UNIVERSITETET I OSLO

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I OSLO"

Transkript

1 Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg : Ingen Tllatte hjelpemdler: Ingen Det er 7 oppgaver dette oppgavesettet. Les gjennom hele oppgavesettet før du begynner å løse oppgavene. Kontroller at oppgavesettet er komplett før du begynner å besvare det. Dersom du savner opplysnnger en oppgave kan du selv legge dne egne forutsetnnger tl grunn og gjøre rmelge antagelser så lenge de kke bryter med oppgavens "ånd". Gjør såfall rede for forutsetnngene og antagelsene du gjør. Det er tlsammen delspørsmål og det lønner seg å dsponere tden slk at man får besvart alle oppgavene. Hvs du står fast på enkeltoppgaver gå vdere slk at du får gtt et kort svar på alle oppgaver. Alle svar skal begrunnes. Gjør rede for bruken av eventuelle teoremer prnspper eller forutsetnnger slk at en tredjeperson kan følge dne resonnementer.

2 Mdtveseksamen INF3 trsdag 9. mars 3. Samplng og kvantserng a Anta at et avbldnngssystem gr en punktsprednngsfunksjon der avstanden fra maksmum tl første mnmum er /3 μm bldeplanet. V skal altså kunne sklle punktklder som lgger /3 μm fra hverandre det analoge bldet. Hva er den mnste samplngsraten (frekvensen v kan benytte ved dgtalserngen av dette bldet følge samplngsteoremet og hvor store kan detektorene være? Vær press med benevnngene! Svar: Samplngsteoremet krever T s < ½ T der T her er /3 μm. Følgelg må samplngsfrekvensen være f s > */T 6 μm -. Med en samplngsfrekvens på 6 detektorer per μm kan hver detektor maksmalt være /6 μm 67 μm hvs de lgger kant kant. b Hva mener v med begrepene alasng alasng-frekvens og ant-alasng? Svar: Romlg alasng er en frekvensforvrengnng som oppstår når man sampler med en lavere samplngsrate enn Nyqust-raten dvs ganger den høyeste romlge frekvensen som fnnes et bånd-begrenset blde. En alasng-frekvens er en frekvens fa som oppstår eller styrkes det samplede bldet p.g.a. alasng og er gtt ved fa fs f når f < fs < f der fs er samplngsfrekvensen og f er den sanne romlge frekvensen. Ant-alasng er teknkker for å dempe eller fjerne alasng for eksempel ved å fltrere bort høye frekvenser før samplng. c Istedenfor bts som kan lagre to verder ( og kan v ta bruk trts som kan lagre tre verder (- og. På samme måte kan v bruke en tryte 6 trts stedenfor byte 8 bts. Hvs v utgangspunktet har en tryte per pksel et blde og så halverer antall trts per pksel hvor mange kvantserngsnvåer vl v da mste? Svar: Med T trts har v 3 T kvantserngsnvåer. Etter halverngen av antall trts per pksel har v 3 (T/. Altså har v 3 T - 3 (T/ færre nvåer. For T 6 vl dette s at v mster nvåer.

3 Mdtveseksamen INF3 trsdag 9. mars 3. Kvantserng og hstogram Anta at du har et 4-bts gråtoneblde med normalsert hstogram som skssert tl høyre. Bldet nneholder en bakgrunn med to gråtoner og tre typer objekter. a V ønsker å rekvantsere bldet tl bts per pksel det vl s tl et blde med 4 verder fra tl 3. Sksser den gråtonetransformen T( dette svarer tl og vs hvordan det normalserte hstogrammet tl utbldet vlle bltt. Svar: b Anta at orgnalbldet er 4*4 pksler og at v kke benytter kompresjon. Hvor stor lagerplass tar da dette bldet uttrykt MB? Svar: Veldg enkelt: 4/8 / byte per pksel gr ½ MB. c Anta at du skal rekonstruere det rekvantserte bldet tl et 8 bts gråtoneblde. Hvlke verder vlle du brukt som rekonstruksjonsverder for at bldets normalserte hstogram skal fylle gråtoneskalaen på omtrent samme måte som orgnal-bldet? Svar: Det er en faktor 6 mellom gråtoneskalaen orgnalbldet og gråtoneskalaen det rekvantserte bldet. Bruker v 5*64 som rekonstruksjonsnvå for ; 6*696 for ; 95*65 for og 4*6 4 for 3 så får v hstogrammet nedenfor. 3

