. V kan s at et lr relatvt

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Trykkløse rørsystemer

Trykkløse rørsystemer Trykkløse rørsystemer har kabel- og avløpsrørsystemer PVC, PP og PE med komplette delespektre. PE benyttes trykkrør som utslppslednnger, som lednng dårlge masser (myr) og ved høy overdeknng og/eller høy

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

En teoretisk studie av tv-markedets effisiens

En teoretisk studie av tv-markedets effisiens NORGES HANDELSHØYSKOLE Bergen, våren 007 Utrednng fordypnng: Økonomsk analyse Veleder: Hans Jarle Knd En teoretsk stude av tv-markedets effsens av Odd Hennng Aure og Harald Nygård Bergh Denne utrednngen

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng

Detaljer

HI-FI KOMPONENTSYSTEM

HI-FI KOMPONENTSYSTEM VENNLIGST MERK: Dne høyttalere (følger kke med) kan være forskjellge fra de som er llustrert dette nstruksjonsheftet. modell RNV70 HI-FI KOMPONENTSYSTEM Vedlkehold og spesfkasjoner Du MÅ lese bruksanvsnngen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat, vår Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat, vår 2003 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Vår 2004 Erlng Berge 2004 1 Forelesng IX Robust Regresjon Hamlton

Detaljer

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken

Bente Halvorsen, Bodil M. Larsen og Runa Nesbakken 2005/8 Rapporter Reports Bente Halvorsen, Bodl M. Larsen og Runa Nesbakken Prs- og nntektsfølsomet ulke usoldnngers etterspørsel etter elektrstet, fyrngsoler og ved Statstsk sentralbyrå Statstcs Norway

Detaljer

NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST 1

NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST 1 0 NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST av Kåre Bævre og Jon Vsle Økonomsk nsttutt, Unverstetet OSLO Revdert utgave, oktober 007 Innholdsfortegnelse. Innlednng. Om produsentene 6. Representatve

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17 Eksamen 31.05.2016 NOR1211-NOR1231 Norsk hovudmål/hovedmål NOR1218-NOR1238 Norsk elev samsk som andrespråk Elevar og prvatstar / Elev og prvatst Nynorsk sde 2 4. Bokmål sde 5 7. Felles vedlegg sde 9 17

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

Årsplan: Matematikk 4.trinn Uke Tema

Årsplan: Matematikk 4.trinn Uke Tema Årsplan: Matematkk 4.trnn Uke 33 34 35 36 37 38 39 Repetsjon Kap1. Koordnatsystemet Les av, plassere og beskrve possjoner rutenett, på kart og koordnatsystem, både med og uten verktøy. Samle, sortere,

Detaljer

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem 16. aprl 2013 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler lgke ytemer -

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

29.11.1989 Rådet for funksjonshemmede, Oslo. «Samarbeidsformer - samferdselsetat, brukere og utøvere»

29.11.1989 Rådet for funksjonshemmede, Oslo. «Samarbeidsformer - samferdselsetat, brukere og utøvere» 29.11.1989 Rådet funksjonshemmede, Oslo. «Samarbedsmer - samferdselsetat, brukere og utøvere»..\ 1/ Å f / \j.xx / "I /X FMR - 7 T T U; ' 0'\J0 =-l:p.;.r1u'jv:-. os;'.-::-- ---: -..l1. E:T

Detaljer

12 Løsningsmetoder i elastisitetsteori

12 Løsningsmetoder i elastisitetsteori 12 Løsnngsmetoder elaststetsteor Innhold: Eksakt løsnng lnærmede løsnnger Prnsppet om vrtuelt arbed 3D Prnsppet om stasjonær potensell energ 3D Raylegh-Rtz metode 2D og 3D kver kontra plater Eksakte skveløsnnger

Detaljer

Rapport 2008-031. Benchmarkingmodeller. incentiver

Rapport 2008-031. Benchmarkingmodeller. incentiver Rapport 28-3 Benchmarkngmodeller og ncentver CO-rapport nr. 28-3, Prosjekt nr. 552 ISS: 83-53, ISB 82-7645-xxx-x LM/ÅJ, 29. februar 28 Offentlg Benchmarkngmodeller og ncentver Utarbedet for orges vassdrags-

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001

Detaljer

DEN NORSKE AKTUARFORENING

DEN NORSKE AKTUARFORENING DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

ECON 2915 Høst 2009 Forelesning 8 Kapittel 1-2.5, Bævre og Vislie (2007)

ECON 2915 Høst 2009 Forelesning 8 Kapittel 1-2.5, Bævre og Vislie (2007) ECON 2915 Høst 2009 Frelesnng 8 Kapttel 1-2.5, Bævre g Vsle (2007) Freleser Fnn R. Førsund Frelesnng 8 1 Vekst med flere nærngssektrer Tre sektr analyser Prmærnærnger jrdbruk skgbruk, fske Sekundærnærnger

