Substitusjonsmatriser

Størrelse: px
Begynne med side:

Download "Substitusjonsmatriser"

Transkript

1 Additivt kåringytem Subtitujonmtrier Ser på hver poijon i en gitt mmentilling for eg og gir en kår for hver v poijonene. Den totle (kumultive) kåren finne å ved å ddere kåren fr hver v poijonene. Enkelt ekempel: Smmentilling v to like nukleotider får kår 1, mmentilling v to ulike nukleotider får kår 0. PAM Anj Bråthen Kritofferen 1 g t t t c t t g c t c c c t g Individul core: = 6 Andre kåringmodeller kunne vært lik:1, ulik: -1 lik:1, trnijon: -½, trnverjon: -1 (trnijon: purin purin /pyrimidine pyrimidine. purin:,g trnverjon: purin pyrimidine.) pyrimidine: c,t Anj Bråthen Kritofferen 2 Skåringmodell For å få en god mmentilling v to ekvener treng en god og relitik kåringmodell. Vekten om tildele ubtitujoner kn repreentere i en ubtitujonmtrie. For nukleotider vil ubtitujonmtrien være 4 4. For minoyrer vil ubtitujonmtrien være Subtitujonmtrie om tr henyn til trnverjon/trnijon ubtitujoner i DNA: S =, c, g, t,, c c, c g, c t, c, g c, g g, g t,, t c, t g, t t, t 1 = Anj Bråthen Kritofferen 3 Anj Bråthen Kritofferen 4

2 Hvordn lge fornuftig kåringmodell For DNA ekvener er enkle kåringmodeller om ubtitujonmtrie på forrige lide oftet brukt. For proteinekvener kjer noen ubtitujoner oftere enn ndre (pg. like kjemike egenkper for noen minoyrer). Ved å t henyn til hyppige ubtitujoner vil mmentillingen bli bedre. Konklujon ubtitujonmtriene om kl bruke bør være ttitik begrunnet. Anj Bråthen Kritofferen 5 Biologike betingeler for ubtitujonmtrien Identike minoyrer bør gi høyere kår enn en ubtitujon. Konervtive ubtitujoner bør få høyere kår enn ikke konervtive ubtitujoner. Forkjellige ubtitujonmtrier bør bruke for forkjellige dtett. Smmentilling v like ekvener om for ekempel mu og rotte bør bruke en nnen ubtitujonmtrie enn ved mmentilling v ekvener fr for ekempel mu og gjær. Med ndre ord ubtitujonmtrien bør være tilpet den evolujonære ditnen mellom ekvenene om blir mmentilte. Anj Bråthen Kritofferen 6 To mye brukte ubtitujonmtrier PAM Point Accepted Muttion (Dyhoff, Schwrtz, nd Orcutt, 1978) BLOSUM BLOck SUbtitution Mtrice. (Henikoff nd Henikoff, 1992). PAM Bygger på to typer mtrier: PAM Mrkov overgngmtrie en tbell med etimerte nnynligheter for lle overgnger gitt en underliggende evolujonær modell. PAM ubtitujonmtrie tbell v kåringer for lle mulige pr v minoyrer. Anj Bråthen Kritofferen 7 Anj Bråthen Kritofferen 8

3 Underliggende modell En hver poijon i ekvenen evolverer i henhold til en Mrkov kjede og uvhengig v de ndre poijonene. Alle Mrkov kjedene nt og h mme overgngmtrie P. Dyhoff et l. (1978) etimerte et trinn overgngmtrien P fr mmentilling v proteinekvener. Anj Bråthen Kritofferen 9 Anj Bråthen Kritofferen 10 PAM1 overgngmtrien PAM1 overgngmtrien er en Mrkov overgngmtrien brukt på en tidperiode hvor det nt t 1% v minoyrene opplever en punktmutjon. Etimering v PAM1 overgngmtrien 1. Smmentill proteinekvener om er mint 85% like. 2. Rekontruer fylogenetike trær og finn ekvenene til forfedrene. 3. Tell ntll minoyre ubtitujoner om kjer inni treet (dv. de mutjonene om blir keptert ved elekjon). 4. Bruk ntllene for å etimere nnynligheter for forkjellige overgnger. Anj Bråthen Kritofferen 11 Anj Bråthen Kritofferen 12