4 Mdtveseksamen INF3 trsdag 9. mars 3 3. Interpolasjon og fltrerng a Gtt pkselverdene fre nabopksler er f( f(3 f(3 f(9. V gjør blneær nterpolasjon for å fnne en nterpolert pkselverd punktet (xy (.5.5. Hvlken pkselverd får v? Vs hvordan du går fram. Svar: Ved nterpolasjon fnner man f( som rundes av tl. Dette kan fnnes på mnst to måter begge hentet fra en forelesnngsfol: Interpoler først x-retnng. Interpoler deretter y-retnng. Altså: f ( x y ( y f ( x + y f ( x der f ( x ( x f ( + x f ( og f ( x ( x f ( + x f ( f ( x y ( x( y f ( + x( y f ( + ( x y f ( + x y f ( Eller matrsenotasjon: f ( x y f ( f ( f ( ( y f ( y [( x x] b En gtt baklengs geometrsk transform forskyver bldet ½ pksel horsontal og vertkal retnng og blneær nterpolasjon benyttes tl å fnne nye pkselverder. Deretter forskyves bldet tlbake og gjen benyttes blneær nterpolasjon. Hvlket konvolusjons-flter anvendt på det opprnnelge bldet gr samme resultat som denne fram-og-tlbake transformen med to blneære nterpolasjoner? Forklar! (Du kan se bort fra problemer nær kanten av bldet. Svar: Blneær nterpolasjon tl mdtpunktet mellom fre pksler gr mddelverden av de fre pkselverdene. Altså lavpassflteret 4 Ved tlbake-forskyvnngen skjer det samme en gang tl og v får 3x3-flteret c Anta at forskyvnngen fram og tlbake er gtt ved x y N + k der N er et heltall og ½ < k. Vl resultatbldet da bl skarpere eller mer uskarpt enn resultatet av de to forskyvnngene deloppgave b? Forklar! Svar: Man kan kanskje tro at større forskyvnng gr mer uskarpt blde men mest uskarpt resultat får v når k / som gr en lavpassfltrerng med det flteret som er løsnng på deloppgave b. N påvrker kke resultatet bortsett fra de problemene som oppstår nær kanten av bldet. For ½ < k vl v komme nærmere det motstående pkslet et x utsntt av bldet og dette motstående pkslet får større vekt dess nærmere k kommer tl som vst fguren tl høyre og bldet blr lke skarpt som orgnalen. Fltervekter gtt for sentrum av 3x3 fltret (S sum av langsdene (L og sum av hjørnene (H. 4

