KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen
|
|
- Ulf Øverland
- 8 år siden
- Visninger:
Transkript
1 KP. 5 Kopling, rekominsjon og krtlegging v gener på kromosomenen OVERSIKT Koling og meiotisk rekominsjon Gener som er kolet på smme kromosom skilles vnligvis ut smmen. Kolede gener kn li seprert gjennom rekominsjon Krtlegging Den fysiske vstnden mellom gener gjenspeiles ved frekvensen som de lir seprert ved Mitotisk rekominsjon Rekominsjon skjer sjelden under mitosen Ved mitostiske rekominsjoner dnnes det genetiske mosikkeri eukryoter Uvhengig utvlg_ Gener på forskjellige kromosomer Koling: To gener på smme kromosom segregerer smmen Gmeter Gmeter Overkrysning og koling fører til seprsjon v kolede gener Prentl Gmeter x Noen gener på det smme kromosomet velges ut oftere smmen enn ikke smmen I dihyride krysninger vil vvik fr 1:1:1:1 fordeling indikere t de to genene er på smme kromosom I en kjønnsundet krysning, Rekominnt 1
2 Koling v et kjønnsundet gen vvik fr 1:1:1:1 fordeling v fenotyper v hnner Tegn opp egenskpene på kromosomet og gå gjennom krysningen Koling v utosomlt gener Genotyper v F1 hunner vsløres ved test krysninger Prentle klsser overskrider ntll rekominnte klsser, dette demonstrerer koling Fig. 5.2 Chi kvdrt testen presiserer snnsynligheten for t forholdstllene eviser koling. Trnsmisjon v gmeter er sert på tilfeldige egivenheter» vvik fr fr 1:1:1:1 fordelinger kn representere tilfeldigheter eller koling» Forhold lene vil ldri være nok til å estemme om oserverte dt er signifiknt forskjellig fr forventede verdier.» Jo større prøve, jo edre vil de oserverte verdier forventes å stemme overens med forventede verdier. Chi kvdrt måler goodness of fit mellom oserverte og forventede resultter» Gjør regnskp for prøvestørrelse, eller mengden v den eksperimentelle populsjon. nvendelse v chi kvdrt testen Fremme en hypotese Nullhypotese oserverte verdier er ikke forskjellige fr de forventede verdier» For kolingsstudier ingen koling er null hypotesen» Forvent et 1:1:1:1 forhold v gmetes lterntive hypotese oseverte verider er forskjellige fr forventede verdier» For kolings studier gener er kolet» Forvent signifiknt vvik fr 1:1:1:1 fordeling nvendelse v chi kvdrttesten til en kolings studie Kryss: / x / Genotype Totlt Klsse Prentler Rekominnter Eksperiment 1 Eksperiment Oservert/Forventet Oservert/Forvente t Chi Squre Eksperiment 1 & 2 Eksperiment 1 Eksperiment 2 χ 2 = Σ (oservert forventet) 2 ntll forventet χ 2 = Σ (31 25) 2 + (19 25) χ 2 = Σ (62 50) 2 + (38 50) = 2.88 =
3 Chi kvdrt tell over kritiske verdier Rekominsjon oppstår når overkrysning under meiosen seprerer kolede gener 1909 F. Jnssen oserverte chismt, områder hvor ikke-søster kromtider til hvert homologe kromosom krysset over hverndre T.H. Morgn foreslo t disse vr seter for kromosomrekking og utveksling som resulterte i genetisk rekominsjon Gjensidig utveksling mellom homologe kromosomer er den fysiske sis for rekominsjon Genetisk rekominsjon mellom cr og r gener på Drosophils X kromosom 1931 Genetisk rekominsjon vhenger v den gjensidige utveksling v deler mellom mternle og pternle kromosomer Hrriet Creighton og rr McClintock studerte mis Curtis Stern studerte nnfluer Fysiske mrkører holder styr på spesielle kromosomdeler Genetiske mrkører vr refernsepunkter for å estemme om et spesielt vkom vr et resultt v rekominsjon Fig. 5.7 Chismt mrkerer seter for rekominsjon Chismt mrkerer setene for rekominsjon Fig. 5.8 Fig