4 Steg 1: Finn troverdig dt Dyhoff et l. (1978) brukte multiple mmentillinger uten gp v betemte konerverte områder fr nært relterte proteiner. 71 proteingrupper, totlt 1572 ubtitujoner. Innd i blokken er lle pr v to og to ekvener mindre enn 15% forkjellige. Dermed håper mn å unngå å t med punkter hvor det hr vært mer enn en ubtitujon. Rekontruer fylogenetike trær og finn ekvenene til forfedrene Smmentillingen bruke å til å finne det/de underliggende evolujonære trærne (muligen mer enn et). Kontruer mkimum primoni trær Et mkimum primoni tre er den tretrukturen om fører til færret totlt ntll ubtitujoner i treet. Ekempel: Dtett AA, AE og EE Anj Bråthen Kritofferen 13 Anj Bråthen Kritofferen 14 Hvorfor bruke trær? For å unngå t noen ekvener blir overrepreentert, dv. ubtitujonen blir telt for ofte. Trær Sekvenene blir gruppert riktig, dv. veldig like ekvener hvner nært hverndre i treet. Vi får flet overgnger i nærliggende ekvener og færre for mer fjerntliggende ekvener, dv. lengre opp i treet. Dermed vil ikke ubtitujonene mellom fjerne ekvener telle unturlig mye. Anj Bråthen Kritofferen 15 Anj Bråthen Kritofferen 16

5 Ekempel: mmenlikning v multippel mmentilling og trær AA AE EE Obervjonmtrie Ant t minoyrene er nummerert fr 1 til 20. Ant videre for enkelhet kyld t det kun er et primino tre om repreenterer dtene. L A j,k være ntll ubtitujoner fr j til k om er obervert i treet. Reultt, en obervjonmtrie: Denne mtrien bruke til å etimere en Mrkov overgngmtrie. Anj Bråthen Kritofferen 17 Anj Bråthen Kritofferen 18 Mrkov overgngmtrie 1. For lle pr (j,k) definer obervert reltiv frekven for ubtitujonen j k: j,k er d en etimert nnynlighet. 1. Skler nnynlighetene: j k Skleringkontnten c Innføre for å t henyn til evolujonær vtnd. Målet er å velge c lik t overgngmtrien er nyttig når en kort evolujonær ditne nt. Mer prei: Velg c lik t 1% v minoyrene forvente å mutere i løp v en tidenhet. Tidenheten klle en evolujonær vtnd på 1 PAM. Skleringkontnen c må være pelig liten lik t p j,j 0 lle j. Anj Bråthen Kritofferen 19 Anj Bråthen Kritofferen 20

6 Hvordn velge c Vi ønker t nnynligheten for t poijonen kl endre eg etter 1 PAM kl være 1%: For å betemme c er det tiltrekkelig å e på en v poijonene i ekvenen. Dv. vi er kun på en v de prllelle Mrkov kjedene. L Z n = minoyren i vlgt poijon ved tid n. Snnynligheten for t poijonen vil mutere etter 1PAM tidenhet er gitt ved: Hvor q j er den oberverte frekvenen til minoyre nummer j i blokken v mmentilte proteiner. Anj Bråthen Kritofferen 21 Anj Bråthen Kritofferen 22 Dermed hr vi: Hvordn gjøre overgngmtrien om til en kåringmtrie? Ved å ette inn de etimerte nnynlighetene (frekvenene) for q j og j,k finner vi c: Ant to proteinekvener = n og =b 1 b 2 b 3 b n med evolujonær vtnd = 1PAM. Skåren til mmentillingen v med finner vi ved å mmenlikne hypoteene H 0 og H A. Vi hr nå funnet PAM overgngmtrie, men vi ønker en kåringmtrie. H 0 : og er ikke belektet (dv. vi hr en tilfeldig mmentilling). H A : og er belektet (dv. vhenger v vi en Mrkov modell) Anj Bråthen Kritofferen 23 Anj Bråthen Kritofferen 24

7 Under hypoteen H 0 hr vi en tilfeldig mmentilling: Under H A vil derimot poijonene i ekvenene være vhengige v hverndre vi den tidligere bekrevne Mrkov modellen. Ekempel: ekven ekven Ant t minoyre j forekommer med nnynlighet q j. D vil nnynligheten for å få den tilfeldige mmentillingen være: P(poijon 3 = P) P(poijon 3 forndre fr P til R) P H0 (mmentillingen) 1 tidenhet mmentilling v P og R i en gitt poijon) = Siden de forkjellige poijonene utvikler eg uvhengig v hverndre hr vi: (mmentillingen) Anj Bråthen Kritofferen 25 Anj Bråthen Kritofferen 26 Skåringmodell I en ønket kåringmodell ønker vi høy kår hvi ekvenene i mmentillingen hr tor nnynlighet for å være belektet. Skåren blir derfor i PAM vlgt om en mmenlikning v nnynlighetene under H 0 nd H A. Likelihood rtio Skår for mmentillingen = P H A ( mmentillingen) PH ( mmentillingen) 0 Anj Bråthen Kritofferen 27 Anj Bråthen Kritofferen 28