5 Mdtveseksamen INF3 trsdag 9. mars 3 4. Gråtonetransformer I fguren tl høyre er det gtt tre forskjellge gråtonetransformer A B og C. Horsontal og vertkal akse fguren er hhv gråtone nnbldet ( og gråtone utbldet (s. V regner her med 5 bts gråtoneblder. Lgnngene for de tre transformene er vlkårlg rekkefølge: L : L : L 3 : s k log( + ; γ s a ; a ( s b k b ( 3 / b γ 4 b b ( [ + tanh( d( T ] / ; d T ( / der b er antall bts og tanh(x er en ant-symmetrsk sgmod-funksjon som er lk for x og som går mot - for negatve x og + for postve x. a Hvlken effekt har transformene A B og C på et gtt nnblde? Forklar resonnementene! Svar: A vl mnske kontrasten de mørke delene av et blde og øke kontrasten de lyse delene av bldet. Utbldet blr mørkere enn nnbldet. B vl mnske kontrasten både de lyse og de mørke delene av bldet og øke kontrasten omkrng mdten av gråtoneskalaen. Lysheten endres kke for nnblder der alle gråtonene forekommer lke ofte eller mer generelt der nnbldets hstogram er symmetrsk om T. Generelt vl utbldet kunne være enten lysere eller mørkere enn nnbldet avhengg av hvordan gråtonene nnbldet er. C vl øke kontrasten de mørke delene av bldet og mnske den de lyse delene. Utbldet blr lysere enn nnbldet. b Hvlken lgnng svarer tl hvlken av transformene A B og C? Forklar resonnementene! Svar: C er en logartmsk gråtonetransform gtt ved lgnng L-. I argumentet har v (+ for at v skal unngå problemer med logartmen av. Dermed får v s[] mens faktoren k skrer at s[ 5 ] 5. A er en eksponensell gråtonetransform gtt ved lgnng L- med γ4. Skalerngsfaktoren a skal bare sørge for at s[ 5 ] 5. B er lgnng L-3. [+tanh(x] skrer at resultatet lgger mellom og. Her er argumentet flyttet tl mdt på gråtoneskalaen med parameteren T og skalert med parameteren d. Tl slutt er s skalert slk at s[ 5 ] 5 - c Hva blr effekten av å endre på parametrene γ T og d? Forklar resonnementene! Svar: γ > 4 vlle gtt enda høyere kontrast de lyse delene av bldet og enda lavere kontrast de mørke delene av bldet. Lavere γ vl g mndre kontrastforsterknng de lyse delene av bldet ned tl γ som er en denttetsmappng. γ < gr motsatt effekt; økt kontrast mørke deler av bldet og mnsket kontrast lyse deler av bldet. T bestemmer hvor på gråtoneskalaen v vl sentrere kontrastforsterknngen og d bestemmer hvor bratt sgmos-kurven skal være; høy d gr et lte ntervall lav d gr et bredt ntervall. 4 5

6 Mdtveseksamen INF3 trsdag 9. mars 3 5. Hstogramtransformer Anta at v har følgende 4x5 gråtoneblde med en 3 bts gråtoneskala a Fnn det normalserte hstogrammet og det normalserte kumulatve hstogrammet. [3//3//3//3//]; [3/5/8//3/5/8/] b Vs hvordan du går fram for å utføre en hstogramutjevnng av dette bldet tl et utblde med bare 4 gråtoner fra gråtone tl gråtone 3. Vs også resultatbldet. Sett nn verder transform-arrayet T[] Round((L-*c[]+k med L4 og k for G- der G8. p( c( T( (Tabellen er en del av løsnngsforslaget Gå deretter gjennom bldet pksel for pksel og sett g(xy T[(xy]. Resultatet blr da (Tabellen er en del av løsnngsforslaget 6

7 Mdtveseksamen INF3 trsdag 9. mars 3 c Beskrv en alternatv metode som gr et resultatblde med flatt hstogram for akkurat dette nnbldet. Begrunn valget av metode. Vs resultatblde og hstogram og sammenlgn med resultatet av hstogramutjevnngen. Det speselle med dette nnbldet er at det har et tlnærmet flatt hstogram. Dessuten har v bedt om en reduksjon fra 8 tl 4 gråtoner. V kan altså ganske enkelt redusere antall bts fra 3 tl hver gråtone. V får da følgende LUT LUT Og resultatblde med hstogrammer: Som faktsk er ltt bedre enn resultatet av hstogramutjevnngen: 7

8 Mdtveseksamen INF3 trsdag 9. mars 3 6. Kantdeteksjon med LoG-fltrerng Merk: Deloppgave a og b ber deg beregne konvolusjoner og majorteten av poengene som gs tl dsse deloppgavene lgger å utføre dsse korrekt. I denne oppgaven skal du fnne kantskller følgende én-dmensjonale blder: f f Det er to kantskller for f og ett kantsklle for f. Alle tre kantskllene lgger mdt mellom to pksler og er markert med ekstra fet cellekant bldene over. Tl å fnne kantskllene skal du bruke følgende én-dmensjonale Laplacan-of- Gaussan-fltre (LoG-fltre også kalt LoG-operatorer: h h h Alle fltre er sentrert d.v.s. at flterets senterpksel er orgo. Når v denne oppgaven ber deg beregne en konvolusjon så trenger du bare å beregne responsen for pkslene der bldet og flteret overlapper alle possjoner d.v.s. de pkselene der hele flteret lgger nnenfor bldet når flterets orgo er plassert pkselet man ønsker å beregne responsen for. Når v denne oppgaven snakker om en nullgjennomgang resultatet av en LoG-fltrerng så mener v punktet mdt mellom to nabo-pksler som har motsatt fortegn resultatet av LoG-fltrerngen og der begge LoG-responsene er ulk. 8

