Oppgave 3, SØK400 våren 2002, v/d. Lund

Størrelse: px
Begynne med side:

Download "Oppgave 3, SØK400 våren 2002, v/d. Lund"

Transkript

1 Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter, men på en annerledes åker. Hvs det blr mldvær, blr avlngen 6. Hvs det blr frost, blr avlngen 4. De to bøndene lever på et solert sted ten andre mennesker, og de konsmerer bare poteter. Avlngene er nettotall, dvs. avlng t over behovet for settepoteter for den følgende peroden. Sannsynlgheten for mldvær er, og sannsynlgheten for frost er. Begge bøndene oppfatter stasjonen slk den er beskrevet her. Anta at hver bonde maksmerer forventet nytte M F +, hvor er en strengt økende og strengt konkav nyttefnksjon, og hvor M er konsmert mengde poteter for bonde hvs det er mldvær, og F er konsmet hvs det blr frost. Endret notasjon for konsmet fra X tl. a Illstrer en Edgeworth-boks hvordan det kan tenkes at bøndene har nytte av å nngå en avtale om delvs bytte av avlng. D kan anta at avtalen vl bl nngått før været blr kjent, og at den oppfattes som bndende for begge parter. Svar: Vl først forklare hva en Edgeworth-boks er for dette tlfellet. Må starte med ndfferenskrver for en av bøndene. Det som følger, er hentet fra et forelesnngsnotat, og kanskje kke formlert akkrat som en eksamensbesvarelse.

2 Indfferenskrver for tlfellet S Margnal sbsttsjonsbrøk er b b a a Langs skkerhetslnja 45-graders-lnja, der a b, blr MSB lk b a b b a a

3 Edgeworth bytteboks for to tlstander Lengden på horsontal sde: Samlet tlgjengelg konsm neste perode tlstand Lengden på vertkal sde: Samlet tlgjengelg konsm neste perode tlstand Krav på dsse er de to varene som nngår de to ndvdenes forventede nytte Bytteboksen fortsetter at de to ndvdene tgangspnktet eer slke krav på tlsammen alt tlgjengelg konsm, altså et pnkt dagrammet Tangerngspnktene gr Pareto-optmale allokernger Hvs tgangspnktet kke er Pareto-optmalt: Mlg å foreta bytte av krav som er fordelaktg for begge Hvs boksen er kvadratsk: All skkerhet kan nngås Hvs kke kvadratsk: Mnst en må bære rsko Speselt fgren: Samme -fnksjon for begge 3

4 b Vs Edgeworth-boksen hvlke allokernger som er Pareto-optmale. Brk ttrykkene for forventet nytte tl å tlede førsteordensbetngelsen for Pareto-optmale allokernger. Svar: Førsteordensbetngelsen er lkhet mellom margnale sbsttsjonsbrøker for bøndene, der v kan elmnere sannsynlghetene, sden oppfatnngene er lke M F M F 6 6 M F I den sste brøken har v satt nn for samlet, tlgjengelg konsm mns den delen som går tl bonde svar sltt Anta resten av oppgaven at for hver bonde har fnksjonen følgende form e, hvor k er en postv konstant, som kan være den samme for begge bønder eller ha to lke verder. c Forklar betydnngen av konstanten k denne nyttefnksjonen. Svar: Regn t den førstederverte og den andrederverte, og vs at k er lk absoltt rskoaversjon svar sltt d Brk resltatet nder pnkt b tl å fnne et eksplstt ttrykk for hvlke allokernger som er Pareto-optmale. Hnt: Sett nn de eksplstte fnksjonsformene for 4

5 og betngelsen nder pnkt b og foreta en logartmsk transformasjon. Vs resltatet Edgeworth-boksen, først for tlfelle der k k, og så for tlfellet der k 4k. Svar: Lkhet mellom margnale sbsttsjonsbrøker for dsse nyttefnksjonene kan skrves ke k e M F k k e e 6 6 M M F 6 M 6 + F F M F 0 + k k som er rette lnjer bytteboksen, med helnng 45 grader, se fgren, der krysset markerer atark-pnktet. I fgren er samlet konsm ved mldvær lk 6, samlet ved frost lk 6, og kontraktskrven er en rett lnje fra pnktet 5,0 tl pnktet,6 der tallene er allokernger for bonde. Denne krven gjelder for 0 k k, altså F M M 5. Om v øker k / k tl 4, får v nye ndfferenskrver hvert fall for en av bøndene, og kontraktskrven skfter mot nordvest 0 dagrammet tl F M M svar sltt. 5 5

