R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka
|
|
- Martine Sørensen
- 9 år siden
- Visninger:
Transkript
1 Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn ltså lge forskjellige femsifrede tll med de fem nummererte lppene. Oppgve Dette er et inomisk forsøk der de fire skålene utgjør fire uvhengige delforsøk. I hvert delforsøk er snnsynligheten for å velge en rød Non Stop 6, og snnsynligheten for å velge en lå Non Stop er 6. Snnsynligheten for å velge én rød Non Stop er derfor PX ( = 1) = 1 = = = Snnsynligheten for å velge to røde Non Stop er 1 1 : 8 PX ( = ) = 6 = = = = = : 7 Oppgve Det er to terninger, den vnlige (V) og den med feil (F). Det er like snnsynlig å velge hver v terningene, P(V) = P(F) = P(V) = 1. For den vnlige terningen er P (6 V) = 1 6. For terningen med feil er P (6 V) = 1. Fr setningen om totl snnsynlighet får vi dermed P(6) = P(V) P(6 V) + P(V) P(6 V) = + = + = = Snnsynligheten for å få en sekser er 1. Vi ruker Byes' setning: P(V) P(6 V) P(V 6) = = = = = = P(6) Snnsynligheten for t vi kstet med den vnlige terningen, gitt t vi fikk en sekser, er 1. Aschehoug Side 1 v 6
2 Oppgve Antll måter vi kn velge to FOX fr en mengde på fire: Løsninger til oppgvene i ok = = = Antll måter vi kn velge én NOX fr en mengde på to: Antll måter vi kn velge tre krmeller fr en mengde på 6: 6 6 Formelen for hypergeometrisk snnsynlighet gir dermed ( 1) : PX ( = ) = = = = = : 5 Snnsynligheten for å velge nøyktig to FOX er 5. Antll måter vi kn velge tre FOX fr en mengde på fire er ( 0) 1 1 PX ( = ) = = = = ( ) Snnsynligheten for å velge nøyktig tre FOX er 1 5. P 65 = = = = 0! 1 6 =. c 1 PX ( ) = PX ( = ) + PX ( = ) = + = Snnsynligheten for å velge minst to FOX er 5. Oppgve 5 Vi ruker ddisjonssetningen: PA ( B) = PA + PB PA ( B) PA ( B) = PA + PB PA ( B) = 0, 0 + 0,60 0,76 = 0, Så ruker vi formelen for etinget snnsynlighet: PA ( B) 0, :1 PAB ( ) = = = = = = 0, 0 PB 0, :1 5 Vi ser t PAB ( ) = PA. Hendelsene A og B er derfor uvhengige. Aschehoug Side v 6
3 Løsninger til oppgvene i ok Del Med hjelpemidler Oppgve 6 Vi skiller mellom to hendelser, nemlig t kvinnen er grvid (G), og t testen viser t hun er grvid (T). I oppgven er det opplyst t PT ( G ) = 99 %, PT ( G ) = % og PG = 0 %. Altså er PG = 80 %. Vi ruker setningen om totl snnsynlighet. PT = PG PT ( G) + PG PT ( G) = 0,0 0,99 + 0,80 0,0 = 0,1 = 1, % Snnsynligheten for t testen indikerer t kvinnen er grvid, er 1, %. Vi vil finne den etingede snnsynligheten PG ( T ), og ruker d Byes' setning. PG PT ( G) 0, 0 0,99 PG ( T) = = = 0,95 = 9,5 % PT 0,1 Snnsynligheten for t kvinnen er grvid, når grviditetstesten er positiv, er 9,5 %. Oppgve 7 Vi skl velge 15 rom fr de 19 tilgjengelige rommene. Rekkefølgen hr etydning, ltså hvilken gruppe som hvner i hvilket rom. Antll mulige ordnede utvlg er d 19 P 15 = = Avdelingslederen kn fordele gruppene på forskjellige måter. De 15 gruppene kn ordnes i rekkefølge på 15! forskjellige måter. 15! = = Avdelingslederen kn fordele gruppene på forskjellige måter. Oppgve 8 For hver fødsel er snnsynligheten 99 % for t det ikke er tvillinger. 00 PX= ( 0) = 0,99 = 0,10 1, % Snnsynligheten for t det ikke lir født noen tvillingpr er 1, %. Vi ruker formelen for inomisk snnsynlighet PX= ( ) = 00 0, 01 0,99 = , 01 0,99 = 0, 70 7, % Snnsynligheten for t det lir født nøyktig to tvillingpr er 7, %. 1 c PX 00 ( 1 ) 199 ( 1) 0, 01 0,99 0, 707 = = = PX ( 1) = PX ( = 0) + PX ( = 1) = 0,10 + 0, 707 = 0, 07 0,5 % Snnsynligheten for t det lir født høyst ett tvillingpr er 0,5 %. d PX 00 ( ) 197 ( ) 0, 01 0,99 0,181 = = = PX ( ) = PX ( = 0) + PX ( = 1) + PX ( = ) + PX ( = ) = 0,10 + 0, , ,181 = 0,8581 Hendelsene «minst fire tvillingpr» og «høyst tre tvillingpr» er komplementære. Dermed er PX ( ) = PX ( ) = 1 PX ( ) = 1 0,8581 = 0,119 1, % Snnsynligheten for t det lir født minst fire tvillingpr er 1, %. Aschehoug Side v 6
