INF 2310 Digital bildebehandling

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "INF 2310 Digital bildebehandling"

Transkript

1 Bruksområder - ltrerng INF 30 Dgtal bldebeandlng Fltrerng blde-domenet - Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende ltre Ikke-lneære ltre GW Kap Kap 5.3 Av de mest brukte operasjoner bldebeandlng. Brukes som et ledd pre-prosesserng or mange bldeanalse-problemer: Støjernng/støreduksjon Kant-deteksjon Deteksjon av lnjer eller andre speselle strukturer. Konvolusjon INF 30 INF 30 Lokale operasjoner V skal se på teknkker blde-domenet Teknkker ra rekvens-domenet kommer senere. Blde-domenet reererer tl mengden av pksler som utgjør det dgtale bldet. Bldeplan-metoder opererer på dsse pkslene og gr: g T [ ] Hver pkselverd g ut-bldet er en unksjon av pkselverdene et lokalt område rundt tlsvarende pkselpossjon nn-bldet. g er ut-bldet er nn-bldet T er en operator på en omegn rundt INF 30 3 INF 30 4

2 Omgvelser/naboskap/vndu Kvadratske/rektangulære vnduer mest vanlg. Av smmetr-ensn otest odde dmensjon. Enkelst transorm år v når vnduet er bare pksel. T er da gråtonemappng der n pkselverd bare avenger av pkselverden punktet. Hvs T er den samme over ele bldet ar v en global transorm. Hvs vnduet er større enn ar v en lokal transorm. INF 30 5 Naboskap+Transorm=Maske Naboskap/vndu/omgvelse: De pkslene rundt et punkt nn-bldet som T opererer på. Transorm/operator: Operator/algortme som opererer på pkslene naboskapet. Ser HVA v skal gjøre med bldet. Maske/lter: En matrse med vekter eller koesenter. Resultatene lagres et ntt blde. Eksempel: et gjennomsnttslter INF 30 6 Flter-egenskaper egenskaper - Addtvtet Flter-egenskaper egenskaper - Homogentet H[ ] H[ ] H[ ] H er lteret og og er vlkårlge blder. Hva betr dette: Hvs v skal addere to ltrerte blder? H[ a ] ah[ ]] Hvs H er en lneær operator er responsen på et konstant multppel av en vlkårlg nput lk konstanten multplsert med responsen på nput. INF 30 7 INF 30 8

3 Flter-egenskaper - Lneartet Flter egenskaper Lneartet H er lteret a og b er konstanter og og lkå l bld ] [ ] [ ] [ bh ah b a H er vlkårlge blder. Hva betr dette: Hvs v skalerer bldene ør ltrerngen? Hvs v skalerer bldene ør ltrerngen? INF 30 9 Flter-egenskaper Possjons-nvarans Flter egenskaper Possjons nvarans or alle og or vlkårlge lm. ] [ m l g m l H Responsen et vlkårlg punkt et blde avenger bare av bldets lokale verd kke av avenger bare av bldets lokale verd kke av possjonen. INF 30 0 Eksempel: mddelverd Eksempel: mddelverd For vert pksel beregn dd l d k l t 3 3 mddelverden av pkslene et 3 3 vndu rundt pksel [ 9 g 9 ] v v og 3 3 vndu v INF 30 -D Konvolusjon D Konvolusjon T g ] [ er lteret er et -D blde eller sgnal Merk at: g g INF 30 Og det er den sste ormen v bruker or utregnng.