6 Fgr: Edgeworth-boks for de to bøndene. e Vs at den opprnnelge allokerngen er Pareto-optmal hvs k k 4. Under hvlke betngelser vl bonde avg avlng mldvær mot å få avlng ved frost, og nder hvlke betngelser vl det være omvendt? Om v holder k fast, drøft vrknngen Edgeworth-boksen av at k 0, og g en nttv forklarng på dette. Svar: Kontraktskrven for k k 4 blr F M 8, som går gjennom pnktet 0,, den opprnnelge allokerngen. Hvs k < k 4, vl den lgge lenger mot sørøst. Enhver Pareto-forbedrng vl da nnebære at bonde avgr avlng ved frost for å få mer ved mldvær. Hvs k > k 4, er det omvendt. Hold k fast, la k 0, da vl krven gå gjennom nordøstre hjørne, bonde er rskonøytral, og bonde bærer kke rsko svar sltt. 6

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

DEN NORSKE AKTUARFORENING

DEN NORSKE AKTUARFORENING DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

1653B/1654B. Installasjonstest på et IT anlegg i drift

1653B/1654B. Installasjonstest på et IT anlegg i drift 65B/654B Installasjonstest på et IT anlegg drft Utførng av testene Spennngsmålnger Testeren kan brkes som et ac voltmeter hvor spennng og frekvens kan vses samtdg ved å sette rotasjonsbryteren tl V. Alle

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:

STK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen: STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf

Detaljer

Videreutvikling i retn. velferdsteori: Komplette markeder, S tilstander, homogene oppfatninger

Videreutvikling i retn. velferdsteori: Komplette markeder, S tilstander, homogene oppfatninger Sfunnsøkono ndre vdelng, kroøkono, Dderk Lund, 9.rs 22 Vdereutvklng retn. velferdsteor: Koplette rkeder, S tlstnder, hoogene oppftnnger Spesltlfelle v odellen kp. 2: S tlstnder og S forskjellge verdpprer

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch.

NOEN SANNSYNLIGHETER I BRIDGE Av Hans-Wilhelm Mørch. NOEN SANNSYNLIGHETER I BRIGE A Hans-Wlhelm Mørch. SANNSYNLIGHETER FOR HVORAN TRUMFEN(ELLER ANRE SORTER) ER FORELT Anta at du mangler n kort trumffargen. Ha er sannsynlgheten for at est har a a dem? La

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

Viser til min søknad om konsesjon i brev av og senere møte med Petter Bjartnes samt senere samtaler pr. tlf. vedr. denne saken.

Viser til min søknad om konsesjon i brev av og senere møte med Petter Bjartnes samt senere samtaler pr. tlf. vedr. denne saken. Fra: Odd Wandsvk [malto:oddwand@onlne.no] Sendt: 7. aprl 017 0:07 Tl: Hovn Marann Kop: aslaugwandsvk@gal.com Emne: Re: Ang. konsesjon He Marann! Vser tl mn søknad om

Detaljer

Trykkløse rørsystemer

Trykkløse rørsystemer Trykkløse rørsystemer har kabel- og avløpsrørsystemer PVC, PP og PE med komplette delespektre. PE benyttes trykkrør som utslppslednnger, som lednng dårlge masser (myr) og ved høy overdeknng og/eller høy

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

SNF RAPPORT NR. 33/02. Næringspolitikk på like vilkår? Noen prinsipielle betraktninger. av Nils-Henrik M. von der Fehr

SNF RAPPORT NR. 33/02. Næringspolitikk på like vilkår? Noen prinsipielle betraktninger. av Nils-Henrik M. von der Fehr SNF RAPPORT NR. 33/02 Nærngspoltkk på lke vlkår? Noen prnspelle betraktnnger av Nls-Henrk M. von der Fehr SNF prosjekt nr. 1070 Internasjonalserng og økonomsk poltkk Prosjektet er fnansert av Norges forsknngsråd,,