9 Mdtveseksamen INF3 trsdag 9. mars 3 a Beregn konvolusjonen av f og hvert av fltrene h h og h 3 d.v.s. f *h f *h og f *h 3 og ang nullgjennomgangene hvert resultat av de tre fltrerngene. Sden bldet består av bare -ere utenom én possjon der det er så vl konvolusjonen av bldet og et flter være flteret selv. V får dermed at: f *h f *h f *h når v begrenser størrelsen av responsen tl possjonene med full overlapp. Nullgjennomgangene hvert fltrerngsresultat er markert med ekstra fet cellekant. b Beregn konvolusjonen av f og hvert av fltrene h og h d.v.s. f *h og f *h og ang nullgjennomgangene hvert resultat av de to fltrerngene. f *h Ingen nullgjennomgang dette fltrerngsresultatet (bare ett nullplatå. f *h Nullgjennomgangen dette fltrerngsresultatet er markert med ekstra fet cellekant. c Drøft hvordan standardavvket tl Gauss-funksjonen et LoG-flter som gr bredden av LoG-kjernen og antyder størrelsen av LoG-flteret generelt sett bør velges for at nullgjennomgangene resultatet av LoG-fltrerngen skal g alle og korrekte kantskller for strukturer og ramper. Bruk gjerne fltrerngene fra deloppgave a og b som eksempler men kke begrens drøftngen tl bare dsse eksemplene. Upresst sagt gr nullgjennomgangene korrekte kantskller dersom LoG-kjernen er smalere enn strukturen. Mer presst: - Dersom en struktur er mndre enn halvparten av LoG-kjernen er v garantert at nullgjennomgangene er lenger ute enn de korrekte kantskllene. Dette skjedde da v konvolverte f med h 3. - Dersom en struktur er større enn halvparten av LoG-flteret er v garantert at nullgjennomgangene gr de korrekte kantskllene. - Dersom en struktur er større enn halvparten av LoG-kjernen men mndre enn halvparten av flteret så vl det avhenge av dskretserngen og tlnærmngen av LoG-flteret om nullgjennomgangene gr korrekte kantskller. Konvolusjonene f *h og f *h faller begge nnenfor dette tlfellet. Etter akkurat dsse to konvolusjonene endte v opp med korrekte kantskller. For at LoG-fltrerngen skal nneholde en nullgjennomgang for ramper så må LoGflteret være større enn rampen. Sden h er én pksel mndre enn rampen f så nneholdt kke f *h noen nullgjennomgang men sden h er én pksel større enn rampen f så nneholdt f *h en nullgjennomgang (og denne blr lokalsert korrekt. Standardavvket tl Gauss-funksjonen et LoG-flter må altså velges lte nok for å g korrekte kantskller for smale strukturer og samtdg stort nok for å g nullgjennomgang (og dermed et kantsklle for brede ramper. 9

10 Mdtveseksamen INF3 trsdag 9. mars 3 7. Fltrerng for deteksjon av horsontale kanter a Anta v ønsker å fremheve horsontale kanter et blde ved å bruke et konvolusjonsflter som tlnærmer den derverte vertkal retnng d.v.s. tlnærmer den partell-derverte med hensyn på varabelen tl den vertkale aksen x. Oppg et slk konvolusjonsflter og forklar hvordan det tlnærmer den derverte vertkal retnng når det konvolveres med et blde. Du kan oppg et vlkårlg konvolusjonsflter som tlnærmer den derverte vertkal retnng f.eks.: - Fra asymmetrsk D-operator: h x eller h x - Fra symmetrsk D-operator: h x eller h x - Fra Prewtt-operatoren: h x - Fra Sobel-operatoren: h x - Fra Fre-Chen-operatoren: h x Forklarng: Den derverte vertkal retnng er gtt som: Konvolusjonsflteret tlnærmer dette ved å beregne dfferansen vertkal retnng av nærlggende pksler noe som tlsvarer å sette h lknngen over. h y x f y h x f y x x f h ( ( lm ( +

