UNIVERSITETET I OSLO
|
|
- Kathrine Dale
- 6 år siden
- Visninger:
Transkript
1 øsnngsforslag UNIVERSIEE I OSO Det matematsk-naturvtenskaelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Onsdag 6. jun d for eksamen : 9: 3: øsnngsforslaget er å : sder Vedlegg : Ingen llatte hjelemdler: Ingen Det er 8 ogaver dette ogavesettet. es gjennom hele ogavesettet før du begynner å løse ogavene. Kontroller at ogavesettet er komlett før du begynner å besvare det. Dersom du savner olysnnger en ogave, kan du selv legge dne egne forutsetnnger tl grunn og gjøre rmelge antagelser, så lenge de kke bryter med ogavens "ånd". Gjør såfall rede for forutsetnngene og antagelsene du gjør. Det er tlsammen delsørsmål. Hvert delsørsmål teller lke mye. Det lønner seg derfor å dsonere tden slk at man får besvart alle ogavene. Hvs du står fast å enkeltogaver, gå vdere slk at du får gtt et kort svar å alle ogaver. Alle svar skal begrunnes. Gjør rede for bruken av eventuelle teoremer, rnser eller forutsetnnger slk at en tredjeerson kan følge dne resonnementer.
2 Eksamen, INF3, onsdag 6. jun. Hstogramutjevnng og gråtonetransform a oss anta at v har følgende 4x5 gråtoneblde med en 3 bters gråtoneskala a Vs hvordan du går fram for å utføre en hstogramutjevnng av dette bldet tl et utblde med bare 4 gråtoner fra gråtone tl gråtone 5. Vs også resultatbldet. Fnn det normalserte hstogrammet, og fra dette det normalserte kumulatve hstogrammet c[] se ovenfor. Sett nn verder transform-arrayet [] Round-*c[]k med 4 og k for,,, G-, der G8. h c abellen er en del av løsnngsforslaget Gå deretter gjennom bldet ksel for ksel, og sett gx,y [x,y]. Resultatet blr da abellen er en del av løsnngsforslaget b Beskrv hvordan du kan modfsere hstogrammet slk at det blr tlnærmet Gausssk.. Fnn s [] som ovenfor og gjør hstogramutjevnng å nnbldet.. Sesfser det ønskede hstogrammet gz, som her er Gausssk. 3. Fnn den transformen g som hstogramutjevner gz og den tlhørende nverstransformen g Inverstransformer det hstogramutjevnede bldet fra unkt med z g - s.
3 . Konvolusjon Eksamen, INF3, onsdag 6. jun a ntensteten omkrng kselossjonen x,y være modellert ved olynomet fx,y k k x k 3 yk 4 x k 5 xyk 6 y I et lokalt 3x3 område rundt ossjonen x,y vl da ntenstetene være k -k -k 3 k 4 k 5 k 6 k -k 3 k 6 k k -k 3 k 4 -k 5 k 6 k -k k 4 k k k k 4 k -k k 3 k 4 -k 5 k 6 k k 3 k 6 k k k 3 k 4 k 5 k 6 a Vs at fltermasken 4 gr et skalert estmat av den korrekte lokale alace-verden av denne modellen. Den korrekte lokale alace-verden av denne modellen er gtt ved f x, y f x, y f x, y k 4 k 6 x y Den gtte fltermasken gr -6k 4 k 6, som altså er et skalert estmat. b Forklar hvordan v å to måter kan gjøre alace-estmatet robust for støy. V kan konvolvere nn-bldet med et lavassflter før v estmerer alace-verden. Eller v kan utnytte kommutatvtets-egenskaen tl konvolusjonsoerasjonen, og konvolvere alaceoeratoren med et lavassflter, og så anvende resultatet som et flter å bldet. 3