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

FOLKETELLINGEN 1. NOVEMBER 1960. Tellingsresultater Tilbakegående tall - Prognoser SARPSBORG 0102 STATISTISK SENTRALBYRÅ - OSLO

FOLKETELLINGEN 1. NOVEMBER 1960. Tellingsresultater Tilbakegående tall - Prognoser SARPSBORG 0102 STATISTISK SENTRALBYRÅ - OSLO FOLETELLINGEN. NOVEBER 0 Tellngsresultater Tlbakegående tall - Prognoser SARPSBORG 00 STATISTIS SENTRALBYRÅ - OSLO ERNADER TIL ART OG TABELLER I seren "Tellngsresultater - Tlbakegående tall - Prognoser"

Detaljer

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA

' FARA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA INNKALLING TIL ORDINÆR GENERALFORSAMLING (FARA ASA Det nnkalles herved tl ordnær generalforsamlng FARA ASA den 24. aprl 2014, kl. 16.30 selskapets lokaler O.H. Bangs ve 70, 1363 Høvk. DAGSORDEN Generalforsamlngen

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

Atferdsbasert risikoklassifisering

Atferdsbasert risikoklassifisering Masteroppgave Samfunnsøkonom Atferdsbasert rskoklassfserng endogen kategorserng forskrngsmarkedet Smen A. Enarson Ma 2006 Økonomsk Insttutt Unverstetet Oslo Forord Jeg ønsker å takke mn veleder, professor

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer

Positive rekker. Forelest: 3. Sept, 2004

Positive rekker. Forelest: 3. Sept, 2004 Postve rekker Forelest: 3. Sept, 004 V skal tde utover fokusere på å teste om e rekke kovergerer, og skyve formler for summerg bakgrue. Dette er gje ford det første målet vårt er å lære hvorda v ka fe

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST 1

NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST 1 0 NÆRINGSSTRUKTUR, INTERNASJONAL HANDEL OG VEKST av Kåre Bævre og Jon Vsle Økonomsk nsttutt, Unverstetet OSLO Revdert utgave, oktober 007 Innholdsfortegnelse. Innlednng. Om produsentene 6. Representatve

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Undersøkelser av solingsvaner

Undersøkelser av solingsvaner Undsøkels solngsvan Innlednng MMI har p oppdrag fra Statens strlevn Kreftforgen gjomført en større spørreundsøkelse for kartlegge n norske befolknngens forhold tl solng solbeskyttelse. De undsøkelsen supplt

Detaljer

Rapport 2008-031. Benchmarkingmodeller. incentiver

Rapport 2008-031. Benchmarkingmodeller. incentiver Rapport 28-3 Benchmarkngmodeller og ncentver CO-rapport nr. 28-3, Prosjekt nr. 552 ISS: 83-53, ISB 82-7645-xxx-x LM/ÅJ, 29. februar 28 Offentlg Benchmarkngmodeller og ncentver Utarbedet for orges vassdrags-

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

FAUSKE KOMMUNE INNSTILLING: Sammendrag: TIL KOMMNE. II Sak nr.: 097/12 I DRIFTSUTVALG REFERATSAKER I PERIODEN SAKSPAPIR. orientering.

FAUSKE KOMMUNE INNSTILLING: Sammendrag: TIL KOMMNE. II Sak nr.: 097/12 I DRIFTSUTVALG REFERATSAKER I PERIODEN SAKSPAPIR. orientering. ' SAKSPAPIR FAUSKE KOMMUNE JouralpostID: 12/8728 I Arkv sakld.: 12/2060 Sluttbehandlede vedtaksnstans: Drftsutvalget II Sak nr.: 097/12 I DRIFTSUTVALG I I Saksansvarlg: Bert Vestvann Johnsen Dato: 17.10.2012

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport Onlne Rapport Introduksjon Onlne Rapport www.olr.ccl.com Dn trnn for trnn-gude tl den nye Onlne Rapporten (OLR) Vktg nfo tl alle mengheter og organsasjoner Ingen flere program som skal lastes ned Fortløpende

Detaljer

Analyse av strukturerte spareprodukt

Analyse av strukturerte spareprodukt NORGES HANDELSHØYSKOLE Bergen, Høst 2007 Analyse av strukturerte spareprodukt Et Knderegg for banknærngen? av Ger Magne Bøe Veleder: Professor Petter Bjerksund Utrednng fordypnngs-/spesalområdet: Fnansell

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Litt om empirisk Markedsavgrensning i form av sjokkanalyse

Litt om empirisk Markedsavgrensning i form av sjokkanalyse Ltt om emprsk Markedsavgrensnng form av sjokkanalyse Frode Steen Konkurransetlsynet, 27 ma 2011 KT - 27.05.2011 1 Sjokkanalyse som markedsavgrensnngsredskap Tradsjonell korrelasjonsanalyse av prser utnytter

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

INNVANDRERNE I ARBEIDSMARKEDET

INNVANDRERNE I ARBEIDSMARKEDET C v t a - n o t a t nr.7 / 2008 INNVANDRERNE I ARBEIDSMARKEDET Artkkel FNs ntnasjonale konvensjon om økonomske, sosale og kulturelle rettghet fastslår retten for enhv tl å ha en tlfredsstllende levestandard

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

BYENS HÅNDVERK OG INDUSTRI I 1800-ÅRENE

BYENS HÅNDVERK OG INDUSTRI I 1800-ÅRENE BYENS HÅNDVERK OG NDUSTR 1800-ÅRENE August Schou: Håndverk og ndustr Oslo 1838 1938. Utgtt av Oslo Hånd verk- og ndustrforenng. Detkjempestoff er sannelgången behandle ltenogopgave så å fåforfatteren det

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3))

Seminaroppgaver for uke 13 (Oppgave (1), (2), og (3)) 1 ECON 2130 2017 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 (Oppgave (1), (2), og (3)) (1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver)

Detaljer

STILLA MARIDALEN SPIKERVERKET BJØLSEN VALSEMØLLE ELVA VÅR IDUN GJÆRFABRIKK

STILLA MARIDALEN SPIKERVERKET BJØLSEN VALSEMØLLE ELVA VÅR IDUN GJÆRFABRIKK O S LO - P R Ø V E N 2003 N AT U R - O G M I L J Ø FA G STILLA MARIDALEN ELVA VÅR NAVN: SPIKERVERKET BJØLSEN VALSEMØLLE IDUN GJÆRFABRIKK KLASSE: MARIDALEN ELVA Informasjon STILLA SPIKERVERKET IDUN GJÆRFABRIKK

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

Seminaroppgaver for uke 13

Seminaroppgaver for uke 13 1 ECON 2130 2016 vår Semarpla fra og med uke 13 Semaroppgaver for uke 13 1) Fra eksame Eco 2130, 2004 høst: Oppgave 3: (Fel oppgave på ststuttets overskt over gamle eksamesoppgaver) La X og Y være to uavhegge

Detaljer

Randi Eggen, SVV Torunn Moltumyr, SVV Terje Giæver. Notat_fartspåvirkn_landeveg_SINTEFrapp.doc PROSJEKTNR. DATO SAKSBEARBEIDER/FORFATTER ANTALL SIDER

Randi Eggen, SVV Torunn Moltumyr, SVV Terje Giæver. Notat_fartspåvirkn_landeveg_SINTEFrapp.doc PROSJEKTNR. DATO SAKSBEARBEIDER/FORFATTER ANTALL SIDER NOTAT GJELDER SINTEF Teknolog og samfunn Transportskkerhet og -nformatkk Postadresse: 7465 Trondhem Besøksadresse: Klæbuveen 153 Telefon: 73 59 46 60 Telefaks: 73 59 46 56 Foretaksregsteret: NO 948 007

Detaljer

I~o: - 28.02.05. l.a:.r:tall oppgaver: - ,10. -- - i From: O - Skrtve- og tegnesaker. Kalkulator uten tekstminne

I~o: - 28.02.05. l.a:.r:tall oppgaver: - ,10. -- - i From: O - Skrtve- og tegnesaker. Kalkulator uten tekstminne Byggskader G høgsklen sl Emne: Emnekde: Faglge veledere: ru:pe{r): jeksaensppgaven f1:n" sder (nkl g rehablterng LV 207 B Hans J Berge bestar av: frsden): 4 Tllatte hjelpemdler: : 280205 la:r:tall ppgaver:,10