11 Mdtveseksamen INF3 trsdag 9. mars 3 b Beregn en mer støyrobust versjon av konvolusjonsflteret du oppga deloppgave a. Konvolusjonsflter fra deloppgave a skal nngå beregnngen og det mer støyrobuste flteret skal også være et konvolusjonsflter. Her skal du konvolvere flteret du oppgav deloppgave a med et lavpassflter. Hvs du oppga flteret fra den symmetrske D-operatoren deloppgave a kan du nå konvolvere det med f.eks. en x3-tlnærmng av et Gauss-flter: h ( j [ ] c Hvordan har v lært at et Laplace-flter også kalt en Laplace-operator kan gjøres mer støyrobust? Hva kaller v det resulterende konvolusjonsflteret? Et Laplace-flter kan gjøres mer støyrobust ved å konvolvere flteret med et Gauss-flter. Det resulterende konvolusjonsflteret kalles et Laplacan-of- Gaussan-flter (LoG-flter og en LoG-operator. Takk for oppmerksomheten!

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjon. INF2310 Digital bildebehandling FORELESNING 8

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjon. INF2310 Digital bildebehandling FORELESNING 8 Fltrerng bldedomenet INF3 Dgtal bldebeandlng FORELESNING 8 REPETISJON: FILTRERING I BILDEDOMENET Andreas Kleppe Fltrerng og konvoluson Lavpassfltrerng og kant-bevarng Høpassfltrerng: Bldeforbedrng og kantdetekson

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Dgtal bldebehandlng FORELESNING 4 GRÅTONE-TRANSFORMASJONER Frtz Albregtsen 1 Temaer dag Hstogrammer Lneære gråtonetransformer t Standardserng av blder med lneær transform Ikke-lneære, parametrske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling Lokale operasjoner INF 3 Dtal bldebehandln Naboskaps-operasjoner - I Lneær fltrern Konvolusjon Korrelasjon Gradent-operatorer Efford kap. 7.-7.. V skal bare se på teknkker blde-domenet Blde-domenet refererer

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF3 Dgtal bldebeandlng Forelesnng 7 Fltrerng bldedomenet II Andreas Kleppe Høpassfltrerng: Bldeforbedrng og kantdeteksjon Gradent-operatorer Laplace-operatoren og LoG-operatoren Canns kantdetektor G&W:

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Bruksområder - ltrerng INF 30 Dgtal bldebeandlng Fltrerng blde-domenet - Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende ltre Ikke-lneære ltre GW Kap 3.4-3.5 + Kap 5.3 Av de mest brukte

Detaljer

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist) IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II ma : Avbldnng Samplng og kvantserng Geometrske operasoner 3 Gråtone- og hstogramoperasoner 45 ltrerng blde-doménet 67 ltrerng rekvens-doménet 89 Kompreson

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4

Detaljer

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Gradient-operatorer. 1D Laplace-operator. Laplace-operatoren. INF 2310 Digital bildebehandling. Laplace-operatoren er gitt ved:

Gradient-operatorer. 1D Laplace-operator. Laplace-operatoren. INF 2310 Digital bildebehandling. Laplace-operatoren er gitt ved: 55-55 - 6 6 5 5 radent-operatorer INF 3 Dgtal bldebehandlng Naboskaps-operasoner - II Laplace-operatoren Lo-operatoren Kant-bevarende ltre Ikke-lneære ltre radent-operatorer gr en bred respons Hvor bred

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30-Digital bildebehandling Eksamensdag: Tirsdag 5. mars 06 Tid for eksamen: 09:00-3:00 Løsningsforslaget er på: 4 sider Vedlegg:

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist) IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II våren : Avbldnng Samplng og kvantserng Geometrske operasjoner Gråtonemappng og hstogramoperasjoner ltrerng blde-doménet ltrerng rekvens-doménet Kompresjon

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr

Detaljer

Midtveiseksamen. INF Digital Bildebehandling

Midtveiseksamen. INF Digital Bildebehandling INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:

Detaljer

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe.

De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave I et tlfeldg utvalg på normalvektge personer, og overvektge personer, måles konsentrasjonen av 2 ulke protener blodet.