4 3. Medanfltrerng Eksamen, INF3, onsdag 6. jun Et SWtchng Medan SWM flter er en to-stegs rosedyre, der man først avgjør om et ksel er åvrket av støy ved å se om absoluttverden av dfferansen mellom medanen av kselverdene et naboska og kselverden selv er større enn en gtt terskelverd. Hvs det er tlfelle, gs utbldet en kselverd lk den klassske medanverden nnenfor naboskaet. Hvs kke, bl kselverden utbldet satt lk verden nnbldet. Altså: M W x, y hvs M W x, y f x, y > g x, y f x, y ellers der fx,y er nnbldet, M W x,y er medanverden nnenfor et WxW vndu sentrert om ossjonen x,y nnbldet, er en terskelverd, og gx,y er utbldet. Anta at nnbldet er 5x5-bldet nedenfor, med kselverder mellom og a Fnn kselverdene det 3x3 utbldet du får ved å bruke et 3x3 medan-vndu. NB! Her er det kke nok å bare g et svar form av kselverdene utbldet. Du må også vse hvordan du fnner svarene abellen er en del av løsnngsforslaget b Fnn kselverdene det 3x3 utbldet du får ved å bruke et 3x3 SWM-flter med terskelverd. NB! Her er det kke nok å bare g et svar form av kselverdene utbldet. Du må også vse hvordan du fnner svarene abellen er en del av løsnngsforslaget c Beskrv fem vanlge måter å håndtere stuasjonen når flteret lgger delvs utenfor nnbldet, og du ønsker et ut-blde gx,y som er lke stort som nn-bldet fx,y. Når deler av fltret lgger utenfor nn-bldet,. sett gx,y. sett gx,y fx,y 3. trunker flter-masken 4. utvd nn-bldet ved reflected ndexng 5. utvd nn-bldet ved crcular ndexng 6. utvd nn-bldet med -er 7. utvd nn-bldet med nærmeste kselverd 4
5 4. Frekvensdomenet Eksamen, INF3, onsdag 6. jun a Hva forteller Fourer-sekteret tl et gråtoneblde oss om bldet? Kan v generelt rekonstruere et blde ved å bare bruke Fourer-sekteret? Fourer-sekteret forteller oss hvlke frekvenser gråtonebldet nneholder, mer resst hvor betydnngsfull hver frekvens er. Ne, v trenger generelt også Fourer-fasen for å rekonstruere et blde. Faktsk er Fourer-fasen vktgere for rekonstruksjon enn Fourer-sekteret. b Beregn verden tl Fourer-sekteret for frekvens, tl følgende 4x4- gråtoneblde: Du kan få bruk for følgende matrser: Cosnus-bldet av størrelse 4x4 og frekvens, Snus-bldet av størrelse 4x4 og frekvens, alle frekvenskomonenter denne delogaven er nullndeksert Summen av unktroduktet av 4x4-bldet og cosnus-bldet er 4. Summen av unktroduktet av 4x4-bldet og snus-bldet er -3. Dermed er F, 4-3 der F er D DF-en tl 4x4-bldet. Verden tl Fourer-sekteret for frekvensen, er dermed magntuden tl det komlekse tallet F,, altså er: F, real F, mag F, gnngen er en del av løsnngsforslaget c V har sett å tre ulke overgangstyer som kan brukes når v desgner fltre frekvensdomenet, og v har kalt de resulterende fltrene for enten deelle fltre, Gaussske fltre eller Butterworth fltre. Redegjør kort for fordeler og ulemer ved hver av dsse tre overgangstyene. Ideelle overganger: Maksmalt raske overganger Fourer-sekteret; går mellom og mellom naboelementer/nabofrekvenser. 5
6 Eksamen, INF3, onsdag 6. jun Kan kontrollere resst hvlke frekvenser som skal bevares og hvlke frekvenser som skal fjernes; de som bevares blr helt bevart altså kke demet, de som fjernes blr helt fjernet altså kke bare demet. «Rngng»-effekt; den romlge reresentasjonen av et deelt flter har «rngnger» og dsse «rngngene» vl ofte være synlg når et slkt flter brukes tl fltrerng. Gaussske overganger: Relatvt trege overganger mellom og Fourersekteret som en normalfordelng. Ingen «rngng»; den romlge reresentasjonen har også Gaussske overganger. Svært flytende overgang mellom hvlke frekvenser som bevares og hvlke som kke bevares; de fleste frekvenser blr bare mer eller mndre demet. Butterworth overganger: En mellomtng mellom deelle overganger og Gaussske overganger; for lav orden har Butterworth overganger tlsvarende egenskaer som Gaussske overganger ngen «rngng» ved orden, for høy orden har Butterworth overganger tlsvarende egenskaer som deelle overganger. Kan regulere ved hjel av ordenen vktgheten av lte «rngng» mot god kontroll over hvlke frekvenser som bevares / kke bevares. Kan g både «rngng» og flytende overganger mellom hvlke frekvenser som bevares og hvlke som kke bevares. 