Detaljer

Laser Distancer LD 420. Bruksanvisning

Laser Distancer LD 420. Bruksanvisning Laser Dstancer LD 40 no Bruksanvsnng Innhold Oppsett av nstrumentet - - - - - - - - - - - - - - - - Innlednng- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Overskt - - - - - - - - - -

Detaljer

Medarbeiderundersøkelsen 2009

Medarbeiderundersøkelsen 2009 - 1 - Medarbederundersøkelsen 2009 Rapporten er utarbedet av B2S AS - 2 - Innholdsfortegnelse Forsde 1 Innholdsfortegnelse 2 Indeksoverskt 3 Multvarate analyser Regresjonsanalyse 5 Regresjonsmodell 6 Resultater

Detaljer

Bruk av tabusøk og critical event memory på set partitioning-problemet

Bruk av tabusøk og critical event memory på set partitioning-problemet Bruk av tabusøk og crtcal event memory på set parttonng-problemet Chrstan Magnus Berg Insttutt for Informatkk, Unverstetet Bergen chrsta@.ub.no Arne Løkketangen Insttutt for Informatkk, Høgskolen Molde

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Kapittel 9 ALGEBRA. Hva er algebra?

Kapittel 9 ALGEBRA. Hva er algebra? Kpttel 9 ALGEBRA Hv er lger? Kpttel 9 ALGEBRA Alger Ekelt k v s t lger er å rege me okstver steet for tll. Når v løser lgger, står okstve (vlgvs for et estemt tll. Når v ruker lger tl å utlee formler eller

Detaljer

Del A: Diskret optimering og heuristiske metoder Leksjon 8

Del A: Diskret optimering og heuristiske metoder Leksjon 8 Del A: Dskret optmerg og heurstske metoder Lekso 8 Sefsforsker Ger Hasle SINTEF Avedt matematkk, Oslo!"# Kategorserg av metaheurstkker Kostruktve heurstkker Mult-start baserte metaheurstkker Tlfeldg Restart

Detaljer

ZENITH BRUKERMANUAL. UM_NO Delenummer: 1704262_00 Dato: 25/11/2014 Oversettelser av Originale Instruksjoner

ZENITH BRUKERMANUAL. UM_NO Delenummer: 1704262_00 Dato: 25/11/2014 Oversettelser av Originale Instruksjoner BRUKERMANUAL UM_NO Delenummer: 1704262_00 Dato: 25/11/2014 Oversettelser av Orgnale Instruksjoner R INDEX GENERELT...3 Introduksjon...4 Advarsler...4 Forholdsregler...5 Tltenkt bruk...6 OVERSIKT OVER DELER...9

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll

x x A f < A Tilbakekopling - Feedback Kap. 23 Paynter Feedback brukes til : 1. Linearisering 2. Stabilisering 3. Regulering og kontroll Lndem 24. mar 2010 Tlbakekplng - Feedback Kap. 23 Paynter Feedback bruke tl : 1. Lnearerng 2. Stablerng 3. Regulerng g kntrll Tlbakekplng fnne de flete ytemer : Teknke ytemer - ekempler Blgke ytemer -

Detaljer

INF3400 Del 5 Statisk digital CMOS

INF3400 Del 5 Statisk digital CMOS INF400 Del 5 Sask dgal MOS Elmore forsnkelsesmodell modell: modell NANDN: NAND 1 9 Forsnkelsesmodell: N 1 j 1 j 1 NAND Ulegg 7 10 1 Parassk dsforsnkelse: V kaller dffusjonskapasanser for parasske kapasanser

Detaljer

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6.

ECON 2915 forelesning 3. Malthus teori. Befolkningsvekst. Solow-modellen. Malthus teori. Befolkningsvekst i. Solowmodellen. Fredag 6. forelesnng 3 Malthus teor. Befolknngsvekst ECON 2915 forelesnng 3 Malthus teor. Befolknngsvekst Solow-modellen. Fredag 6.september, 2013 forelesnng 3 Malthus teor. Befolknngsvekst Fgure 4.1: Relatonshp

Detaljer

Innholdsfortegnelse Oppsett av instrumentet Betjening Tekniske data Innstillinger Meldingskoder Vedlikehold Garanti Sikkerhetsinstrukser Funksjoner

Innholdsfortegnelse Oppsett av instrumentet Betjening Tekniske data Innstillinger Meldingskoder Vedlikehold Garanti Sikkerhetsinstrukser Funksjoner Innholdsfortegnelse Oppsett av nstrumentet - - - - - - - - - - - - - - - - - - - 2 Introduksjon - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 Overskt - - - - - - - - - - - - -

Detaljer