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

En teoretisk studie av tv-markedets effisiens

En teoretisk studie av tv-markedets effisiens NORGES HANDELSHØYSKOLE Bergen, våren 007 Utrednng fordypnng: Økonomsk analyse Veleder: Hans Jarle Knd En teoretsk stude av tv-markedets effsens av Odd Hennng Aure og Harald Nygård Bergh Denne utrednngen

Detaljer

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1

5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1 5 eegelsesmengde Fyskk for ngenører 5 eegelsesmengde og massesenter Sde 5 - Httl har forutsatt at åre legemer kan oppfattes som partkler Stort sett har behandlet dsse partklene som solerte legemer som

Detaljer

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ kó=ñê~w MSKOMNO pfabufp=ud aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ 0123 Dette produktet bærer CE-merket overensstemmelse med bestemmelsene drektvet 93/42EEC av 14 jun 1993

Detaljer

\ ;' STIKKORD: FILTER~ VEIEFEIL YRKESHYGIENISK INSTITUTT REGISTRERI~G AV FEILKILDER AVDELING: TEKNISK AVDELING RØNNAUG BRUUN HD 839/80820

\ ;' STIKKORD: FILTER~ VEIEFEIL YRKESHYGIENISK INSTITUTT REGISTRERI~G AV FEILKILDER AVDELING: TEKNISK AVDELING RØNNAUG BRUUN HD 839/80820 "t j \ ;' REGISTRERIG AV FEILKILDER VED VEI ING AV Fl LTRE RØNNAUG BRUUN Lv flidthjell HD 839/80820 AVDELING: TEKNISK AVDELING ANSVARSHAVENDE: O. ING. BJARNE KARTH JOHNSEN STIKKORD: FILTER VEIEFEIL YRKESHYGIENISK

Detaljer

Etterspørsel etter helsegoder

Etterspørsel etter helsegoder Master thess for the Master of Economc Theory and Econometrcs degree Etterspørsel etter helsegoder - en ltteraturoverskt og metaregresjonsanalyse Ida Rngdal Ma 2007 Department of Economcs Unversty of Oslo

Detaljer

_ Slektsnavn, for- og mellomnavn 21 DES2015. Eierandel 1/2

_ Slektsnavn, for- og mellomnavn 21 DES2015. Eierandel 1/2 Statens landbruksforvaltnng Norwegan Agrcultural Authorty Les rettlednngen (2--15--c6(( ( om konsesjonsfrhet I8 7 Egenerklærng ved erverv av fast eendom mv. Fastsatt medhold av forskrft 8. desember 2003

Detaljer

Ambulanseflystruktur og operativ/teknisk kravspesifikasjon. Høringsuttalelser (ajour 26.01.2007) Kommentarer beredskap

Ambulanseflystruktur og operativ/teknisk kravspesifikasjon. Høringsuttalelser (ajour 26.01.2007) Kommentarer beredskap Ambulanseflystruktur og operatv/teknsk kravspesfkasjon. Hørngsuttalelser (ajour 26.01.2007) Hørngsnstans Kommentar basestruktur Kommentarer beredskap Kommentarer tlbudsdok/ kravspek Andre kommentarer RHF:

Detaljer

Asker og Bærum tingrett Postboks 578 1302 SANDVIKA Oslo, 24. oktober 201 1 Ansvarlig advokat: Lage Sverdnip-Thygcson Vår ref.

Asker og Bærum tingrett Postboks 578 1302 SANDVIKA Oslo, 24. oktober 201 1 Ansvarlig advokat: Lage Sverdnip-Thygcson Vår ref. 27 Okt 2011 19:52 Arctc nternet 22171941 Sde: 1 Torkldsen, Tennae & co. Advokatfrma AS Asker og Bærum tngrett Postboks 578 1302 SANDVKA Oslo, 24. oktober 201 1 Ansvarlg advokat: Lage Sverdnp-Thygcson Vår

Detaljer

Referanseveiledning. Oppsett og priming

Referanseveiledning. Oppsett og priming Referansevelednng Oppsett og prmng Samle følgende utstyr før Oppsett: Én 500 ml eller 1000 ml pose/flaske med prmngløsnng (0,9 % NaCl med 1 U/ml heparn tlsatt) Én 500 ml eller 1000 ml pose med normalt

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001

Detaljer