5. Komresjon a Beskrv kort de tre ulke tyene redundans som er aktuelle for komresjon av blder. Hvlken redundans fører generelt tl kke-tasfr komresjon? Psykovsuell redundans: Informasjon som v kke ser. Intersamel redundans: Nærlggende ksler lgner ofte å hverandre. Kodngsredundans: Dfferansen mellom gjennomsnttlg kodelengde og entroen den førsteordens Shannon entro. Det er kun den sykovsuelle redundansen som generelt sett fører tl kketasfr komresjon, ntersamel redundans og kodngsredundans fører solert sett alltd tl tasfr komresjon. b Fnn en Huffman-kodebok for følgende sannsynlghetsmodell: Symbol a b c d e Sannsynlghet V sorterer symbolsannsynlghetene: Symbol c a b e D Sannsynlghet Huffman-sammenslångene blr for denne modellen entydge. Hvs v for hver forgrenng tlordner tl den mest sannsynlge gruen og tl den mnst sannsynlge gruen, får v følgende Huffman-kodetre: 6
7 Eksamen, INF3, onsdag 6. jun Fguren er en del av løsnngsforslaget Dette gr følgende Huffman-kodebok: Symbol a b c d e Huffman-kodeord c Beskrv kort gangen JPEG-komrmerng, fra gråtoneblde tl btkode. Gråtonebldet deles o 8x8-blokker, og for hver blokk gjøres følgende searat:. rekk b- fra hver kselntenstet dersom ntenstetene er gtt uten fortegn.. ransformer med D dskret cosnus-transform D DC.. D DC-koeffsentene skaleres med en vektmatrse og kvantfseres tl et heltall. v. AC-komonentene, dvs. alle de skalerte og kvantfserte D DC-koeffsentene utenom DC-koeffsenten, skk-sakkskannes tl en D-følge. v. D-følgen løelengdetransformeres og kodes, enten med Huffman-kodng eller med artmetsk kodng. Den ene DC-koeffsenten fra hver blokk samles, dfferansetransformeres og kodes, enten med Huffman-kodng eller med artmetsk kodng. 6. Segmenterng ved tersklng Anta at de normalserte bakgrunns- og forgrunnsfordelngene av ntenstetene et 3 bters gråtoneblde er gtt ved følgende tabell: b f
8 Eksamen, INF3, onsdag 6. jun 8 a Med a ror sannsynlghetene for hhv bakgrunn og forgrunn B.75 og F.5, tegn en sksse som vser de to fordelngene veet med a ror sannsynlghet. Fgurene er en del av løsnngsforslaget b Anta at du terskler bldet slk at du får mnst mulg total klassfkasjonsfel, Hvlke kselverder vl da bl klassfsert som forgrunn og bakgrunn? Hvor stor andel av bldet vl bl felklassfsert? Hvor stor andel av forgrunnskslene vl bl felklassfsert? o Det er bare gråtone 3 som blr klassfsert som forgrunn, mens gråtonene,,, og 4 blr klassfsert som bakgrunn. o.5* % av bldet blr felklassfsert som F..5*.5.5.5% av bldet blr felklassfsert som B. l sammen % av bldet blr felklassfsert. o.5/.5 5% av forgrunnskslene blr felklassfsert. c Anta at du terskler et vlkårlg blde med gråtoneskala fra tl - med en terskel, men at du ønsker et utblde med to gråtoneverder, slk at den gjennomsnttlge gråtonen utbldet og nnbldet er den samme. Fnn og begrunn et uttrykk for gråtoneverdene utbldet, gtt nnbldets normalserte hstogram. Mddelverden nnbldet og mddelverden av kslene under og over terskelen er gtt ved,, F B µ µ µ Andelen av ksler utbldet som tlhører hhv bakgrunn og forgrunn er, F B P P Hvs andelen P B ksler får verden μ B og andelen P F ksler får verden μ F etter tersklng, så blr gjennomsnttsgråtonen utbldet µ µ F B P P Hvs utbldet har de to gråtoneverdene μ B og μ F, så vl nn- og utbldet ha samme mddelverd.
9 7. Farger og fargerom Eksamen, INF3, onsdag 6. jun a Hvor mange forskjellge gråtoner kan det fnnes et bters NxM fargeblde der hver av fargene R, G og B er reresentert med 4 bter? Størrelsen å bldet har ngen betydnng, bortsett fra hvs bldet er mndre enn antall mulge gråtoner. For at v skal ha en gråtone RGB må v ha R,G,B g, g, g. Så selv om det er 496 mulge verder et bters fargeblde, så er det bare 4 6 mulge gråtoner dette bldet. b Beskrv hvordan I-komonenten IHS-systemet varerer over de tre ytterflatene av RGB-kuben som sees fguren nedenfor, når du vet at de tre hjørnene som svarer tl rmærfargene R, G og B har RGB-verder,,,,, og,,. Intensteten varerer å samme måte over de tre sdeflatene RGB-kuben: I hjørnet som svarer tl en RGB rmærfarge er ntensteten I/3: /3, /3, og /3. I motstående hjørne fnner v hvt; I/3. Mellom dsse ytterunktene varerer I lneært, slk at dagonalene mellom RGB sekundærfargene har I /3. 8. Morfolog a oss anta at v har følgende 8x8 bnære blde: der angr forgrunnsksel og angr bakgrunnsksel. 9
10 Eksamen, INF3, onsdag 6. jun a Fnn erosjonen av bldet med strukturelementet: Den den uthevde rammen angr orgo. Erosjonen er kslene der strukturelementet asser bldet relatvt tl orgo. V får at erosjonen blr: Der uthevnngene markerer kslene som endres ved erosjonen. b Hvordan kan man generelt fnne kantene et bnært blde basert å morfolog? Hvlket strukturelement vl man bruke for at kantene skal være sammenhengende med henholdsvs 4-naboska og 8-naboska? Dfferansen mellom det bnære bldet og erosjonen av det bnære bldet og ett av to strukturelement vl resultere et bnært blde av kantene tl det ornnelge bnære bldet; g f f S når f er det ornnelge bnære bldet, S er strukturelementet og g er erosjonsresultatet. De to aktuelle strukturelementene for todmensjonale blder er: Gr sammenhengende kanter ved bruk av 4-naboska Gr sammenhengende kanter dersom man brukes 8-naboska akk for omerksomheten!
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF230 Digital bildebehandling Eksamensdag : Onsdag 6. juni 202 Tid for eksamen : 09:00 3:00 Oppgavesettet er på : 6 sider Vedlegg
DetaljerUNIVERSITETET I OSLO
Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg
DetaljerINF1040-Kompresjon-2. (tekst, bilde, lydsignaler etc.) på en så kompakt måte. at redundant informasjon ikke lagres.
IF 4 Komresjon og kodng Tema dag :. oen begreer. Redundans 3. Dfferanse- og løelengdetransformer 4. Gray kode 5. Entro 6. Shannon-Fano og Huffman kodng 7. Lemel-Zv kodng 8. JPEG kodng Pensumltteratur:
DetaljerINF 2310 Digital bildebehandling
INF 30 Dgtal bldebehandlng FORELESNING 4 GRÅONE-RANSFORMASJONER Frtz Albregtsen emaer dag Hstogrammer Lneære gråtonetransformer t Standardserng av blder med lneær transform Ikke-lneære, parametrske transformer
DetaljerINF2310 Digital bildebehandling
INF30 Dgtal bldebehandlng Forelesnng 0 Kompresjon og kodng I Andreas Kleppe Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng Artmetsk kodng Kompendum: 8-8.3, 8.5-8.7., 8.7.4
DetaljerAnvendelser. Plass og tid. INF2310 Digital bildebehandling. Eksempler: Plassbehov uten kompresjon. Forelesning 10. Kompresjon og koding I
Anvendelser INF231 Dgtal bldebehandlng Forelesnng 1 Kompresjon og kodng I Ole Marus Hoel Rndal, foler av Andreas Kleppe. Tre steg kompresjon Redundanser Kodng og entrop Shannon-Fano-kodng Huffman-kodng
DetaljerTMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
DetaljerAnvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
DetaljerAppendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
DetaljerINF 2310 Digital bildebehandling
INF 2310 Dgtal bldebehandlng FORELESNING 4 GRÅTONE-TRANSFORMASJONER Frtz Albregtsen 1 Temaer dag Hstogrammer Lneære gråtonetransformer t Standardserng av blder med lneær transform Ikke-lneære, parametrske
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
DetaljerGeometriske operasjoner
Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl
DetaljerGeometriske operasjoner
Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerUNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 4. juni 2013 Tid for eksamen : 09:00 13:00 Oppgavesettet er på : 7 sider
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Mandag 1. juni 2015 Tid for eksamen: 14:30 18:30 Oppgavesettett er på: 6 sider Vedlegg:
DetaljerDynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet
Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v
DetaljerEKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
DetaljerEksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
Detaljer(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:
A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer
Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt
DetaljerDynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet
Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for
DetaljerLøsningsforslag øving 10 TMA4110 høsten 2018
Løsnngsforslag øvng TMA4 høsten 8 [ + + Projeksjonen av u på v er: u v v u v v v + ( 5) [ + u v v u [ 8/5 6/5 For å fnne ut om en matrse P representerer en projeksjon, må v sjekke om P P a) b) c) [ d)
DetaljerTMA4265 Stokastiske prosesser
orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.
DetaljerSparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.
ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl
DetaljerStatistikk og økonomi, våren 2017
Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9
DetaljerForelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs
DetaljerUNIVERSITETET I OSLO. Dette er et løsningsforslag
Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :
DetaljerIT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:
DetaljerØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen
DetaljerINF2310 Digital bildebehandling
INF3 Dgtal bldebeandlng Forelesnng 7 Fltrerng bldedomenet II Andreas Kleppe Høpassfltrerng: Bldeforbedrng og kantdeteksjon Gradent-operatorer Laplace-operatoren og LoG-operatoren Canns kantdetektor G&W:
DetaljerFiltrering i bildedomenet. 2D-konvolusjons-eksempel. 2D-konvolusjon. INF2310 Digital bildebehandling FORELESNING 8
Fltrerng bldedomenet INF3 Dgtal bldebeandlng FORELESNING 8 REPETISJON: FILTRERING I BILDEDOMENET Andreas Kleppe Fltrerng og konvoluson Lavpassfltrerng og kant-bevarng Høpassfltrerng: Bldeforbedrng og kantdetekson
DetaljerSimpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer
DetaljerLøsningskisse for oppgaver til uke 15 ( april)
HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene
DetaljerOppvarming og innetemperaturer i norske barnefamilier
Ovarmng og nnetemeraturer norske barnefamler En analyse av husholdnngenes valg av nnetemeratur Henrette Brkelund Masterogave samfunnsøkonom ved Økonomsk Insttutt UNIVERSITETET I OSLO 13.05.2013 II ) Ovarmng
DetaljerMASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00
MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober
DetaljerMA1301 Tallteori Høsten 2014
MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................
DetaljerFourieranalyse. Fourierrekker på reell form. Eksempel La. TMA4135 Matematikk 4D. En funksjon sies å ha periode p > 0 dersom
TMA435 Matematkk 4D Foureranalyse Fourerrekker på reell form En funksjon ses å ha perode p > dersom f(x + p) = f(x) () for alle x defnsjonsmengden tl f. Den mnste p slk at () holder, kalles fundamentalperoden
DetaljerX ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Fredag 29. mars 2019 Tid for eksamen : 14:30 18:30 (4 timer) Oppgavesettet er
DetaljerSTK desember 2007
Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
DetaljerLokale operasjoner. Omgivelser/naboskap/vindu. Bruksområder - filtrering. INF 2310 Digital bildebehandling
Lokale operasjoner INF 3 Dtal bldebehandln Naboskaps-operasjoner - I Lneær fltrern Konvolusjon Korrelasjon Gradent-operatorer Efford kap. 7.-7.. V skal bare se på teknkker blde-domenet Blde-domenet refererer
DetaljerUNIVERSITETET I OSLO
Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF30 Digital bildebehandling Eksamensdag: Mandag 6. juni 06 Tid for eksamen: 4:30 8:30 Løsningsforslaget er
DetaljerBalanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)
alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 2007 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : 5 sider
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF2310 Digital bildebehandling Eksamensdag: Onsdag 28. mai 2014 Tid for eksamen: 09:00 13:00 Oppgavesettet er på: 6 sider Vedlegg:
DetaljerEksamensoppgave i SØK Statistikk for økonomer
Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt
DetaljerNA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer
Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A
DetaljerINF 2310 Digital bildebehandling
Bruksområder - ltrerng INF 30 Dgtal bldebeandlng Fltrerng blde-domenet - Naboskaps-operasjoner Konvolusjon og korrelasjon Kant-bevarende ltre Ikke-lneære ltre GW Kap 3.4-3.5 + Kap 5.3 Av de mest brukte
DetaljerOppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere
DetaljerDe normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Median og kvartiler for hver gruppe.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave I et tlfeldg utvalg på normalvektge personer, og overvektge personer, måles konsentrasjonen av 2 ulke protener blodet.
DetaljerRayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)
IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II våren : Avbldnng Samplng og kvantserng Geometrske operasjoner Gråtonemappng og hstogramoperasjoner ltrerng blde-doménet ltrerng rekvens-doménet Kompresjon
DetaljerUNIVERSITETET I OSLO.
UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr
DetaljerKomprimering av bilder
Ltteratur : IF 3 Dgtal ldeehandlng Forelesnng nr 3-3.5.5 Komprmerng av lder Efford, kap. Data Kompresjon oen egreper Lagrng eller oversendng Kompresjonsalgortme Dekompresjonsalgortme Dekompresjon Temaer
DetaljerLøsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
DetaljerEKSAMEN ny og utsatt løsningsforslag
8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -
DetaljerSeleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
DetaljerGradient-operatorer. 1D Laplace-operator. Laplace-operatoren. INF 2310 Digital bildebehandling. Laplace-operatoren er gitt ved:
55-55 - 6 6 5 5 radent-operatorer INF 3 Dgtal bldebehandlng Naboskaps-operasoner - II Laplace-operatoren Lo-operatoren Kant-bevarende ltre Ikke-lneære ltre radent-operatorer gr en bred respons Hvor bred
DetaljerOppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
. jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
DetaljerRayleigh-kriteriet. INF 2310 Digital bildebehandling. Hvor små detaljer kan en linse oppløse? Samplingsteoremet (Shannon/Nyquist)
IN 3 Dgtal bldebehandlng Ralegh-krteret Oppsummerng II ma : Avbldnng Samplng og kvantserng Geometrske operasoner 3 Gråtone- og hstogramoperasoner 45 ltrerng blde-doménet 67 ltrerng rekvens-doménet 89 Kompreson
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider
DetaljerCOLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm
COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det
DetaljerSluttrapport. utprøvingen av
Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene
Detaljermå det justeres for i avkastningsberegningene. se nærmere nedenfor om valg av beregningsmetoder.
40 Metoder for å måle avkastnng Totalavkastnngen tl Statens petroleumsfond blr målt med stor nøyaktghet. En vktg forutsetnng er at det alltd beregnes kvaltetsskret markedsverd av fondet når det kommer
DetaljerAlle deloppgaver teller likt i vurderingen av besvarelsen.
STK H-26 Løsnngsforslag Alle deloppgaver teller lkt vurderngen av besvarelsen. Oppgave a) De normalfordelte: x og sd for hver gruppe. De skjevfordelte og de ekstremt skjevfordelte: Medan og kvartler for
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerGråtonehistogrammer. Histogrammer. Hvordan endre kontrasten i et bilde?
INF 3 råtoe-trasforasjoer Hovedsakelg fra ka. 3.-3. DIP Hstograer Leære gråtoetrasforer Stadardserg av blder ed leær trasfor Ikke-leære, araetrske trasforer Hvorda edre kotraste et blde?? Neste uke: Hstograbaserte
Detaljeri kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2
Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte
DetaljerMasteroppgave i statistikk. GAMLSS-modeller i bilforsikring. Hallvard Røyrane-Løtvedt Kandidatnr. 160657
Masteroppgave statstkk GAMLSS-modeller blforskrng Hallvard Røyrane-Løtvedt Kanddatnr. 160657 UNIVERSITETET I BERGEN MATEMATISK INSTITUTT Veleder: Hans Julus Skaug 1. Jun 2012 1 GAMLSS-modeller blforskrng
DetaljerMagnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland
Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave
DetaljerForelesning 17 torsdag den 16. oktober
Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom
DetaljerOverføringer mellom foreldre og barn. I hvor stor grad er foreldre styrt av altruisme?
Overførnger mellom foreldre og barn Økonomske analyser 5/2007 Overførnger mellom foreldre og barn. I hvor stor grad er foreldre styrt av altrusme? Eln Halvorsen og Thor Olav Thoresen Foreldre etterlater
DetaljerFleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015
Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent
DetaljerNotater. Bjørn Gabrielsen, Magnar Lillegård, Berit Otnes, Brith Sundby, Dag Abrahamsen, Pål Strand (Hdir)
2009/48 Notater Bjørn Gabrelsen, Magnar Lllegård, Bert Otnes, Brth Sundby, Dag Abrahamsen, Pål Strand (Hdr) Notater Indvdbasert statstkk for pleeog omsorgstjenesten kommunene (IPLOS) Foreløpge resultater
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 28. mars 2007 Tid for eksamen : 13:30 16:30 Oppgavesettet er på : 4 sider
DetaljerEKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG
Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG
DetaljerEksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).
Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln
DetaljerSTK1000 Innføring i anvendt statistikk Eksamensdag: Tirsdag 12. desember 2017
Eksamen : STK000 Innførng anvendt statstkk Eksamensdag: Trsdag 2. desember 207 Alle deloppgaver teller lkt vurderngen av besvarelsen. Lkke tl! Dette er et løsnngsforslag. Studenter som har kommet frem
DetaljerOppgave 3, SØK400 våren 2002, v/d. Lund
Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,
DetaljerRandi Eggen, SVV Torunn Moltumyr, SVV Terje Giæver. Notat_fartspåvirkn_landeveg_SINTEFrapp.doc PROSJEKTNR. DATO SAKSBEARBEIDER/FORFATTER ANTALL SIDER
NOTAT GJELDER SINTEF Teknolog og samfunn Transportskkerhet og -nformatkk Postadresse: 7465 Trondhem Besøksadresse: Klæbuveen 153 Telefon: 73 59 46 60 Telefaks: 73 59 46 56 Foretaksregsteret: NO 948 007
DetaljerOversikt 1. forelesning. ECON240 Statistikk og økonometri. Utdanning og lønn. Forskning. Datainnsamling; utdanning og inntekt
Overskt. forelesnng ECON40 Statstkk og økonometr Arld Aakvk, professor Insttutt for økonom Hva er statstkk og økonometr? Hvorfor studerer v fagområdet? Statstkk Metoder, teknkker og verktøy tl å produsere
DetaljerUNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5
DetaljerLøsningsskisse til eksamen i TFY112 Elektromagnetisme,
Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.
DetaljerDEN NORSKE AKTUARFORENING
DEN NORSKE AKTUARFORENING _ MCft% Fnansdepartementet Postboks 8008 Dep 0030 OSLO Dato: 03.04.2009 Deres ref: 08/654 FM TME Horngsuttalelse NOU 2008:20 om skadeforskrngsselskapenes vrksomhet. Den Norske
DetaljerNÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL
NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn
DetaljerNA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer
Sde: av 7 NA Dok. 5 Angvelse av måleuskkerhet ved kalbrernger Dokument kategor: Krav Fagområde: Kalbrerngslaboratorer Dette dokumentet er en oversettelse av EA-4/0 European Cooperaton for Accrédtaton of
DetaljerSTK1100 våren 2015 P A B P B A. Betinget sannsynlighet. Vi trenger en definisjon av betinget sannsynlighet! Eksemplet motiverer definisjonen:
STK00 våren 05 etnget sannsynlghet Svarer tl avsntt.4 læreboa Esempel V vl først ved help av et esempel se ntutvt på hva betnget sannsynlghet betyr V legger fre røde ort og to svarte ort en bune Ørnulf
Detaljer