8 Log likelihood rtio Hvorfor bruke log? Av mtemtike/teoretike grunner er det lettere å regne med log-rtio. P H ( ) Skår for mmentillingen = log A mmentillingen PH ( mmentillingen) 0 For å finne nnynligheten til uvhengige obervjoner gnger vi nnynligheten til hver v obervjonene med hverndre. Ved å t log til nnynligheten vil det bety å ddere log v nnynlighetene til hver v obervjonene. Vi hr oppnådd en dditiv kåringmodell. P H ( ) S(mmentillingen) = log A mmentillingen PH ( mmentillingen) 0 Dermed hr vi t element (,b) i PAM ubtitujonmtrien er (evt. vrundet til nærmete heltll) Anj Bråthen Kritofferen 29 Anj Bråthen Kritofferen 30 Hv betyr verdiene til S,b? PAMn kåringmodell hvi Dv. S,b < 0 betyr t mmentilt med b er mer nnynlig i en tilfeldig mmentilling enn for to ekvener med reltiv vtnd = 1PAM. For ekvener om hr en reltiv ditne på n PAM tidenheter. MERK: n PAM enheter behøver ikke bety t n % v minoyrene er forkjellige iden ubtitujonene knkje i mme poijon mnge gnger. Ant P er overgngmtrien for 1PAM tidenheter å hr vi fr Mrkov kjede ( n) teori t n-teg overgngnnynligheten p er gitt om overgngen fr til b i P n, b. Skåren blir d: Anj Bråthen Kritofferen 31 Anj Bråthen Kritofferen 32

9 HUSK FORELESNINGSFRI UKE OKTOBER Anj Bråthen Kritofferen 33

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Inferens om forskjell i forventning ved å bruke to avhengige utvalg (10.3) ST0202 Statistikk for samfunnsvitere Kap. 0: Inferen om to populajoner Situajon: Det er to populajoner om vi ønker å ammenligne. Vi trekker da et utvalg fra hver populajon. Vi kan ha avhengige eller uavhengige utvalg. ST00 Statitikk for amfunnvitere

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

FYS3220 Uke 43 Regeneverksted

FYS3220 Uke 43 Regeneverksted FYS Uke Regeneverked Oppvrmingoppgve Finn H() for følgende kreer.... b Signlmodellering: Sgnn... 7 Syring v Ovn. PID (H89-)... 75 Fekifer (ekmen H-)... NB! Oppgve 7 er den vikige oppgven denne uk. Den

Detaljer

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen KP. 5 Kopling, rekominsjon og krtlegging v gener på kromosomenen OVERSIKT Koling og meiotisk rekominsjon Gener som er kolet på smme kromosom skilles vnligvis ut smmen. Kolede gener kn li seprert gjennom

Detaljer

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,

Detaljer

Institutt for elektroteknikk og databehandling

Institutt for elektroteknikk og databehandling Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

+ c ± ± π 2. Derivasjon (t n ) = nt n 1 (sin t) = cos t (cu) = cu (cos t) = sin t (u + v) = u + v (tan t) = 1. ( u

+ c ± ± π 2. Derivasjon (t n ) = nt n 1 (sin t) = cos t (cu) = cu (cos t) = sin t (u + v) = u + v (tan t) = 1. ( u Lineær lger og differenillikninger formelmling verjon 8 Alger,, c, x R Kvdrtetning: ( + = + + grder in co tn Kvdrtetning: ( = + Konjugtetningen: ( + ( = Kvdrtrotkonjugt: ( + ( = Komplekkonjugt: ( + i(

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer 2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen)

Tema 2: Stokastiske variabler og sannsynlighetsfordelinger Kapittel 3 ST :44 (Gunnar Taraldsen) Tem 2: Stokstiske vribler og snnsynlighetsfordelinger Kpittel 3 ST1101 2019-01-13 12:44 (Gunnr Trldsen) Det nts i nottet t S er et utfllsrom utstyrt med en snnsynlighet P (A) for enhver hendelse A F. F

Detaljer

Brann-/branngasspjeld

Brann-/branngasspjeld 4/2.3/N/3 rnn-/brnngpjeld FK-SE Typegodkjent v SITAC, typegodkjennele nr. 0176/06 TROX Aurnor Norge AS Telefon: +47 61 31 00 Telefk: +47 61 31 10 Potbok 100 e-pot: firm@urnor.no 2712 rndbu www.urnor.no

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1 NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek-

Oppgave 1. (x i x)(y i Y ) (Y i A Bx i ) 2 er estimator for σ 2 (A er minstek- MOT310 Statitike metoder 1 Løningforlag til ekamen vår 010,. 1 Oppgave 1 a) Modell: Y i α + βx i + ε i der ε 1,..., ε n u.i.f. N 0, σ ). b) Vil tete: Tettørrele H 0 : β 0 mot H 1 : β 0 B β T t n under

Detaljer

Øvingsforelesning 9: Minimale spenntrær. Daniel Solberg

Øvingsforelesning 9: Minimale spenntrær. Daniel Solberg Øvingsforelesning 9: Minimle spenntrær Dniel Solerg Pln for gen Gjennomgng v øving 8 Minimle spenntrær Kruskl Disjoint Set Forest Prim Noen utvlgte eksmensoppgver 3 Minimle spenntrær Hv er et minimlt spenntre?

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Innhold HVA ER REGULERINGSTEKNIKK... Generell bekrivele v et tyrt ytem... Ekemel: Amunden å ki til Sydolen.... Synd hn kom ldri til ydolen!... 6 EKSEMPEL

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a = TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

FASIT, tips og kommentarer

FASIT, tips og kommentarer FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

1 Laplacetransform TMA4125 våren 2019

1 Laplacetransform TMA4125 våren 2019 Lplcernform TMA45 våren 9 Lplcernform er en eknikk vi kl bruke il løe ordinære differenillikninger. For de føre er de en mye mer elegn eknikk enn den du lære i M3, for de ndre kler den en bredere kle v

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

Arvelighet av pelsfarver hos collie

Arvelighet av pelsfarver hos collie Arvelighe v pelfrver ho collie Siri H. og Tom V. Segld Rockhound Rough Collie Eer å h hør divere moridende og il del merkelig informjon om rvelighe v frver ho collie, vr de ikke ll informjonen om eme.

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

Dette gir følgende likning for nedbør som funksjon av høyde over havet: p = z/2

Dette gir følgende likning for nedbør som funksjon av høyde over havet: p = z/2 Fait ekamen HYD200 2005-05-8 Oppgave Svar oppgave nedbør a) i. Punktnedbør: Den nedbørmengden om faller i et punkt på landoverflaten. De flete metoder av nedbørmåling gir punktverdier. Man ønker likevel

Detaljer

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler.

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler. Læringsmål for 9. trinn: : rosent Regne med prosent og promille, med og uten digitle hjelpemidler Tolke og regne med prosentpoeng 1, 2, 7, 15 b, 17b, 18 17 otenser og kvdrtrot Regne med potenser 1b, 1d,

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Kosmologisk perturbasjonsteori: Einsteintensoren vender tilbake

Kosmologisk perturbasjonsteori: Einsteintensoren vender tilbake Kosmologisk perturbsjonsteori: Einsteintensoren vender tilbke Vi hr funnet Boltzmnnligninger for fotoner, bryoner og mørk mterie. Om vi hdde ønsket det, kunne vi også stt opp ligningene for msseløse nøytrinoer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Fredg 8. desemer 2017 Tid for eksmen: 14:30 18:30 Oppgvesettet er på 5 sider. Vedlegg: Ingen

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Kapittel 8 TUTORIALS-CASES

Kapittel 8 TUTORIALS-CASES Kpittel 8 Tutorils nd cses (exmple problems) re collected in this chpter. The tutorils re exmples ( in detil) of how to solve problems with MATLAB nd FEMLAB. The CASES re smples of problems to be solved

Detaljer

Eksamen høsten 2015 Løsninger

Eksamen høsten 2015 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 30 Vekstfktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Vren kostet 400 kr

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Implementering av miljøinformasjon i en BIM modell Forprosjektrapport

Implementering av miljøinformasjon i en BIM modell Forprosjektrapport Implementering v miljøinformsjon i en BIM modell Forprosjektrpport 02.04.2009 Høgskolen i Østfold H09B12 Chrlotte Dngstorp Ove-Eirik Krogstd Ain Josefine Stene Lrs-Christin Thowsen HØGSKOLEN I ØSTFOLD

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

1 Mandag 25. januar 2010

1 Mandag 25. januar 2010 Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t

Detaljer

TRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS

TRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS el : Grunnleggene igitl CMO NGVR ERG I. Innhol. pmo trnitor TRNITOR OM RTER nvent i enkle logike CMO porter. erie- og prllellkoling v nno- og pmo trnitorer. Inverter, NN, NOR og generelle porter. Komple-

Detaljer

Nøtterøy videregående skole

Nøtterøy videregående skole Til elever og forestte Borgheim, 1. ugust 2018 Viktig info om vlg v mtemtikkfg for elever på vg1 studiespesilisering I vg1 får elevene vlget mellom to ulike mtemtikkfg. Mtemtikk 1T (teoretisk) og Mtemtikk

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004

NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004 NORSK SCHNAUZER BOUVIER KLUBB S HELSE- OG GEMYTTUNDERSØKELSE 2004 Utført v vlsrådet 2003/2004 INNLEDNING NSBK s Gemytt og Helseundersøkelse ble sendt ut i jnur 2004, med svrfrist i februr 2004. Lister

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver Snrveien til MySQL og Dremwever CS5 Oppgver Kpittel 1 Innledning Oppgve 1 Forklr kort hv som menes med følgende egreper: disksert weområde serversert weområde Oppgve 2 Hv er viktig å tenke gjennom når

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

Mer om Markov modeller

Mer om Markov modeller Høyere ordens Markov modeller Mer om Markov modeller p h mnr = Pr( Y j+ 3 = ah Y j+ 2 = am, Y j+ 1 = an, Y j = a : r For en k-te ordens Markov modell som modellerer en DNA prosess vil det være 3*4 k mulige

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

Digital CMOS VDD A Y INF1400 Y=1 A=0 A=1 Y=0. g=0 g=1. nmos. g=0 g=1. pmos. 3. En positiv strøm (strømretning) vil for en nmos transistor

Digital CMOS VDD A Y INF1400 Y=1 A=0 A=1 Y=0. g=0 g=1. nmos. g=0 g=1. pmos. 3. En positiv strøm (strømretning) vil for en nmos transistor igitl MOS INF4 NGVR ERG efinijon v inære verier:. Logik V. 2. Logik V SS, GN. I. Trnitor om ryter 3. En poitiv trøm (trømretning) vil for en pmos trnitor llti gå fr ource til rin. II. MOS Inverter. nmos

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin?

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin? 2357434042 A. Om din stilling Leger 1 11 Kryss v slik: Ikke slik: Klinisk stilling: Turnuslege Assistentlege Overlege B. Om din erfring med ruk v dtmskin 1 Eier du en dtmskin? J Nei 2 Hvor mnge fingre

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

BLAST. Blast. Noen mulige sammenstilling av CHAEFAP og CAETP. Evolusjonær basis for sekvenssammenstilling. Sekvenssammenstilling og statistikken brukt

BLAST. Blast. Noen mulige sammenstilling av CHAEFAP og CAETP. Evolusjonær basis for sekvenssammenstilling. Sekvenssammenstilling og statistikken brukt Blast BLAST Sekvenssammenstilling og statistikken brukt Finner best mulig sammenstilling(er), evt. finner veldig gode sammenstillinger. Kan teoretisk unngå å finne beste sammenstilling. Avgjør om sammenstillingen

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Løsningsforslag til Obligatorisk oppgave 2

Løsningsforslag til Obligatorisk oppgave 2 Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s

Detaljer

IKT-trapp for Lade skole

IKT-trapp for Lade skole IKT-trpp for Lde skole Vr mot ndre pi nettet som du vil t ndre skl vre mot deg. Vr forsiktig med i gi ut opplysninger om deg selv. Skl du mote noen du hr chftet med p5 nett? T med en voksen eller en venn.

Detaljer

Eksempel på dimensjonering etter indeksmetoden. Eksempel. Trafikkbelastning. N=0,65 mill. TRAFIKKGRUPPE B. 4 cm Ma 6 cm Eg 8 cm Gk,, T2

Eksempel på dimensjonering etter indeksmetoden. Eksempel. Trafikkbelastning. N=0,65 mill. TRAFIKKGRUPPE B. 4 cm Ma 6 cm Eg 8 cm Gk,, T2 Eksempel på dimensjonering etter indeksmetoden Eksempel 4 cm M cm Eg 8 cm Gk,, T2 cm grus, T1 Cu=20, godt drenerende Silt, T4 s u =44 kp ÅDT = 1200 Andel tunge kjøretøyer = 12 % Årlig trfikkvekst = 2 %

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Hvor krum er jorden?

Hvor krum er jorden? I mverkn melln Nämnren oc Tngenten DAG GULAKER & KJARTAN TVETE Hvor krum er jorden? eller: Hvor feil kn det bli? Hur långt är det till orionten? Hur ög är toppen v jön? Hur långt är det till jorden medelpunkt?

Detaljer

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er Kpittel Projeksjon En projeksjon er en lineærtrnsformsjon P som tilfredsstiller P x P x. for lle x. Denne ligningen sier t intet nytt skjer om du benytter lineærtrnsformsjonen for ndre gng, og mn kn tenke

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Eksamen våren 2018 Løsninger

Eksamen våren 2018 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 5x+ y = 4 x+ 4y = 6 Vi multipliserer likningen 5x+ y = 4 med på egge sider og får 10x+ 4y

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

BIP200 Bore- og brønnvæsker

BIP200 Bore- og brønnvæsker EKSAMEN I: BIP00 Bore- og brønnvæsker TID FOR EKSAMEN:. juni 04 KL. 08:30 - :30 TILLATTE HJELPEMIDLER: Klkultor OPPGAVESETTET BESTÅR AV: 3 OPPGAVER PÅ 4 SIDER + VEDLEGG å 3 sider. Generell inormsjon: Alle

Detaljer

S2 kapittel 6 Sannsynlighet

S2 kapittel 6 Sannsynlighet S kpittel 6 Snnsynlighet Løsninger til oppgvene i bok Oppgve 6. Ett v de 36 mulige utfllene er gunstig for hendelsen S. Alle de 36 mulige utfllene er like snnsynlige. Altså er PS ( ) 36 b Det er utfll

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 2, høst 2005 Krfelekronkk Elkrf hø, Lønngforlg l øvnge, hø 5 Ole-Moren Mgår HA 5 Oppgve 4 3 v voe vol - - -3-4 p p 3p 4p V v 3 3 n V [ co ] 3 3. 5 b Derom nvenelen krever ørre røm enn lgjengelge hlvleerkomponener åler,

Detaljer

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

SLUTTPRØVE. Løsningsforslag. Antall oppgaver: 4 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG Høgkolen i elemark Avdeling for teknologike fag SLUPRØVE Løningforlag EMNE: EE49 Modellbaert regulering LÆRERE jell-erik Wolden og Han-Petter Halvoren LASSE(R): IA DAO: 9.5. PRØVEID, fra-til (kl.): 9..

Detaljer

- KALKULATOR (Som ikke kan kommunisere med andre) - SKRIVE- og TEGNESAKER

- KALKULATOR (Som ikke kan kommunisere med andre) - SKRIVE- og TEGNESAKER KANDIDATNUMMER: EKSAMEN EMNENAVN: MATERIALLÆRE EMNENUMMER: TEK2091 EKSAMENSDATO: 14. desember 2017 TID: 3 timer: KL 09.00 - KL 12.00 EMNEANSVARLIG: Henning Johnsen ANTALL SIDER UTLEVERT: 5 TILLATTE HJELPEMIDLER:

Detaljer

Fasit. Oppgavebok. Kapittel 5. Bokmål

Fasit. Oppgavebok. Kapittel 5. Bokmål Fsit Oppgvebok 8 Kpittel 5 Bokmål KAPITTEL 5 5.1 8, 10, 1 b Antll pinner i en figur er figurnummeret gnget med. 5. 14, 17, 0 b gnger figurnummeret pluss. c 14, 17, 0, 5. Figur 1 4 5 Antll pinner 5 8 11

Detaljer

Eksamen S2 høst 2009 Løsning Del 1

Eksamen S2 høst 2009 Løsning Del 1 S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

TRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS

TRANSISTOR SOM BRYTER anvendt i enkle logiske CMOS el : Grunnleggene igitl CMO. Innhol. 2. Trnitor om ryter. Kpittel.3 ie 8. 3. CMO inverter. Kpittel.4. ie 9. 4. NN port. Kpittel.4.2 ie 9. 5. Komintorik logikk. Kpittel.4.3 ie 9 -. 6. NOR port. Kpittel.4.4

Detaljer