4 Oppgve 9 1 Antll måter vi kn velge to defekte komponenter fr mulige: ( ) Antll måter vi kn velge 18 fungerende komponenter fr 90 mulige: Antll måter vi kn velge 0 komponenter fr 0 mulige: 0 0 Formelen for hypergeometrisk snnsynlighet gir dermed 90 ( 18) PX ( = ) = = 0,18 = 1,8 % 0 ( 0 ) Snnsynligheten for t to v komponentene er defekte, er 1,8 %. PX ( ) = PX ( = 0) + PX ( = 1) + PX ( = ) = + + = 0,681 = 68,1 % Snnsynligheten for t høyst to v komponentene er defekte, er 68,1 %. PX ( ) = PX ( = 0) + PX ( = 1) + PX ( = ) + PX ( = ) = = 0, PX ( ) = PX ( ) = 1 PX ( ) = 1 0,890 = 0,1 = 11, 0 % Snnsynligheten for t minst fire v komponentene er defekte, er 11,0 %. Løsninger til oppgvene i ok Tenk t det er x defekte komponenter i pkningen. Snnsynligheten for t minst fire v de kontrollerte komponentene er defekte, er d gitt ved funksjonen x 0 x x 0 x x 0 x x ( 18 ) ( ) x ( 17 ) f( x) = 1 ( x 80) ( 0 ) ( 0 ) ( 0 ) ( 0 ) Vi velger noen verdier v x, og regner ut f( x ) med GeoGer. x f( x ) 0,1 0,19 0,19 0, 0,9 0,7 0,0 0,56 0,508 Vi ser t f (1) = 0, 9 = 9, %. Det er ltså 1 defekte komponenter i pkningen. Aschehoug Side v 6
5 Løsninger til oppgvene i ok Oppgve 1 For hvert v de ti spørsmålene er snnsynligheten 1 = 0, 5 for t de svrer riktig. Formelen for inomisk snnsynlighet gir 7 7 PX= ( ) = 0,5 0,75 = 0,5 0,75 = 0,50 = 5,0 % Snnsynligheten for å få nøyktig tre riktige svr er 5,0 %. PX ( ) = PX ( = 0) + PX ( = 1) + PX ( = ) + PX ( = ) ( 0 ) ( 1 ) ( ) ( ) = 0, 5 0,75 + 0, 5 0,75 + 0, 5 0,75 + 0, 5 0,75 = 0, PX ( ) = PX ( ) = 1 PX ( ) = 1 0, 776 = 0, =, % Snnsynligheten for å få minst fire riktige svr er, %. Hendelsen «minst sju gle svr» er det smme som «høyst tre riktige svr». I oppgve. fnt vi t PX ( ) = 0,776 = 77,6 %. Snnsynligheten for å få minst sju gle svr er ltså 77,6 %. Tenk t klsse B vet svret på x spørsmål. D må de gjette svret på x spørsmål. Vi vil vite snnsynligheten for t de får minst ni riktige svr, ltså t de svrer feil på 0 eller 1 spørsmål. Snnsynligheten for å tippe feil på 0 eller 1 v ( x) spørsmål er gitt ved x x 0,75 0, 5 x x f x = + 0,75 0, = 0,5 + ( x) 0,750,5 Vi regner ut f( x ) for noen verdier v x. x 9 x x f( x ) 0,005 0,016 0,051 0,156 0,8 1 Vi ser t f (7) = 0,156 = 15,6 %. Lget vet ltså svret på 7 v spørsmålene. Oppgve 11 Brnet får sykdommen hvis det får genutgven fr egge foreldrene. For hver v foreldrene er snnsynligheten 50 % for t rnet rver genutgven. Snnsynligheten for t rnet får sykdommen er derfor 0,50 = 0, 5 = 5 %. Snnsynligheten for t hvert enkelt rn ikke får sykdommen, er 75 %. 0,75 = 0,565 56, % Snnsynligheten for t ingen v de to rn får sykdommen, er 56, %. c Vi ser på hendelsene B = «kvinnen er ærer» og S = «rnet får sigdcellenemi». D vet vi t PB = 8 % og PB = 9 %. Hvis moren ikke er ærer v sykdommen, så kn heller ikke rnet få sykdommen (men rnet kn li ærer hvis det rver -genet fr fren). Altså er PS ( B ) = 0. Hvis moren er ærer v sykdommen, så er ltså egge foreldrene ærere. D fnt vi i oppgve t PS ( B ) = 5 %. Setningen om totl snnsynlighet gir dermed PS = PB PS ( B) + PB PS ( B) = 0,08 0, 5 + 0,9 0 = 0,0 = % Snnsynligheten er % for t et rn pret får, vil lide v sigdcellenemi. Aschehoug Side 5 v 6
6 Løsninger til oppgvene i ok d Spørsmålet om hvert v de to rn får sykdommen eller ikke, er ikke uvhengige hendelser, siden det vhenger v om moren er ærer v sykdommen eller ikke. Vi må i stedet dele opp spørsmålet på smme måte som i oppgve c, og ruke resulttet fr oppgve. Vi ser på hendelsen I = «ingen v de to rn får sykdommen». Fr oppgve vet vi t PI ( B ) = 56,5 %. Hvis moren ikke er ærer, så vet vi t ingen v rn får sykdommen, PI ( B ) = 1. PI = PB PI ( B) + PB PI ( B) = 0,08 0, ,9 1 = 0,965 = 96,5 % Snnsynligheten for t ingen v rn vil lide v sykdommen, er 96,5 %. e Vi vil finne den etingede snnsynligheten PB ( I ), og ruker d Byes' setning. PB PI ( B) 0,080,565 PB ( I) = = = 0,07 =,7 % PI 0,965 Snnsynligheten for t moren er ærer v sykdommen, når pret hr to friske rn, er,7 %. Aschehoug Side 6 v 6
R1 kapittel 7 Sannsynlighet
Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke
DetaljerEksamen høsten 2016 Løsninger
DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve f x x x f ( x) = 4x 5 ( ) = 5 6 gx ( ) = xln x Vi deriverer med produktregel: g ( x) = ln x+
DetaljerEksamen våren 2018 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 5x+ y = 4 x+ 4y = 6 Vi multipliserer likningen 5x+ y = 4 med på egge sider og får 10x+ 4y
DetaljerOppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr
KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer
DetaljerS2 kapittel 6 Sannsynlighet
S kpittel 6 Snnsynlighet Løsninger til oppgvene i bok Oppgve 6. Ett v de 36 mulige utfllene er gunstig for hendelsen S. Alle de 36 mulige utfllene er like snnsynlige. Altså er PS ( ) 36 b Det er utfll
Detaljer( ) ( ) DEL 1 Uten hjelpemidler. x x x x. Oppgave 1. Vi deriverer med produktregel: Vi deriverer kjerneregelen: Vi velger u = x 3 som kjerne.
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 3 ( ) = 5 + 4 f f = ( ) 6 5 b c g ( ) = e Vi deriverer med produktregel: g ( ) = e + e =
DetaljerS1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka
S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 36 9 6 1 P (sum antall øyne lir minst 10) = = 36 6 6 1 P (sum antall øyne lir høyst 4) = = 36 6 11
DetaljerSTATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET
Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,
DetaljerNytt skoleår, nye bøker, nye muligheter!
Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en
DetaljerTall i arbeid Påbygging terminprøve våren 2013
Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer
DetaljerR1 kapittel 8 Eksamenstrening
Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er
DetaljerKapittel 4 Tall og algebra Mer øving
Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en
DetaljerKapittel 5 Statistikk og sannsynlighet Mer øving
Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?
DetaljerS1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1, 4 4 = = 6 0, 4 4 Du kn innt mksimlt 6 g slt per dg. 00 0,8 0,8, 4 100 = = Én porsjon pizz
DetaljerEksempeloppgaver 2014 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
DetaljerDEL 1 Uten hjelpemidler
Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70
DetaljerYF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka
YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10
Detaljer1P kapittel 3 Funksjoner
Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Melk: 2 14,95 2 15 30 Potet: 2,5 8,95 2,5 9 22,5 Ost: 0,5 89,95 0,5 90 45 Skinke: 0, 2 199
Detaljer1T kapittel 7 Sannsynlighet Løsninger til oppgavene i læreboka
1T kpittel 7 Snnsynlighet Løsninger til oppgvene i læreok Oppgve 7.1 Vi vet t kokepunktet til vnn er 100 C (ve hvoverflten). Derfor vet vi på forhån t vnnet til Anres ikke vil koke ve re 50 C. The vil
DetaljerS1 kapittel 4 Logaritmer Løsninger til oppgavene i boka
Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 4,5 % 3,6 % 0,9 % Økningen hr vært på 0,9 prosentpoeng. 0,9 % 100 % 5 % 3, 6 % Økningen hr
Detaljer... JULEPRØVE 9. trinn...
.... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver
DetaljerTerminprøve Matematikk Påbygging høsten 2014
Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2
DetaljerYF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka
YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49
DetaljerOppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.
Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?
DetaljerEksamen høsten 2015 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 30 Vekstfktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Vren kostet 400 kr
DetaljerDEL 1 Uten hjelpemidler
DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve f = + f ( ) = 6 ( ) 3 g = ( ) e g = + = + ( ) e e e ( ) h = 3 ( ) ln( ) 3 h ( ) = 3 = 3 3 Oppgve
DetaljerDELPRØVE 2 (35 poeng)
DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.
DetaljerR1 kapittel 1 Algebra
Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5
Detaljer1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka
1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og
DetaljerS1 kapittel 7 Sannsynlighet Løsninger til oppgavene i boka
S1 kapittel 7 Sannsynlighet Løsninger til oppgavene i oka 7.1 a c d 4 1 P (sum antall øyne lir 5) = = 6 9 6 1 P (sum antall øyne lir minst 10) = = 6 6 6 1 P(sum antall øyne lir høyst 4) = = 6 6 11 P(minst
Detaljera 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.
Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv
DetaljerS1 kapittel 1 Algebra Løsninger til oppgavene i læreboka
Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste
Detaljer9 Potenser. Logaritmer
9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner
DetaljerTall i arbeid Påbygging terminprøve våren 2014
Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15
DetaljerMer øving til kapittel 2
Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem
DetaljerPåbygging kapittel 6 Sannsynlighet Løsninger til oppgavene i læreboka
Påygging kpittel 6 Snnsynlighet Løsninger til oppgvene i læreok Oppgve 6.1 (Vi nøyer oss me å lge én tell, hvor vi også fører inn svrene fr oppgve og.) Antll kst 50 100 500 1000 5000 10 000 Antll enere
DetaljerLøsningsforslag til Obligatorisk oppgave 2
Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s
Detaljer... JULEPRØVE
Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres
DetaljerS1 kapittel 6 Derivasjon Løsninger til oppgavene i boka
S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)
DetaljerNøtterøy videregående skole
Til elever og forestte Borgheim, 1. ugust 2018 Viktig info om vlg v mtemtikkfg for elever på vg1 studiespesilisering I vg1 får elevene vlget mellom to ulike mtemtikkfg. Mtemtikk 1T (teoretisk) og Mtemtikk
DetaljerMer øving til kapittel 3
Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?
DetaljerOppgaver i matematikk, 9-åringer
Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri
DetaljerTerminprøve Matematikk for 1P 1NA høsten 2014
Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker
DetaljerFasit. Grunnbok. Kapittel 2. Bokmål
Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =
Detaljer5: Algebra. Oppgaver Innhold Dato
5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet
DetaljerPraktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen
Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen
Detaljer1 Tallregning og algebra
Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn
DetaljerFag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012
Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5
DetaljerDel 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2
Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 f( ) + f + ( ) 4 g ( ) ln( ) 1 g ( ) h ( ) ( 1) h ( ) ( 1) 4 1 ( 1) Oppgve er en fktor i P
DetaljerYF kapittel 8 Rom Løsninger til oppgavene i læreboka
YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.
DetaljerPåbygging kapittel 2 Funksjoner 1 Løsninger til oppgavene i boka
Påygging kpittel 2 Funksjoner 1 Løsninger til oppgvene i ok 2.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A = (125,10) B = (0, 12,5)
DetaljerMAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).
MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense
DetaljerYF kapittel 1 Tall Løsninger til oppgavene i læreboka
YF kpittel 1 Tll Løsninger til oppgvene i læreok Oppgve 10,, 0, 1,, 5,,, 0 Oppgve 10 Tllet 5 står til høyre for tllet på tllinj. Altså er 5>. Tllet 5 står til venstre for tllet 1 på tllinj. Altså er 5
DetaljerFY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10
FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve
Detaljer1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka
T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll
DetaljerMED SVARFORSLAG UNIVERSITETET I OSLO
Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg
DetaljerBasisoppgaver til 2P kap. 1 Tall og algebra
Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug
DetaljerFY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10
FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t
DetaljerFASIT, tips og kommentarer
FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller
DetaljerOppgave N2.1. Kontantstrømmer
1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner
DetaljerEKSAMENSOPPGAVE. Alle trykte og skrevne Kalkulator. Rute. Ola Løvsletten
Fkultet for nturvitenskp og teknologi EKSAMENSOPPGAVE Eksmen i: Brukerkurs i sttistikk STA-0001 Dto: 28.05.2018 Klokkeslett: 09.00-13.00 Sted: TEO H1, PLAN 3 Tilltte hjelpemidler: Alle trykte og skrevne
DetaljerPrøve 6 1T 24.02.12 80 minutter. Alle hjelpemidler
Prøve 6 T 24.02.2 80 minutter. Alle hjelpemidler Oppgave I boks A er det 6 svarte og 2 hvite kuler. I boks B er det 8 svarte og 4 hvite kuler. Vi trekker en kule fra en av krukkene. a) va er sannsynligheten
Detaljer6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper
Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele
DetaljerFaktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.
Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.
Detaljer2 Tallregning og algebra
Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)
Detaljer... ÅRSPRØVE 2014...
Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl
Detaljert-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.
Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig
DetaljerKapittel 2 Mer om tall og tallregning Mer øving
Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,
DetaljerMatematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon
Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross
Detaljer2P kapittel 5 Eksamenstrening
P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0
DetaljerLøsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.
Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.
Detaljer1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)
Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5
DetaljerFasit til utvalgte oppgaver MAT1100, uka 20-24/9
Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne
DetaljerLøsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk
Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten
DetaljerJuleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1
Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest
DetaljerTFE4101 Krets- og Digitalteknikk Vår 2016
Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40
DetaljerEksamen høsten 2016 Løsninger
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 1: 5x y : x y 9 Fr likning : y x+ 9 Innstt i likning 1 gir det 5x (x+ 9) 5x 4x 18 9x 18 x
DetaljerBrøkregning og likninger med teskje
Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere
DetaljerLokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.
Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene
DetaljerÅrsprøve 2014 10. trinn Del 2
2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Fredg 8. desemer 2017 Tid for eksmen: 14:30 18:30 Oppgvesettet er på 5 sider. Vedlegg: Ingen
Detaljerx 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,
Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur
Detaljer1T kapittel 6 Geometri Løsninger til oppgavene i læreboka
T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047
Detaljer1P kapittel 8 Eksamenstrening
Løsninger til oppgvene i ok 1P kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 Vi ytter ut 7,60 kr med 8 kr og 104 euro med euro. Det gir: 8 kr 4 300 kr. For fire overnttinger
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 45,1 0, 451 45,1 % 100 5 4 5 0 0 % 5 4 5 100 Oppgve Vinkelsummen i en treknt er 180. Vi regner
DetaljerÅrsprøve trinn Del 1. Navn: Informasjon for del 1
Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere
DetaljerIntegralregning. Mål. for opplæringen er at eleven skal kunne
8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene
DetaljerLøsningsforslag SIE4010 Elektromagnetisme 5. mai 2003
Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius
DetaljerFasit. Grunnbok. Kapittel 4. Bokmål
Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =
Detaljer2P kapittel 1 Tall og algebra Løsninger til oppgavene i læreboka
P kpittel 1 Tll og lger Løsninger til oppgvene i læreok Oppgve 1.1 ( ) Oppgve 1. 8 = 8 8 = = = 00 ( ) = ( ) ( ) ( ) ( ) = 1 ( ) = =() = 7 Oppgve 1. 81 = 9 9 = 9 81= = 1= = = ( ) ( ) = = Oppgve 1. 8 = 1
Detaljer1T kapittel 1 Algebra Løsninger til oppgavene i læreboka
T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.
Detaljer1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene
1T kapittel 4 Sannsynlighet Løsninger til innlæringsoppgavene 4.4 a Du kan få 1, 2, 3, 4, 5 eller 6 øyne på terningen. Utfallsrommet er U = {1,2,3,4,5,6}. b Hvert av de seks utfallene har samme sannsynlighet.
DetaljerBARN og DIGITALE MEDIER 2012 Foreldreundersøkelsen, 1-12 år
BARN og DIGITALE MEDIER 2012 Forelreunersøkelsen, 1-12 år Weunersøkelse 1500 forelre me rn i leren 1-12 år Bkgrunnsinformsjon Kjønn Mnn Kvinne Aler (netrekksmeny?) Hr u rn i leren mellom 1-12 år? (FILTER:
Detaljer