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider

Detaljer

Midtveiseksamen Løsningsforslag

Midtveiseksamen Løsningsforslag INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:

Detaljer

UNIVERSITETET I OSLO. Dette er et løsningsforslag

UNIVERSITETET I OSLO. Dette er et løsningsforslag Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på

Detaljer

Høypassfiltre. INF2310 Digital bildebehandling. Høypassfiltrering med konvolusjon FORELESNING 7 FILTRERING I BILDEDOMENET II

Høypassfiltre. INF2310 Digital bildebehandling. Høypassfiltrering med konvolusjon FORELESNING 7 FILTRERING I BILDEDOMENET II Høpassltre INF3 Dtal bldebeandln FORELESNING 7 FILTRERING I BILDEDOMENET II Andreas Kleppe Høpassltrern: Bldeorbedrn o kantdetekson Gradent-operatorer Laplace-operatoren o LoG-operatoren Canns kantdetektor

Detaljer

Alle deloppgaver teller likt i vurderingen av besvarelsen.

Alle deloppgaver teller likt i vurderingen av besvarelsen. STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for

Detaljer

Løsningsforslag for regneøving 2

Løsningsforslag for regneøving 2 TFE4 Dgtalteknkk med kretsteknkk Løsnngsforslag tl regneøng årsemester 8 Løsnngsforslag for regneøng Utleert: fredag 5. februar 8 Oppgae : a b Krets Benytt følgende erder: a A, b A, Ω, Ω, 5Ω a) Fnn spennngene

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Løsningsforslaget

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Utkast med løsningshint inkludert UNIVERSITETET I OSLO

Utkast med løsningshint inkludert UNIVERSITETET I OSLO Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.

må det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder. 40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling Høpassltre INF3 Dtal bldebeandln FORELESNING 7 FILTRERING I BILDEDOMENET II Frtz Albretsen Høpassltrern: Bldeorbedrn o kantdetekson Gradent-operatorer Laplace-operatoren o LoG-operatoren Canns kantdetektor

Detaljer

Romlig frekvens. INF 2310 Digital bildebehandling. Sampling av kontinuerlige signaler. Samplingsteoremet (Shannon/Nyquist) En kort midtveis-repetisjon

Romlig frekvens. INF 2310 Digital bildebehandling. Sampling av kontinuerlige signaler. Samplingsteoremet (Shannon/Nyquist) En kort midtveis-repetisjon Roml rekvens IN 3 Dtal bldebehandln En kort mdtves-repetson rtz Albretsen T Perode T.eks. mm eller µm rekvens /T.3. IN3.3. IN3 Sampln av kontnuerle snaler Samplnsteoremet Shannon/Nqust Anta at det kontnuerle

Detaljer

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet

Vekst i skjermet virksomhet: Er dette et problem? Trend mot større andel sysselsetting i skjermet Forelesnng NO kapttel 4 Skjermet og konkurranseutsatt vrksomhet Det grunnleggende formål med eksport: Mulggjøre mport Samfunnsøkonomsk balanse mellom eksport og mportkonkurrerende: Samme valutanntjenng/besparelse

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. B. Makroøkonomi. Mundells trilemma går ut på følgende: B. Makroøkoom Oppgave: Forklar påstades hold og drøft hvlke alteratv v står overfor: Fast valutakurs, selvstedg retepoltkk og fre kaptalbevegelser er kke forelg på samme td. Makroøkoom Iledg Mudells trlemma

Detaljer

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn )

SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn ) SIF402 og MNFFY03 høst 2002: Sammendrag uke 44 (Alonso&Fnn 26.4-26.6) Magnetsme To effekter når et materale påvrkes av et ytre magnetfelt B:. nnrettng av permanente atomære (evt. molekylære) magnetske

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 1. juni 2015 Tid for eksamen: 14:30 18:30 Løsningsforslaget

Detaljer

Sorterings- Algoritmer

Sorterings- Algoritmer Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på

Detaljer

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF-Digital bildebehandling Eksamensdag: Tirsdag. mars 5 Tid for eksamen: 5:-9: Løsningsforslaget er på: sider Vedlegg: Ingen

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer