Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk

Størrelse: px
Begynne med side:

Download "Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk"

Transkript

1 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Innhold HVA ER REGULERINGSTEKNIKK... Generell bekrivele v et tyrt ytem... Ekemel: Amunden å ki til Sydolen.... Synd hn kom ldri til ydolen!... 6 EKSEMPEL PÅ HØYERE ORDENS SYSTEM... 7 PID REGULATORER... 7 Om PID regultorer... 7 Mtemtik bekrivele v PID regultoren...0 TEST AV EN I REGULATOR... Hn kom frm men ikke ført!... OPTIMAL PI - STYRING AV -ORDENS SYSTEM... 4 Vi trter med å utvide modellen v Amunden til en -orden modell:... 4 Priniet for otimliering:... 5 Sett modellen v Amunden inn i PI regultoren... 6 Bruk litt og herk teknikk... 7 Fortetter med Amunden... 8 Otimlierer -grd regultoren... 9 Hr funnet P og I Hn kom frm og hn kom frm ført... Hv er reguleringteknikk Tilbkekobling = grunnlget for reguleringteknikk. Ek: Ovn med termott. Hei med etjeenor Krn om kl heie mteriler o til et betemt nivå Stellitt om kl o i en betemt bne Fly om kl o i en betemt htighet eller høyde. Ubåt om kl ned til et betemt dy. Generell bekrivele v et tyrt ytem Felle for lle regulerte ytemer er t de hr en inngng hvor vi tiller inn våre ønke (Termotten ) en utgng om tilvrer roeen reultt. (Temerturen) Reulttet måle med en enor. Feilen er forkjellen mellom enoren utgng og vårt ønke

2 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Hr bedt om 8 grder Senoren (Termometeret) måler t det er 6, Feilen= grder. Reguleringytemet bruker feilen til å tyre ådrget. For lv temertur, termotten gir å med trøm lik t ovnen blir vrmere. Ekemel: Amunden å ki til Sydolen. Pådrg = Motivjon Poijonen til ydolen Avtnd om gjentår feil + Regultor Motivjon Pådrg Proe, Vut Sytem Poijon i øyeblikket - Senor GPS Vinn = oijonen til ydolen Feil = Avtnd om gjentår Regultor=Bruker feilen for å generere motivjon Ser t dette likner å et generelt tilbkekoblet ytem. B Vinn C + Vum A Vut Proeen er her det å gå å ki med C=, B= -* GPS måler

3 Forelening FYS0 uke 4 H009 hundenn. Amunden modellen = roeen modell T Tilbkekobling og tbilitet A=regultor og roe Proeen trenger en modell: Modell for å gå å ki med hundenn = Amundenfktoren. tyrke og fyikk T+ ting om bremer o når frten øker. P =Enkelt roduktledd. Vi gnger feilen med en fktor P A Re gultor modell P T Regultor roduerer motivjon =Pådrg A blokken i et tilbkekoblet ytemet A-blokk i vår generelle ABC- blokkbekrivele Feil=Gjenverende vtnd A blokken inneholder regultor P Proe = /(T+) Nåværende oijon V Vo Error = GPS oijonener = Nåverende oijon Vi=Ønket luttoijon = diff mellom ønket og nåværende oijon H Vo Vi AC ( AB ) C= B=-

4 Forelening FYS0 uke 4 H009 Vo A ( AB) Vi Ønke om å ydolen være 0 hjemme t=0 Tilbkekobling og tbilitet Vinn = Sydolen I tiden t=0 tiller vi inn målet /ønke vårt og ender det inn å inngngen. Lr Vi være en rngfunkjon fr det å være fornøyd med å være der mn er til lutelig å ønke å være å ydolen. Vi( t) u( t) A( ) Vo( ) ( AB( )) = g vtnd til ydolen Teter om Amunden kommer frm til olen. Vo( ) H( ) Vi( ) Vo( ) ( AC( ) AB( )) Setter inn Amunden modellen i utrykket for en P-regultor P τ P τ

5 Forelening FYS0 uke 4 H009 τ P P lim Vut(t) limvut() t 0 Tilbkekobling og tbilitet Litt lgebr ynter o Endeverditeoremet kn fortelle om Amunden vil nå frm til ydolen lim Vut() 0 Finner grenen når 0 limvut() 0 limvut() ydolen 0 ydolen Ser t Vut om er Amunden g oijon ldri vil nå frm til ydolen elv om vi gir hm uendelig med tid Ønket ydolen Vinn=/ 0 0 t=0 t=0 Vut Synd hn kom ldri til ydolen! Hn iboende ltk, motvilje mot å gå å ki, frikjonmottnd i kiene = motivjonkrften Synd.. Hvorfor ikke:

6 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Motivjonkrften ble lik bremekrften før hn nådde frm. D vr det ingen krft igjen til å gå det ite tykket. To krefter om er kkurt tore nok til t de knellerer hverndre. Motivjonkrften = bremekrften To krefter D toer det hele.. Ekemel å høyere orden ytem Ønke om å komme til 4 etje i en bygning, Heien er roeen eller ytemet. Betår v en bok med me, wire og motorytem. Ønke Hei, roe, ytem Kn ocillere Tyik -orden ytem. PID regultorer Om PID regultorer Produkt, Integrjon og Derivjon. En enor måler roeen utgng eller reultt. Smmenlikner med ønke PID Senor Smmenlikner

7 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Ønke - Reultt = feil Hr vi bre kommet til etje er feilen = etjer. Kn forttt øke krften til heieverket Feilen betemmer krften eller ådrget. Integrjon og derivjon introduerer nye -er om kn gjøre ytemet utbilt og føre til ocilljon. -etge Betem ådrg Nye -er Ønke Vinn + Feil Err() Regultor Produkt Integrjon + Pådrg E() Proe, Sytem, Vut H() Reultt Vut Derivjon B=- Figur PID Reguleringytem L ønke være Vinn og reulttet være Vut lik t feilignlet blir Vi ønker nå å minimliere Err(). En enkel måte å gjøre det å er å multiliere feilen med en fktor. Vi lger med ndre ord en regultor bert å et roduktledd. Pådrget Når vi hr en feil vil vi få et ådrg. Når Ønke=Vinn Reultt=Vut Minimlier feilen Bre P-Ledd Err=(Vinn Vut). Pådrg = P * Err Pådrg or feil

8 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet feilen er 0 vil vi ikke h noe ådrg. Pådrg går mot null når utgngen nærmer eg målet. Reultt: Vi vil ldri nå helt frm. Integrtor + Derivtor. Sender feilen det rllelt inn i et rodukt, integrjon og derivjonledd. Deretter ummerer vi reulttet og benytter ummen om ådrg. Integrlleddet integrerer o vviket, lik t det må gå mot 0. Derivjonleddet gir et ådrg roorjonlt med den deriverte til feilen. Bremer rke endringer i feilen. Aldri helt frm Forbedring Dette klle en PID regultor. Hv gjør integrl leddet Hv gjør derivjonleddet

9 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet v(t) ønke(t) Feilen ende til regultoren inngng Reultt(t) tid Hdde Amunden htt denne motivtoren kunne hn riikert å løt frm og tilbke å olområdet gnke lenge før hn hdde fått lntet flgget. Mtemtik bekrivele v PID regultoren ådrg( t) P error( t) I 0 error( t) dt D error' ( t) Pådrg( ) P Error( ) I Error( ) D Error( ) PID er her kontnte fktorer om regulerer mengden v bidrg fr hver v regultorelementene PID fktor Pådrg( ) P I D Err( ) hvor vi kn flytte Err() ut PID( ) Err( )

10 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet P, I og D Er fktorer om regulerer hvor mye v hvert ledd om kl være med å telle i ådrget. Blokkkjemet i Figur må kunne krive å mme form om tidligere tilbkekoblede ytemer. A leddet vil d betå v PID() og H() men B vil være en ren inverter. C leddet er ikke med. Vut() Vinn() AC G( ) AB PID( ) H ( ) B( ) PID ( ) H ( ) PID ( ) H ( ) PID( ) H ( ) PID( ) / H ( ) PID( )

11 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Tet v en I regultor Vi bytter nå ut roduktleddet og teter iteden en regultor med et integrlledd. Knkje dette vil få Amunden i mål! Vo( ) H( ) Vi( ) Smme modell om før men ny regultor Vo( ) ( AC( ) AB( )) I Regultor τ I I τ I I limvut() 0 0 I 0 I I I Endeverdi teoremet. Nå gikk det bedre Hdde hn htt en lik motivjon hdde hn nådd frm. Hn kom frm men ikke ført! I regultor er trege. Ikke ikkert hn ville kommet frm før Schott

12 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Ønket ted å være Sydolen Vinn= u(t)/ 0 0 Vut t=0 t=0 Ved å kombinere P, I og D nå målet fortet Ikke mulig å følge inngngen 00%, PID-fktorene betemmer bnen frm til målet. I-regultor er for treg Ønker og muligheter Kort reietid: Rk trt, rkt to med riting. Øke reietiden mot en bedre lnding. Kn unett ldri lutelig være i fjerde etje når vi trykker inn knen 4. Momentn forflyttning ikke mulig. En Hei

13 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet For fort Otiml Ønket For lngomt. En eller flere oler ligger nære origo i - lnet Amunden kn riikere å krue frm og tilbke over olltået en tund før hn greier å roe eg ned. Otiml PI - tyring v -orden ytem Vi trter med å utvide modellen v Amunden til en -orden modell: H() ( ) ( ) NB! τ, τ er en del v ytemet. Skl ikke otimliere Vi utvider Amunden modellen og lr roeen, ytemet eller Amunden H() være er DC-reonen (=0). Amunden (H()) hr to oler (Hn ville jo ført til Nordolen) Derved to knekkunkt i Bodelottet H db db=kont /τ /τ

14 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet H() ( ) ( ) Tidfunkjonen finner vi ved ( A ) B ( ) delbrøkolting og h( t) A e t / t / B e bibliotekolg Priniet for otimliering: Mkimer vtnd fr origo til førte ol i ventre hlvln lng σ-ken. Ae -t/ τ Be -t/τ jω -ln σ =/τ =/τ Hvorfor hjeler det? Svr: Reldel gir ohv til forinkeleledd v tyen Reldel gir

15 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet t / Ae. Jo nærmere origo jo tørre τ Jo tørre τ de lengre tid før virkningen dør ut. Viktig t olene dør ut å fort om mulig. Nær origo Seiglivet Otimlt tyringytem D når vi rkere når ønkede verdien å utgng. Den olen om ligger nærmet origo er den om teller. Den lever lenge etter t lle ndre hr dødd ut. Det er den om å ikt forinker ytemet i å nå frm til ønket verdi. Huk Forinker ytemet i å nå frm Sett modellen v Amunden inn i PI regultoren

16 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet PID( ) G() / H ( ) PID ( ) ( P I ) ( ) P I Sett - orden ytemet inn i regultoren utvid med ( P )( ) I P I G( ) P P I I Algebrer o frm til vi hr lene Kn ikke løe tredjegrd uttrykk å hvordn finne olene. Bruk litt og herk teknikk Sett o grd utrykk å generell fktoriert form. ( ) Multilier ut leddene og mle like grder v. Dette gir et ett med enklere likninger. Likne reulttet med originl uttrykket over. 4 Fokuer å å otimliere olene. for det enkel

17 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet 5 Betem å P og I likningettet Fortetter med Amunden ) ( ) ( I P G Skriv nevner å generell form Gnger ut nevner (en linje å tvl) ) ( I P T T G Ikke vi dette å tvl 0 I P likner ledd v mme grd Inneholder ikke I og P Huk t τ og τ er betemt v ytemet. Vi kl ikke betemme dem her. De er kjente kontnter for o Huk t τ og τ Vi hr 5 ukjente (,,, P, og I ) men bre likinger. 5 ukjente likninger

18 Forelening FYS0 uke 4 H009 Plukk ut en likning hvor det er lett å otimliere olene fr regultoren. Tilbkekobling og tbilitet Plukk ut likninger Både 0, og grd ledd knytter mmen er og τ er -grd leddet hr ikke med Produkt eller Integrjon ledd Løer -grd leddet lik t vi får otimliert olene lering. Kn å tile 0, grd ved å regulere P og I 0, og grd -grd leddet Løer ført - grd leddet Tile 0, grd Otimlierer -grd regultoren Otimlier men hvordn Her her kn vi godt t en ol og flytte den å lngt bort fr origo vi vil, men fordi ummen kl være kontnt å får det konekvener for de ndre olene + + = 9 kontnt) (9 er bre ekemel å Ekemel: L ummen være 9

19 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet = 9 D må og være 0 Ikke br. Velger = 9 Bedre, men d må og ligge i området til forttt for nære origo =4 = og =, = =, + + = 9 = Velg c=4 Bete løning Alle lengt unn Vi kn derfor krive: ingen ol er nå nærmere origo enn de ndre P P P Mellomregning Finn Produkt fktoren -orden likningen hr P ledd uten I Setter inn t olene er like P Setter inn olen verdi

20 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet P P Deler å og finner Produkt fktoren P I I I I 0 7 I Gjentr moro for 0- orden leddet og finner Integrjon- fktoren I Hr funnet P og I Hn kom frm og hn kom frm ført Som otimlierer rodukt og integrtorleddene i PI-regultoren

21 Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Slik t den tyrte roeen, ytemet eller H() rket mulig når o til ønket verdi å utgngen. For mye integjon Otiml tyring Lngom tilnærming. En eller flere oler ligger nære origo i -lnet Ønket utgng Det er mulig Amunden vr god i mtte og t hn hdde beregnet og ttt med bde I og P å turen. I åfll temmer det nok t hn kom helt frm til olunktet i tide før ine konkurenter.

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

1 Mandag 25. januar 2010

1 Mandag 25. januar 2010 Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe

Numerisk kvadratur. PROBLEM STILLING: Approksimér. f(x)dx. I(f) = hvor f : R R. Numerisk sett, integralet I(f) = b. f(x)dx approksimeres med en summe Numerisk kvdrtur PROBLEM STILLING: Approksimér 1/18 I(f) = f(x)dx. hvor f : R R. Numerisk sett, integrlet I(f) = f(x)dx pproksimeres med en summe Q n (f) = w i f(x i ), n-punkter regel hvor x 1 < x 2

Detaljer

FYS3220 Uke 43 Regeneverksted

FYS3220 Uke 43 Regeneverksted FYS Uke Regeneverked Oppvrmingoppgve Finn H() for følgende kreer.... b Signlmodellering: Sgnn... 7 Syring v Ovn. PID (H89-)... 75 Fekifer (ekmen H-)... NB! Oppgve 7 er den vikige oppgven denne uk. Den

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

Oppgaven dekker ideell opamp, bodeplot og resonans.

Oppgaven dekker ideell opamp, bodeplot og resonans. Lønngfrlg fr ktvt flter gve FYS3 H9 Uke 4 H.Blk Aktvt flter Ogven ekker eell m, elt g renn. Dette flteret er ert å en relerng v et Sllen ey flter. Ref : Sllen, R. P.; E. L. ey 955-3. "A Prtl Meth f Degnng

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d)

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d) Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d 6 d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Løsning på kontrolloppgaver 1 Rekker

Løsning på kontrolloppgaver 1 Rekker Løning på kontrolloppgver Rekker Oppgve ) ) Når følgen er ritmetik, er: = + d 8 = + d 8 = d d = 6 = 8 = + d = + 8 = 0 ) Når følgen er geometrik, er: = k 8 = k k = 8 = 9 k = eller k = Siden tllfølgen betår

Detaljer

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk

Løsningsforslag oppgaver FYS3220 uke43 H2009 HBalk Løningforlag oppgaver FYS3 uke43 H9 HBalk Oppgave Nyquit diagrammer... Oppgave Tilbakekobling... Oppgave 3 Polplaering, Bodeplot, Nyquit... 4 Oppgave Nyquit diagrammer a) Forklar hva et Nyquit diagram

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

Forord. Lykke til! Ta lærevilligheten og selvtilliten på alvor, det er nå den er høyest. Terje Krogsrud Fjeld

Forord. Lykke til! Ta lærevilligheten og selvtilliten på alvor, det er nå den er høyest. Terje Krogsrud Fjeld Forord Du har ikkert merket det allerede. Iveren, lærevilligheten og nygjerrigheten til barnet ditt. «Se på meg a!» De vil ykle. De vil tegne. De vil lære boktavene. De vil regne. Og de vil gjøre det nå.

Detaljer

R2 eksamen våren 2014. (19.05.2014)

R2 eksamen våren 2014. (19.05.2014) R Eksmen V04 R eksmen våren 04. (9.05.04) Løsningsskisser (Versjon 3.0.4) Del - Uten hjelpemidler Oppgve ) fx sinu; u 3x Kjerneregel: f x f uu x cosu3 3 cos3x b) e x e x med kjerneregel som i ) Produktregel:

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a = TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Løsningsforslag til Obligatorisk oppgave 2

Løsningsforslag til Obligatorisk oppgave 2 Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve f = + f ( ) = 6 ( ) 3 g = ( ) e g = + = + ( ) e e e ( ) h = 3 ( ) ln( ) 3 h ( ) = 3 = 3 3 Oppgve

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Eksamen S2 høst 2009 Løsning Del 1

Eksamen S2 høst 2009 Løsning Del 1 S Ekamen, høten 009 Løning Ekamen S høt 009 Løning Del Oppgave a) Deriver funkjonene: ) ln f f ln ln f ln ln f f ) g e e u, u g e e g e e e g 6e b) Vi har en aritmetik rekke der a 8 og a8. Betem a, d og

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Eksamen R2, Va ren 2014, løsning

Eksamen R2, Va ren 2014, løsning Eksmen R, V ren 04, løsning Tid: timer Hjelpemidler: Vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler er tilltt. Oppgve ( poeng) Deriver funksjonene ) f sin Vi bruker kjerneregelen på sin,

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

( ) ( ) DEL 1 Uten hjelpemidler. x x x x. Oppgave 1. Vi deriverer med produktregel: Vi deriverer kjerneregelen: Vi velger u = x 3 som kjerne.

( ) ( ) DEL 1 Uten hjelpemidler. x x x x. Oppgave 1. Vi deriverer med produktregel: Vi deriverer kjerneregelen: Vi velger u = x 3 som kjerne. DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 3 ( ) = 5 + 4 f f = ( ) 6 5 b c g ( ) = e Vi deriverer med produktregel: g ( ) = e + e =

Detaljer

Feilestimeringer. i MAT-INF1100

Feilestimeringer. i MAT-INF1100 Feilestimeringer i MAT-INF11 Ett v de viktigste punktene i MAT-INF11, og smtidig det som nsees som det vnskeligste i pensum, er feilestimter. Vi bruker mye tid på å beregne tilnærmede verdier for funksjoner,

Detaljer

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 f( ) + f + ( ) 4 g ( ) ln( ) 1 g ( ) h ( ) ( 1) h ( ) ( 1) 4 1 ( 1) Oppgve er en fktor i P

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

Høgskolen i Gjøvik. 13HBIMASA og 12HBIMAS-FA. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag.

Høgskolen i Gjøvik. 13HBIMASA og 12HBIMAS-FA. INNFØRING MED PENN, evt. trykkblyant som gir gjennomslag. Høgkolen i Gøik KANIATNUER: Løningforlg EKSAEN ENENAVN: Styrkeberegning ENENUER: TEK EKSAENSATO: 8. uni 5 KLASSE: HBIASA og HBIAS-A TI: timer: KL 9. - KL. ENEANSVARLIG: Henning Johnen ANTALL SIER UTLEVERT:

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen

KAP. 5 Kopling, rekombinasjon og kartlegging av gener på kromosomenen. Kobling: To gener på samme kromosom segregerer sammen KP. 5 Kopling, rekominsjon og krtlegging v gener på kromosomenen OVERSIKT Koling og meiotisk rekominsjon Gener som er kolet på smme kromosom skilles vnligvis ut smmen. Kolede gener kn li seprert gjennom

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

Hvor krum er jorden?

Hvor krum er jorden? I mverkn melln Nämnren oc Tngenten DAG GULAKER & KJARTAN TVETE Hvor krum er jorden? eller: Hvor feil kn det bli? Hur långt är det till orionten? Hur ög är toppen v jön? Hur långt är det till jorden medelpunkt?

Detaljer

1 dx cos 1 x =, 1 x 2 sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi u = Vi regner først ut den deriverte til u,

1 dx cos 1 x =, 1 x 2 sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi u = Vi regner først ut den deriverte til u, TMA0 Høst 205 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg 3.5.30: Vi bruker erivsjonsregelen for cos x, x cos x =, x 2 smmen me kjerneregelen for erivsjon. For å forenkle utregningen

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Melk: 2 14,95 2 15 30 Potet: 2,5 8,95 2,5 9 22,5 Ost: 0,5 89,95 0,5 90 45 Skinke: 0, 2 199

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare

PD-regulator med faseforbedrende egenskaper. Denne ma dessuten klare Norge teknik naturvitenkapelige univeritet Intitutt for teknik kybernetikk Oktober 99/PJN, September 9 /MPF Utlevert:..9 0 SERVOTENI Lningforlag ving 0 a) Oppgave Vi kriver h() pa formen ( +0:)( ; 0:)

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10

TKP4100 Strømning og varmetransport Løsningsforslag til øving 10 TKP4 Strømning og vrmetrnsport Løsningsforslg til øving Oppgve ) Entlpi ved utløpet (5 br, ), kj/kg Entlpi ved innløpet (5 br, x,95), 7 kj/kg overført: kj/kg Dvs. 4*/6,7 kw b) I området med overhetet dmp

Detaljer

TKP4100 og TMT4206 Løsningsforslag til øving 9

TKP4100 og TMT4206 Løsningsforslag til øving 9 TKP4 og TMT46 Løsningsforslg til øving 9 Oppgve ) Entlpi ved utløpet (5 br, C), kj/kg Entlpi ved innløpet (5 br, x =,95), 7 kj/kg overført: kj/kg Dvs. 4*/6 =,7 kw b) I området med overhetet dmp (T >4C

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Substitusjonsmatriser

Substitusjonsmatriser Additivt kåringytem Subtitujonmtrier Ser på hver poijon i en gitt mmentilling for eg og gir en kår for hver v poijonene. Den totle (kumultive) kåren finne å ved å ddere kåren fr hver v poijonene. Enkelt

Detaljer