4 Rekominsjonsfrekvensen for genpr reflekterer vtnden mellom dem. H. Sturtevnt Prosent rekominsjon, eller rekominsjonsfrekvens (RF) reflektererer den fysiske vstnden som seprerer to gener 1 RF = 1 mp unit (eller i centimorgn) Ukolede gener viser en rekominsjonsfrekvens på 50% Fig. 5.9 Fig Gener på forskjellige kromosomer Ukolede gener viser en rekominsjonsfrekvens på 50% Fig Gener lngt unn hverndre på de smme kromosomer Oppsummering v koling og rekominsjon Gener nær hverndre på det smme kromosomet er kolet og utskilles ikke uvhengig Kolede gener fører til et større ntll prentle klsser enn forventet i dole heterozygoter Meknismen for rekominsjon er overkrysning Chismt er det synlige tegn på overkrysning Gener lngt fr hverndre gir større mulighet for t chismt dnnes Rekominsjonsfrekvenser gjenspeiler fysiske vstnder mellom gener Rekominsjonsfrekvenser mellom to gener vrierer fr 0% til 50% Krtlegging: Loklisering v gener lngs kromosomet To punkts krysninger: Smmenligninger er med på å etlere reltive gen posisjoner Genererplsserti en linje lngs et kromosom Fig Krtlegging: Loklisering v gener lngs et kromosom Fig Gener er plssert i en linje lngs et kromosom 4
5 egrensninger ved topunktskrysninger Vnskelig å estemme genrekkefølgen hvis to gener er plssert nær hverndre Virkelig vstnd mellom gener lr seg ikke lltid ddere opp Prvise krysninger er tids- og reidskrevende Trepunktskrysninger: En rskere og mer presis metode å krtlegge gener på Fig nlyse v resultter for en tre punktskrysning nlyse v resulttene fr en trepunktskrysning Se på to gener v gngen og smmenlign med de prentle Fig c,d Fig. 5.13, vg vstnd X 100 = 17.7 m.u. vg pr vstnd X 100 = 12.3 m.u. pr vstnd X 100 = 6.4 m.u. vg vtnd Korreksjon for dole overkrysninger X 100 = 1,0 m.u. Interferens: ntll dole overkrysninger kn være mindre enn forventet Noen gnger er ntll oserverte dole overkrysninger mindre enn forventet hvis de to overkrysninger er uvhengige Forekomst v en overkrysning reduserer snnsynligheten for t en nnen ovekrysning vil skje i nærliggende deler v kromosomet Kromosoml interferens overkrysninger skjer ikke uvhengig Interferensen er ikke like stor lnt kromosomene eller innen et kromosom 5
6 Måle interferens Coefficient of coincidence = forholdet mellom ktuell frekvens v dco og forventet frekvens v dco Dole rekominnter indikerer rekkefølgen v tre gener Interferens = 1 coefficient of coincidence Hvis interferensen = 0, oservert og forventet frekvens er lik Hvis interferensen = 1, ingen dole overkrysninger kn skje Fi.g 5.13,d Oversikt over trepunktskryss nlyse Kryss rendyrkede mutnter med villtyper nlyser F 2 individer (hnner hvis kjønnsundet) Prentle klsser mest vnlig Dole overkryssere minst vnlig estem rekkefølgen v gener sert på prentler og rekominnter estem genetisk vstnd mellom hvert pr v gener Regn ut "coefficient of coincidence" og interferens Korresponderer genetiske og fysiske krt? Rekkefølgen v gener er korrekt fststt i genetiske krt vstnden mellom gener er ikke lltid lik i forhold til de fysiske krt Dole, triple og flere overkrysninger Mx 50% rekominsjonsfrekvens er oserverrt i en krysning Vrisjon lnt kromosomene i forhold til rekominsjonshstighet Krtleggingsfunksjoner kompenserer for unøyktigheter, men ofte upresist Gener kjedet smmen ved kolingsforhold er kjent som kolingsgrup per Fig
1 Tallregning og algebra
Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
Detaljer2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer
2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements
DetaljerEneboerspillet. Håvard Johnsbråten
Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte
DetaljerObligatorisk innlevering 3kb vår 2004
Obligatorisk innlevering 3kb vår 2004 1 I marsvin er mørk pels farge (F) dominant over albino (f), og hår (K) dominant over langt hår (k). Genene for disse to egenskapene følger prinsippet om uavhengig
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =
TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i
DetaljerKapittel 5 Statistikk og sannsynlighet Mer øving
Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?
DetaljerFaktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.
Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.
Detaljer! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før
Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr
DetaljerIntegrasjon Skoleprosjekt MAT4010
Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning
DetaljerIntegralregning. Mål. for opplæringen er at eleven skal kunne
8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene
DetaljerR1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka
Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn
DetaljerE K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:
Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00
DetaljerHva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak
Tvng og mkt Omfng v tvng og mkt, og kommunl kompetnse Hv er tvng og mkt? Tiltk som tjenestemottkeren motsetter seg eller tiltk som er så inngripende t de unsett motstnd må regnes som ruk v tvng eller mkt.
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E
TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70
DetaljerFasit. Oppgavebok. Kapittel 5. Bokmål
Fsit Oppgvebok 8 Kpittel 5 Bokmål KAPITTEL 5 5.1 8, 10, 1 b Antll pinner i en figur er figurnummeret gnget med. 5. 14, 17, 0 b gnger figurnummeret pluss. c 14, 17, 0, 5. Figur 1 4 5 Antll pinner 5 8 11
DetaljerEksempeloppgaver 2014 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis
DetaljerS1 kapittel 6 Derivasjon Løsninger til oppgavene i boka
S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)
DetaljerLøsningsforslag til Obligatorisk oppgave 2
Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s
DetaljerKapittel 4 Tall og algebra Mer øving
Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en
DetaljerM2, vår 2008 Funksjonslære Integrasjon
M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
DetaljerIntegrasjon av trigonometriske funksjoner
Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: STK1110 Sttistiske metoder og dtnlyse 1 Eksmensdg: Tirsdg 18. desemer 2018 Tid for eksmen: 09.00 13.00 Oppgvesettet er på 5 sider.
Detaljer... JULEPRØVE 9. trinn...
.... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 30 Vekstfktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Vren kostet 400 kr
DetaljerEKSAMENSOPPGAVE. Alle trykte og skrevne Kalkulator. Rute. Ola Løvsletten
Fkultet for nturvitenskp og teknologi EKSAMENSOPPGAVE Eksmen i: Brukerkurs i sttistikk STA-0001 Dto: 28.05.2018 Klokkeslett: 09.00-13.00 Sted: TEO H1, PLAN 3 Tilltte hjelpemidler: Alle trykte og skrevne
DetaljerBIO 1000 LAB-ØVELSE 1
Navn: Parti: Journalen leveres senest tirsdag 13. September 2005 i kassen utenfor labben. BIO 1000 LAB-ØVELSE 1 MENDELSK GENETIKK 6. september 2005 Faglig ansvarlig: Hovedansvarlig for lab-øvelsen: Øystein
DetaljerNytt skoleår, nye bøker, nye muligheter!
Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en
DetaljerOppgave N2.1. Kontantstrømmer
1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner
DetaljerBARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år
BARN og DIGITALE MEDIER 2012 Forelreunersøkelsen, 1-12 år Weunersøkelse 1500 forelre me rn i leren 1-12 år Bkgrunnsinformsjon Kjønn Mnn Kvinne Aler (netrekksmeny?) Hr u rn i leren mellom 1-12 år? (FILTER:
DetaljerYF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka
YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10
DetaljerIntegrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016
Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et
DetaljerLøsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse
Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse
DetaljerVår 2004 Ordinær eksamen
år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)
DetaljerSubstitusjonsmatriser
Additivt kåringytem Subtitujonmtrier Ser på hver poijon i en gitt mmentilling for eg og gir en kår for hver v poijonene. Den totle (kumultive) kåren finne å ved å ddere kåren fr hver v poijonene. Enkelt
DetaljerTall i arbeid Påbygging terminprøve våren 2013
Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer
Detaljer1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer
Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.
DetaljerLøsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse
Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske
DetaljerDen foreliggende oppfinnelsen gjelder en tank for lagring av kryogenisk fluid, f.eks. kondensert naturgass (LNG).
(12) Oversettelse v eurpeisk ptentskrift (11) NO/EP 227 B1 (19) NO NORGE (1) nt Cl. F17C 13/00 (06.01) Ptentstyret (21) Oversettelse publisert 14.03.17 (80) Dt fr Den Eurpeiske Ptentmyndighets publisering
DetaljerProblemløsning eller matematiske idéer i undervisningen?
Prolemløsning eller mtemtiske idéer i undervisningen? n Lksov Något som oft förekommer i diskussionen om skolns mtemtikundervisning är vvägningen melln prolemlösning och teori. I denn rtikel poängterr
DetaljerKapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka
Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket
DetaljerSem 1 ECON 1410 Halvor Teslo
Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
DetaljerLEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:
LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er
DetaljerNøtterøy videregående skole
Til elever og forestte Borgheim, 1. ugust 2018 Viktig info om vlg v mtemtikkfg for elever på vg1 studiespesilisering I vg1 får elevene vlget mellom to ulike mtemtikkfg. Mtemtikk 1T (teoretisk) og Mtemtikk
DetaljerTom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,
Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross
DetaljerMer øving til kapittel 3
Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?
DetaljerLEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.
LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver
DetaljerOppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.
Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?
DetaljerØving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet
Detaljer2P kapittel 5 Eksamenstrening
P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0
DetaljerB12 SKIVESYSTEM. Tabell B Bøyestivhet av skiver. (Fasthetsklasse etter NS )
δ B1 SKIVESYSTEM Tell B 1.1. Bøestivhet v skiver. (Fsthetsklsse etter NS 3473 1989) Fsthetsklsse t (m) h (m) A s = A s (mm ) N (kn) (h / R) 1 3 EI 1 15 (Nmm ) EI / EI 1 ε s 1 3 C 35, 4, 491 1 3, 1,3,63,59
DetaljerTemahefte nr. 1. Hvordan du regner med hele tall
1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10
FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10
FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t
DetaljerKapittel 3. Potensregning
Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller
DetaljerEksamen høsten 2016 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve f x x x f ( x) = 4x 5 ( ) = 5 6 gx ( ) = xln x Vi deriverer med produktregel: g ( x) = ln x+
DetaljerLøsningsforslag til obligatorisk oppgave i ECON 2130
Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.
Detaljer... JULEPRØVE
Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres
DetaljerYF kapittel 7 Flate Løsninger til oppgavene i læreboka
YF kpittel 7 Flte Løsninger til oppgvene i læreok Oppgve 701 Vinkel C er en rett vinkel. Altså er C = 90. c AB er motstående side til den rette vinkelen i treknten. Derfor er AB ypotenus. AC er osliggende
Detaljer6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper
Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele
DetaljerLøsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.
Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.
DetaljerTema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)
Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F
Detaljer3.7 Pythagoras på mange måter
Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen
Detaljer2 Symboler i matematikken
2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,
DetaljerE K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET
E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive
DetaljerSluttrapport for prosjekt nr. 421 Opdræt Plettet Havkat 2003-2004
Sluttrpport for prosjekt nr. 421 Opdræt Plettet Hvkt 2003-2004 Foto: Atle Foss Alert K. Imslnd, Akvpln-niv AS Rpport til NORA NORDISK ATLANTSAMARBEID Novemer 2004 En NORA-rpport side 1 1. Prosjektets kgrunn
DetaljerNumerisk derivasjon og integrasjon utledning av feilestimater
Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå
Detaljer75045 Dynamiske systemer 3. juni 1997 Løsningsforslag
75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;
DetaljerR1 kapittel 7 Sannsynlighet
Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke
DetaljerLøsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)
Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg
DetaljerFLERVALGSOPPGAVER ARV
FLERVALGSOPPGAVER ARV Hvert spørsmål har ett riktig svaralternativ. Arv 1 En organisme med to identiske alleler for en egenskap blir kalt A) homozygot B) dominant C) selvpollinerende D) heterozygot Arv
DetaljerSåtid og såmengde i høsthvete betydning av varmesum etter etablering om høsten
Wlen, W. & U. Arhmsen / NIBIO BOK 4 (1) 123 Såtid og såmengde i høsthvete etydning v vrmesum etter etlering om høsten Wendy Wlen og Unni Arhmsen NIBIO og frøvekster, Apelsvoll wendy.wlen@niio.no Innledning
DetaljerLøsningsforslag til øving 4
1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr
DetaljerSENSORVEILEDNING ECON 1410; VÅREN 2005
SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede
DetaljerEffektivitet og fordeling
Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning
DetaljerSTATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET
Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,
DetaljerBrøkregning og likninger med teskje
Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere
DetaljerS2 kapittel 6 Sannsynlighet
S kpittel 6 Snnsynlighet Løsninger til oppgvene i bok Oppgve 6. Ett v de 36 mulige utfllene er gunstig for hendelsen S. Alle de 36 mulige utfllene er like snnsynlige. Altså er PS ( ) 36 b Det er utfll
Detaljer9.6 Tilnærminger til deriverte og integraler
96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene
DetaljerTFE4101 Krets- og Digitalteknikk Vår 2016
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40
DetaljerKvalitetssikring av elektronisk pasientjournal - Skjema 1
70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk
DetaljerØving 13, løsningsskisse.
TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne
Detaljer1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll
Detaljer1 c 6. 1 c 2. b Olav får 1500 kr. Trine får 3000 kr. c 4 Oppgave 39 165,50 kr 6 Oppgave 40 a 0 b 28 c 9 d F.eks. 15 8 e
Fsit Fsit I gng igjen Oppgve 0 Oppgve > < > < Oppgve 9 Oppgve 6 6 Oppgve = < < < Oppgve 6 0 0 0 0 Oppgve 7 6 6 6 Oppgve 0,7 000 Oppgve 9 0,09 700 0,79 7 Oppgve 0 0, 0, 0, 0, Oppgve 0,07 0,7,,7 Oppgve Oppgve
DetaljerALTERNATIV GRUNNBOK BOKMÅL
Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt
DetaljerBioberegninger - notat 3: Anvendelser av Newton s metode
Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom
DetaljerFasthetslære. HIN Teknologisk avd. RA Side 1 av 8
HIN Teknologisk vd. R 04.0.13 Side 1 v 8 sthetslære Irgens: utdrg fr kp. 11. Hieler: Kp 8+9. Konstruksjonsmteriler Konstruksjonsmteriler er fste stoffer og skl i tillegg skl h god evne til å henge smmen.
Detaljert-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.
Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig
DetaljerLitt av matematikken bak solur
Anne Bruvold Revidert mrs 005 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med
Detaljer1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka
1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og
DetaljerLitt av matematikken bak solur
Anne Bruvold Revidert oktoer 003 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med
Detaljer510 Series Color Jetprinter
510 Series Color Jetprinter Brukerhåndok for Windows Feilsøking for instllering En sjekkliste for å finne løsninger på vnlige instlleringsprolemer. Skriveroversikt Lære om skriverdelene og skriverprogrmvren.
DetaljerInstitutt for elektroteknikk og databehandling
Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.
Detaljer6. Beregning av treghetsmoment.
Forelesningsnotter i mtemtikk Bruk v integrsjon Beregning v treghetsmoment Side 1 6 Beregning v treghetsmoment 61 Definisjoner Først de grunnleggende definisjonene: Momentkse r m en liten punktformet prtikkel
DetaljerNumerisk Integrasjon
Numerisk Integrsjon Anne Kværnø Mrch 1, 018 1 Problemstilling Vi skl ltså finne en numerisk tilnærmelse til integrlet for en gitt funksjon f (x). I(, b) = f (x)dx Teknikken vi skl diskutere klles numeriske
Detaljer