4 Et -D eksempel =[ 3] Indeks or : - 0 =[ 4 4 4] Indeks or : = 3 g g = = = g = = = 4 g3 = = =0 0 og 4 er kke denert la oss anta at de er 0. er multplkasjon Men va skjer rundt kantene? Merk at v må spelvende ør multplkasjon. INF 30 3 Utregnng av -D konvolusjon g For å regne ut resultatet av en konvolusjon or possjon : Spelvend masken legg den over bldet slk at mnst en possjon overlapper med bldet. Multplser vert element masken med underlggende pkselverd. Summen av produktene gr verden or g possjon. For å regne ut resultatet or alle possjoner: Fltt masken pksel or pksel og gjenta operasjonene over. Merk: or smmetrsk spller det ngen rolle om v spelvender masken eller kke. INF 30 4 Ut-bldet er gtt ved g -D konvolusjon j k j k j k j k j k j k er et m n lter med størrelse m= + n= + m og n er vanlgvs oddetall. Ote ar v kvadratsk vndu m=n. Ut-bldet t er et veet sum av nn-pkslene k som omgr. Vektene lteret er gtt ved jk. Ut-bldets pkselverd neste possjon nnes ved at lteret lttes ett pksel og beregner summen på ntt. Utregnng av -D konvolusjon g j k j k j k For å regne ut resultatet av en konvolusjon or possjon : Roter masken 80 grader legg den over bldet slk at mnst en possjon overlapper med bldet. Multplser vert element masken med underlggende pkselverd. Summen av produktene gr verden or g possjon. For å regne ut resultatet or alle possjoner: Fltt masken pksel or pksel og gjenta operasjonene over. INF 30 5 INF 30 6

5 g Ltt notasjon j k j k j k gr oss verden ut-bldet or pksel-possjon p For å konvolvere lteret med ele bldet bruker v notasjonen g = * * er konvolusjons-operatorenoperatoren Praktske problemer Kan v la ut-bldet a samme pksel-representasjon som nn- bldet? unsgned bte or eksempel? Trenger v et mellom-lager? Hva gjør v langs blde-kantene? Anta at bldet er M N pksler Anta at lteret et m n m=m + n=n + Uberørt av kant-eekt: M-m <N-n 33: M-N- 55: M-4N-4 INF 30 7 INF 30 8 Hva gjør v langs kanten? Alternatver:. Sett g=0. Sett g= 3. Trunker ut-bldet lager det mndre 4. Trunker konvolusjons-masken 5. Utvd bldet ved spelng om kant relected ndeng 6. Crcular ndeng Anta at bldet repeterer seg selv uendelg alle retnnger Merk: dette bruker v Fourer-transorm INF 30 9 Et lte tps om konvolusjon Når v konvolverer et lter med et blde: Er v nteressert å lage et ntt blde med samme størrelse som nput-bldet. V bruker en av teknkkene ra orrge ol. Når v konvolverer en lter-kjerne med en annen lter-kjerne: V vl lage en eektv mplementasjon av et stort lter ved en kombnasjon av enkle separable ltre. V beregner resultatet or alle possjoner der de to lter-kjernene gr overlapp. INF 30 0

6 g Korrelasjon n m k n jm j k j k Merk orskjell ra konvolusjon: pluss stedet or mnus. Mnus or konvolusjon gjør at v roterer lteret 80 grader. For korrelasjon trenger v kke dette v legger lterkjernen sentrert om pksel og multplserer vert enkelt element. Merk: v kan utøre korrelasjon ved en konvolusjons-unksjon vs v ørst roterer lteret 80 grader. g Korrelasjon n m k n jm j k j k Anvendelse: mønstergjenkjennng eller template matcng. Mønster/template kan være en del av et blde. j0 Normalser ved g ' n m g j jn k m or å unngå øere verder or lse pksler. k INF 30 INF 30 Korrelasjonskoesent Alternatvt beregn korrelasjons-koesenten j j j j j j j Denne er normalsert både orold tl mddelverden tl lteret og orold tl mddelverden tl den lokale omegnen bldet Eksempel template matcng Fnn et objekt et blde. Flteret er templaten. Templaten må a samme størrelse og orenterng som bldet og omtrent samme gråtoner. INF 30 3 INF 30 4

7 Egenskaper ved konvolusjon Kommutatv: * g = g * Assosatv: * g * = * g * Dstrbutv: *g+ = *g + * Assosatv ved skalar multplkasjon: a*g = a*g = *ag Kan utnttes sammensatte satte operasjoner! e INF 30 5 Normalserng av ltre Hvs v konvolverer [ ] med seg selv år v [ ]*[ ] = [3] ]. Fortsetter v år v [ ]*[ 3 ] = [ ] Ved slke kke-normalserte lterkjerner øker gjennomsnttsverdet det ltrerte bldet. Vanlgvs normalserer v lterkjernen slk at gjennomsnttsverden bldet bevares INF 30 6 Lavpass-ltre Mddelverd-ltere lavpass Slpper gjennom lave rekvenser se orelesnnger om Fourer og demper øe rekvenser. Høe rekvenser = skarpe kanter stø detaljer. Eekt: blurrng eller utsmørng av bldet. Utordrng: bevare kanter samtdg som omogene områder glattes. F INF : 5 5: 7 7: Alle koesenter er lke. Skaler resultatet ved å normalsere med summen av lterkoesentene. Størrelsen på lteret avgjør graden av glattng. Lte lter: lte glattng kanter bevares bedre. Stort lter: me glattng og utsmørt blde. INF 30 8

8 Fltrerte blder mddelverdlter Fltrerte blder mddelverdlter Orgnal Fltrert 33-lter Fltrert 99-lter Fltrert 55-lter INF 30 9 INF Separable ltre Et separabelt lter kan splttes mndre enklere ltere or eksempel to -dmensjonale ltre Geometrsk orm: kvadrat rektangel Rektangulære mddelverd-ltere er separable. j 5 5 Fordel: et raskt lter. Vanlg konvolusjon: n multplkasjoner og addsjoner. -D konvolusjoner: n multplkasjoner og addsjoner. INF 30 3 Tdsbesparelse Vanlg konvolusjon: n multplkasjoner og addsjoner. -D konvolusjoner: n multplkasjoner og addsjoner. Besparelse ved separasjon av n n lter: n n n n INF 30 n

9 Lavpass-ltrerng ved oppdaterng Det tar n multplkasjoner og n - addsjoner å beregne resultatet R or et nn unormt lter ser bort ra skalerngen. Hvs lteret lttes ett pksel blr n respons R n =R-C +C n der C er summen av produktene ørste kolonne lteret og C n er tlsvarende or sste kolonne lteret. Det tar n multplkasjoner og n- addsjoner å nne v. C og C n. Dvs. totalt n+n operasjoner or å nne R n. Oppdaterng er lke raskt som separabltet. For unorme ltere kan v også droppe alle multplkasjoner. INF Ikke-unormt lavpass-lter Unorme lavpass-ltre kan mplementeres raskt. Et vanlg kke-unormt lter er Gauss-lteret: D Gauss-lter: ep Parameter σ er standard-avvket bredden Flterstørrelse tø l må tlpasses σ INF Eekten av Approksmasjon av Gauss-ltere lten: lte glattng stor: me glattng Men mndre enn med latt mddelverdlter = = 4 * G3 3 INF INF 30 36

10 Kant-bevarende støltrerng V ltrerer or å jerne stø bldene. Det nnes et utall av kantbevarende ltre. Men det er et sstem lter-jungelen: V kan jo to pksel-populasjoner vnduet. Da er det suboptmalt å bruke alle pkslene. V kan sortere pkslene: Radometrsk Geometrsk Både radometrsk og geometrsk Rang-ltrerng V lager en en-dmensjonal lste av alle pksel- verdene nnenor vnduet. V sorterer lsten stgende rekkeølge. V velgen en pksel-verd ra en bestemt possjon den sorterte lsten Denne pksel-verden er resultatet av ltrerngen og skrves ut tl tlsvarende pksel-possjon ut-bldet. INF INF Medan-lter g = medan av verdene et vndu rundt nn-pkslet. Medan = den mdterste t verden sortert t lste. Vndu: kvadrat rektanger pluss. Rask mplementasjon kan gjøres va. stogram med stogram-oppdaterng oppdaterng etter vert som vnduet lttes. Et av de mest brukte kant-bevarende stø-ltre. Speselt godt tl å jerne mpuls-stø salt og pepper Problemer: Tnne kanter kan orsvnne Hjørner kan rundes av Objekter kan bl ltt mndre Valg vndus-størrelse og orm vktg! Mddelverd eller medan? Mddelverd-lter: beregn mddelver vndu. God stø-reduksjon men blurrng av kanter. Medan-lter: nn medanen vnduet. Dårlgere støreduksjon bedre kant-bevarng. Fungerer speselt godt på salt-op-pepper stø. INF INF 30 40

11 Medan og jørner Medan ved stogram-oppdaterngoppdaterng. Skal oppdatere medan-verden mens v ltter et vndu med m+ rader og n+ kolonner rundt bldet. Sett t=m+n+/.. Sett vduet ved venstre bldekant sorter og nn medamed MED og antall pksler med gråtone MED LE_MED Med kvadratsk vndu rundes jørnet av Med pluss -vndu bevares jørnet 3. or j=-m to m do begn --H[-n-j] -n-j<med ten --LE_MED end 4. Fltt vnduet et pksel tl øre: or j=-m to m do begn ++H[+n-j] +n-j<med ten ++LE_MED end INF 30 4 INF 30 4 Mn og Ma ltre Dsse ltrene nner v. laveste og øeste pkselverd nnenor et vndu. Begge gr en kke-lneær blurrng av bldet. De krever kke sorterng av pkslene bldet. Raskere enn ull sorterng n- sammenlgnnger mot nlog n Kombnasjoner av Mn og Ma ltre La mn t og ma bet den mnste og største verden ar nnenor et vndu sentrert om. La vnduet ltte seg gjennom alle mulge possjoner bldet. Da vl to-pass operasjonen g =mamn jerne topper som er mndre enn vnduet. Operasjonen g =mnma ller daler som er mndre enn vnduet. For å orsterke alle strukturer som er mndre enn vnduet: g=+a-mamn-mnma Mn og Ma-operasjonene på et m n vndu er separable den orstand at de kan utøres to pass med et n vndu og et m vndu. INF F..06 INF 30 44

12 KNN-lteret Adaptv ltrerng KNN = K Nærmeste Nabo Ut-verd = gjennomsntt eller medan av de K pkslene vnduet som lgger nærmest senterpkslet gråtone-verd. Kan sees som en modkasjon av mddelverd-ltret eller medanltret der man kun tar med de K mest aktuelle av nabo-pkslene. Problem: K er konstant or ele bldet. Velger v or lten K jerner v lte stø For stor K jerner tnne lnjer og jørner K=: ngen eekt K<n: bevarer tnne lnjer n n-vndu K<n/- : bevarer jørner K<n/-n: bevarer rette kanter Adaptve ltere beregner gråtone-statstkk ra et vndu rundt vert pksel og lar lter-parametere avenge av dette. Et pksel kan betraktes som stø dersom det er sgnkant orskjellg ra sne naboer: Men vordan setter v t og nner va som er sgnkant orskjellg? INF INF Sgma-ltret Ut-verd=mddelverden av alle pksler nnen vnduet vs gråtonerverd lgger ntervallet t der t er en parameter og er estmert et omogent område bldet. Fjerner kke solerte stø-pksler. INF Oppsummerng Konvolusjon brukes or å ltrere et blde med en lterkjerne. Å kunne utøre konvolusjon manuelt på et lte eksempel er sentralt pensum. Vær obs på kant-eekter. Ikke-lneære ltere Planer ramover: Ulke tper ltre Gradent-operatorer Kantdeteksjon INF 30 48

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling Lokale operasjoner INF 3 Dtal bldebehandln Naboskaps-operasjoner - I Lneær fltrern Konvolusjon Korrelasjon Gradent-operatorer Efford kap. 7.-7.. V skal bare se på teknkker blde-domenet Blde-domenet refererer

Detaljer

Gradient-operatorer. 1D Laplace-operator. Laplace-operatoren. INF 2310 Digital bildebehandling. Laplace-operatoren er gitt ved:

Gradient-operatorer. 1D Laplace-operator. Laplace-operatoren. INF 2310 Digital bildebehandling. Laplace-operatoren er gitt ved: 55-55 - 6 6 5 5 radent-operatorer INF 3 Dgtal bldebehandlng Naboskaps-operasoner - II Laplace-operatoren Lo-operatoren Kant-bevarende ltre Ikke-lneære ltre radent-operatorer gr en bred respons Hvor bred

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist) IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II våren : Avbldnng Samplng og kvantserng Geometrske operasjoner Gråtonemappng og hstogramoperasjoner ltrerng blde-doménet ltrerng rekvens-doménet Kompresjon

Detaljer

Romlig frekvens. INF 2310 Digital bildebehandling. Sampling av kontinuerlige signaler. Samplingsteoremet (Shannon/Nyquist) En kort midtveis-repetisjon

Romlig frekvens. INF 2310 Digital bildebehandling. Sampling av kontinuerlige signaler. Samplingsteoremet (Shannon/Nyquist) En kort midtveis-repetisjon Roml rekvens IN 3 Dtal bldebehandln En kort mdtves-repetson rtz Albretsen T Perode T.eks. mm eller µm rekvens /T.3. IN3.3. IN3 Sampln av kontnuerle snaler Samplnsteoremet Shannon/Nqust Anta at det kontnuerle

Detaljer

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjon. INF2310 Digital bildebehandling FORELESNING 8

Filtrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjon. INF2310 Digital bildebehandling FORELESNING 8 Fltrerng bldedomenet INF3 Dgtal bldebeandlng FORELESNING 8 REPETISJON: FILTRERING I BILDEDOMENET Andreas Kleppe Fltrerng og konvoluson Lavpassfltrerng og kant-bevarng Høpassfltrerng: Bldeforbedrng og kantdetekson

Detaljer

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)

Rayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist) IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II ma : Avbldnng Samplng og kvantserng Geometrske operasoner 3 Gråtone- og hstogramoperasoner 45 ltrerng blde-doménet 67 ltrerng rekvens-doménet 89 Kompreson

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Rale-krteret INF 3 Dtal bldebeandln EN KORT MIDTVEIS-REPETISJON Anta en perekt lnse med aperture-dameter D o at lsets bølelende er. To punkter et obekt kan akkurat adsklles bldet vs vnkelen mellom dem

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FILTRERING I BILDE-DOMÈNET I Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre GW Kap. 3.4-3.5 + Kap. 5.3 Vi skal

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Høypassfiltre. INF2310 Digital bildebehandling. Høypassfiltrering med konvolusjon FORELESNING 7 FILTRERING I BILDEDOMENET II

Høypassfiltre. INF2310 Digital bildebehandling. Høypassfiltrering med konvolusjon FORELESNING 7 FILTRERING I BILDEDOMENET II Høpassltre INF3 Dtal bldebeandln FORELESNING 7 FILTRERING I BILDEDOMENET II Andreas Kleppe Høpassltrern: Bldeorbedrn o kantdetekson Gradent-operatorer Laplace-operatoren o LoG-operatoren Canns kantdetektor

Detaljer

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I

Lokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I Lokale operasjoner INF 30 Digital bildebehandling FORELESNING 6 FILTRERING I BILDE-DOMÈNET I Fritz Albregtsen Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende filtre Ikke-lineære filtre

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling Høpassltre INF3 Dtal bldebeandln FORELESNING 7 FILTRERING I BILDEDOMENET II Frtz Albretsen Høpassltrern: Bldeorbedrn o kantdetekson Gradent-operatorer Laplace-operatoren o LoG-operatoren Canns kantdetektor

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Filter-egenskaper INF Fritz Albregtsen

Filter-egenskaper INF Fritz Albregtsen Filter-egenskaper INF 60-04.03.2002 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 2: - Lineær filtrering - Gradient-detektorer - Laplace-operatorer Linearitet H [af (x, y) + bf 2 (x, y)] ah [f (x, y)]

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4

Detaljer

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I

Anvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 2310 Dgtal bldebehandlng FORELESNING 4 GRÅTONE-TRANSFORMASJONER Frtz Albregtsen 1 Temaer dag Hstogrammer Lneære gråtonetransformer t Standardserng av blder med lneær transform Ikke-lneære, parametrske

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Sorterings- Algoritmer

Sorterings- Algoritmer Hva er sorterng? Sorterngs- Algortmer Algortmer og Datastrukturer Input: en sekvens av N nummer Output: reorganserng nput-sekvensen slk at: a < a < a... < a n- < a n V søker algortmer som gjør dette på

Detaljer

INF2310 Digital bildebehandling

INF2310 Digital bildebehandling INF3 Dgtal bldebeandlng Forelesnng 7 Fltrerng bldedomenet II Andreas Kleppe Høpassfltrerng: Bldeforbedrng og kantdeteksjon Gradent-operatorer Laplace-operatoren og LoG-operatoren Canns kantdetektor G&W:

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet

Auksjoner og miljø: Privat informasjon og kollektive goder. Eirik Romstad Handelshøyskolen Norges miljø- og biovitenskapelige universitet Auksjoner og mljø: Prvat nformasjon og kollektve goder Erk Romstad Handelshøyskolen Auksjoner for endra forvaltnng Habtatvern for bologsk mangfold Styresmaktene lyser ut spesfserte forvaltnngskontrakter

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet

Investering under usikkerhet Risiko og avkastning Høy risiko. Risikokostnad prosjekt Snøskuffe. Presisering av risikobegrepet Investerng under uskkerhet Rsko og avkastnng Høy rsko Lav rsko Presserng av rskobegreet Realnvesterng Fnansnvesterng Rsko for enkeltaksjer og ortefølje-sammenheng Fnansnvesterng Realnvesterng John-Erk

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 2015 Prvate gjøremål på jobben Spørsmål: Omtrent hvor mye td bruker du per dag på å utføre prvate gjøremål arbedstden (n=623) Mer

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid

Fast valutakurs, selvstendig rentepolitikk og frie kapitalbevegelser er ikke forenlig på samme tid Makroøkonom Publserngsoppgave Uke 48 November 29. 2009, Rev - Jan Erk Skog Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td I utsagnet Fast valutakurs, selvstendg

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Komprimering av bilder

Komprimering av bilder Ltteratur : IF 3 Dgtal ldeehandlng Forelesnng nr 3-3.5.5 Komprmerng av lder Efford, kap. Data Kompresjon oen egreper Lagrng eller oversendng Kompresjonsalgortme Dekompresjonsalgortme Dekompresjon Temaer

Detaljer

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater

Notater. Marie Lillehammer. Usikkerhetsanalyse for utslipp av farlige stoffer 2009/30. Notater 009/30 Notater Mare Lllehammer Notater Uskkerhetsanalyse or utslpp av arlge stoer vdelng or IT og metode/seksjon or statstske metoder og standarder Innhold 1. Bakgrunn og ormål.... Metode....1 Fastsettelse

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater

Notater. Anna-Karin Mevik. Estimering av månedlig omsetning innenfor bergverksdrift og industri 2008/57. Notater 008/57 Notater Anna-Karn Mevk Notater Estmerng av månedlg omsetnng nnenfor bergverksdrft og ndustr Stabsavdelngen/Seksjon for statstske metoder og standarder 1. Innlednng.... Omsetnngsstatstkken for ndustren...

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende:

Makroøkonomi - B1. Innledning. Begrep. Mundells trilemma 1 går ut på følgende: Makroøkonom Innlednng Mundells trlemma 1 går ut på følgende: Fast valutakurs, selvstendg rentepoltkk og fre kaptalbevegelser er kke forenlg på samme td Av de tre faktorene er hypotesen at v kun kan velge

Detaljer

Jobbskifteundersøkelsen Utarbeidet for Experis

Jobbskifteundersøkelsen Utarbeidet for Experis Jobbskfteundersøkelsen 15 Utarbedet for Expers Bakgrunn Oppdragsgver Expers, ManpowerGroup Kontaktperson Sven Fossum Henskt Befolknngsundersøkelse om holdnnger og syn på jobbskfte Metode Webundersøkelse

Detaljer

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ

MSKOMNO. kó=ñê~w. pfabufp=ud. aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ kó=ñê~w MSKOMNO pfabufp=ud aáöáí~ä=ê åíöéå=l=îáçéçjëçñíï~êé=j=sfabufp hçêí=äêìâë~åîáëåáåö= kçêëâ 0123 Dette produktet bærer CE-merket overensstemmelse med bestemmelsene drektvet 93/42EEC av 14 jun 1993

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA440 Statstkk H00 Statstsk nferens: 9.6: Predksjonsntervall 9.8: To utvalg, dfferanse µ µ Mette Langaas Foreleses mandag 8.oktober, 00 Predksjonsntervall for fremtdg observasjon, normalfordelng For en

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt

Oversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere

Detaljer

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk.

Motivasjon INF Eksempel. Gjenkjenning av objekter intro (mer i INF 4300) OCR-gjennkjenning: Problem: gjenkjenn alle tall i bildet automatisk. INF 230 Morologi Morologiske operasjoner på binære bilder:. Basis-begreper 2. Fundamentale operasjoner på binære bilder 3. Sammensatte operasjoner 4. Eksempler på anvendelser lettet inn GW, Kapittel 9.-9.4

Detaljer

Adaptivt lokalsøk for boolske optimeringsproblemer

Adaptivt lokalsøk for boolske optimeringsproblemer Adaptvt lokalsøk for boolske optmerngsproblemer Lars Magnus Hvattum Høgskolen Molde Lars.M.Hvattum@hmolde.no Arne Løkketangen Høgskolen Molde Arne.Lokketangen@hmolde.no Fred Glover Leeds School of Busness,

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)

Notater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir) 2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater

Detaljer

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil

Eksamen i IN 106, Mandag 29. mai 2000 Side 2 Vi skal i dette oppgavesettet arbeide med et bilde som i hovedsak består av tekst. Det binære originalbil UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 106 Introduksjon til signal- og bildebehandling Eksamensdag: Mandag 29. mai 2000 Tid for eksamen: 29. mai 2000 kl 09:0031.

Detaljer

Hensikt: INF Metode: Naboskaps-operasjoner Hvorfor: Hvor:

Hensikt: INF Metode: Naboskaps-operasjoner Hvorfor: Hvor: Standardisering av bildets histogram INF 60-8.02.2003 Fritz Albregtsen Tema: Naboskaps-operasjoner Del : - Standardisering av bilder - Konvolusjon Litteratur: Efford, DIP, kap. 7. - 7.2 Hensikt: Sørge

Detaljer

Flater, kanter og linjer INF Fritz Albregtsen

Flater, kanter og linjer INF Fritz Albregtsen Flater, kanter og linjer INF 160-11.03.2003 Fritz Albregtsen Tema: Naboskaps-operasjoner Del 3: - Canny s kant-detektor - Rang-filtrering - Hybride filtre - Adaptive filtre Litteratur: Efford, DIP, kap.

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

GPS. GPS (Global positioning system) benytter 24 satellitter som beveger seg rundt jorden i

GPS. GPS (Global positioning system) benytter 24 satellitter som beveger seg rundt jorden i INFORMASJONSHEFTE Kart gjødslng kalkng bast jordprøv Sellttngng() kjemske kjemske fysske fysske analys analys kombnt kombnt gafske gafske nmasjonssystem nmasjonssystem (GIS) (GIS) grunnmur grunnmur.. H

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein

INF Stikkord over pensum til midtveis 2017 Kristine Baluka Hein INF2310 - Stikkord over pensum til midtveis 2017 Kristine Baluka Hein 1 Forhold mellom størrelse i bildeplan y og "virkelighet"y y y = s s og 1 s + 1 s = 1 f Rayleigh kriteriet sin θ = 1.22 λ D y s = 1.22

Detaljer

Hjertelig velkommen til SURSTOFF

Hjertelig velkommen til SURSTOFF Hjertelg velkommen tl SURSTOFF V er så ufattelg glade over å kunne nvtere drftge kulturnærngsgründere tl en felles møteplass. V håper du kommer!! Praktsk nformasjon Når: Hvor: Prs: Påmeldng: Mer nformasjon:

Detaljer

Kvalitetskontrollhåndbok. mammografi

Kvalitetskontrollhåndbok. mammografi NO9400084 Kvaltetskontrollhåndbok mammograf NEI-NO--431 Strålevern HEFTE 2 IssNtx(4 4«;jy rum 1W4 ;Sr statms * Stvålevem Strålevern HEFTE 2 Kvaltetskontrollhåndbok mammograf ' cf-r Statens strålevern Referanse:

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG mars 2009 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette

Detaljer

Alvdal Royal kledning

Alvdal Royal kledning Klednng STORT UTVALG AV KLEDNINGSPRODUKTER UNIK BEHANDLING AV HVERT PROSJEKT FOKUS PÅ MILJØVENNLIGE LØSNINGER Alvdal Royal klednng Vår bestselger når det gjelder kvaltet, levetd og prs. Lang levetd Begrenset

Detaljer

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport

www.olr.ccli.com Introduksjon Online Rapport Din trinn for trinn-guide til den nye Online Rapporten (OLR) Online Rapport Onlne Rapport Introduksjon Onlne Rapport www.olr.ccl.com Dn trnn for trnn-gude tl den nye Onlne Rapporten (OLR) Vktg nfo tl alle mengheter og organsasjoner Ingen flere program som skal lastes ned Fortløpende

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen 1 HG Revdert mars 013 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Årsplan: Matematikk 4.trinn Uke Tema

Årsplan: Matematikk 4.trinn Uke Tema Årsplan: Matematkk 4.trnn Uke 33 34 35 36 37 38 39 Repetsjon Kap1. Koordnatsystemet Les av, plassere og beskrve possjoner rutenett, på kart og koordnatsystem, både med og uten verktøy. Samle, sortere,

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Denne anvisningen er en del av produktet og skal være hos sluttkunden. Bilde 1: Trådløs håndsender dobbel og firedobbel

Denne anvisningen er en del av produktet og skal være hos sluttkunden. Bilde 1: Trådløs håndsender dobbel og firedobbel Radohåndsender 2 kanaler Best.-nr. : 5352 10 Radohåndsender 4 kanaler Best.-nr. : 5354 10 Bruksanvsnng 1 Skkerhetsnformasjon Knappeceller skal oppbevares utlgjengelg for barn! Hvs knappecellene svelges

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Statens vegvesen. Vegpakke Salten fase 1 - Nye takst- og rabattordninger. Utvidet garanti for bompengeselskapets lån.

Statens vegvesen. Vegpakke Salten fase 1 - Nye takst- og rabattordninger. Utvidet garanti for bompengeselskapets lån. Fauske kommune Torggt. 21/11 Postboks 93 8201 FAUSKE. r 1'1(;,. ',rw) J lf)!ùl/~~q _! -~ k"ch' t ~ j OlS S~kÖ)Ch. F t6 (o/3_~ - f' D - tf /5Cr8 l Behandlende enhet Regon nord Sa ksbeha nd er/ n nva gsn

Detaljer

Regler om normalfordelingen

Regler om normalfordelingen HG mars 0 Notat tl kapttel 5 Løvås Regler om ormalfordelge Kjeskap tl reglee for ormalfordelge er gruleggede for de statstske aalyse kapttel 6 Løvås, og studetee må kue beherske dsse skkkelg dette kurset.

Detaljer

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214

Postadresse: Pb. 8149 Dep. 0033 Oslo 1. Kontoradresse: Gydas vei 8 - Tlf. 02-466850. Bankgiro 0629.05.81247 - Postgiro 2 00 0214 A "..'. REW~~~~~OO ~slnmtlre STATENS ARBESMLJØNSTTUTT Postadresse: Pb. 8149 ep. 0033 Oslo 1. Kontoradresse: Gydas ve 8 - Tlf. 02-466850. Bankgro 0629.05.81247 - Postgro 2 00 0214 Tttel: OPPLEE AV HEE OG

Detaljer

BARNAS BOKFESTIVAL I BERGEN. Innhold

BARNAS BOKFESTIVAL I BERGEN. Innhold DESIGNMANUAL Innhold Forord Sgnaturlogo, varasjoner Rett og gal bruk av logo Oppbyggng og plasserng av logo, samt tlleggselementer Farger Typograf Plakater Program og bllettarmbånd T-skjorter... 3...4-6...7...

Detaljer