Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8

Størrelse: px
Begynne med side:

Download "Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8"

Transkript

1 HIN Teknologisk vd. R Side 1 v 8 sthetslære Irgens: utdrg fr kp. 11. Hieler: Kp 8+9. Konstruksjonsmteriler Konstruksjonsmteriler er fste stoffer og skl i tillegg skl h god evne til å henge smmen. Deres evne til å eholde sin form og å henge smmen vil vi etegne fstheten. K R R 1 Et tårn er elstet med krften K. I tillegg kommer tårnets egentyngde. Det løper krefter gjennom tårnets konstruksjonsdeler. Et gitt sted i tårnet skl en del v tårnets konstruksjon overføre en krft. Denne krften skl fordele seg i mterilet på stedet. I noen tilfeller (f.eks. i en trykkstv, slik det kn være her) kn vi regne med t krften fordeler seg jevnt i tverrsnittet. D vil spenningen i mterilet være (en trykkspenning i dette tilfellet). Mterilfsthet. Spenning i mteriler Tårnet må være lget v et mteril som tåler å overføre kreftene. Er kreftene store, må vi enten ruke mye mteril (grove dimensjoner) eller ruke et sterkt mteril = et mteril med høy fsthet. Konstruksjonsmteriler som inngår i en konstruksjon hr som oppgve å overføre krefter. nt t krften i en del v tårnet er kjent, 5 kn = 5000 N. Dersom denne krften fordeler seg jevnt over tverrsnittet v en konstruksjonskomponent med rel 50 mm lir spenningen i mterilet 5000 N 100 N/mm 50 mm

2 HIN Teknologisk vd. R Side v 8 Regnestykket vr enkelt og greit, men vi ønsker å ruke metriske enheter: m = 1000 mm. 1 m 1000 mm 10 mm, og omvendt: 1 mm m 10 m Regnestykket med metriske enheter lir: 5000 N m N/m P = 100 MP or 0-30 år siden vr det vnlig i Norge å oppgi spenning i mteriler i N/mm. I dg skl mn ifølge stndrder ruke megpscl, MP. Heldigvis ser mn v regnestykket t 1 MP = 1 N/mm, så det lir ikke noen omregning. Trykkspenning og strekkspenning. En krft som forårsker strekk i et mteril er pr. definisjon en positiv krft. Dermed lir en trykkspenning en negtiv krft. Likeledes lir strekkspenning positiv og trykkspenning negtiv. Det er ikke lltid enkelt å eregne hv spenningene er på forskjellige steder i en konstruksjon. En jelke er et lngt stykke mteril som rukes på en slik måte t det lir øyepåkjenninger. I en jelke vil det oppstå åde trykk- og strekkspenninger, se figuren. Bjelke. Mn kn se t det er strekkspenninger i overknten og trykkspenninger i underknten på denne jelken. Det lir et mer komplisert regnestykke å finne verdien på spenningene.

3 HIN Teknologisk vd. R Side 3 v 8 Spenningstyper Spenninger eregnes som krft fordelt på en flte. De kreftene vi etrkter inne i mterilene er snitt-krefter. Vi ser ort fr momenter (krftpr) siden disse kn dels opp i strekk- og trykkområder. Dermed er det to typer snittkrefter, normlkrft, N og skjærkrft, V. Ut fr dette defineres to typer spenninger: Normlspenning Skjærspenning N V ormlene over kn rukes for vilkårlige flter når vi kn nt t krften er jevnt fordelt over hele flten. Hvis krften ikke fordeler seg jevnt over snittflten, må mn gjøre en nlyse og utvikle formler for spenningene. Mterilers respons på spenning. Elstisk og plstisk deformsjon. Hvis mn drr i en gummistrikk forlenges den. Så går den tilke til sin opprinnelige form og lengde når dr-krften fjernes. Hvis en lng stålstng øyes litt, vil den fjære tilke til utgngspunktet når lsten fjernes. Disse deformsjonene klles elstiske. Hvis stålstngen øyes krftig, vil den få en vrig formendring. Dette klles en plstisk deformsjon. Merk spesielt t når mn vil øye stålet til en estemt form, må mn øye litt ekstr v hensyn til tilkefjæringen. Den elstiske ndelen v deformsjonen er ltså til stede helt til de ytre kreftene fjernes. Lngt fr lle mteriler kn deformeres plstisk. Strikken går lltid tilke til opprinnelig form, med mindre mn elster så den ryker. Det smme gjelder en glsstv som

4 HIN Teknologisk vd. R Side 4 v 8 øyeelstes. Derimot vil lle mteriler deformeres elstisk under elstning. Dersom du drr i en stålstv, lir den fktisk litt lenger! Ikke mye nturligvis, men litt. L en stng med lengde l 0 li elstet med en liten strekkrft. Stngen vil d forlenges med et lite stykke l. l l 0 Et stykke duktilt metll (for eksempel en spiker) elstes så krftig med øyning t det lir plstisk deformsjon på midten. Når lsten ts vekk vil det li en tilkefjæring. l Vi definerer tøyningen som l0 I prksis må vi måle lengden før og etter, l disse være hhv. l 0 og l, d lir tøyningen: l l0 l 0 Tøyningen er dimensjonsløs, og lir et røk-tll, en desimlrøk. Mn kn gnge med 100 og få prosenttllet. Den smlede deformsjonen er lik summen v elstisk og plstisk deformsjon. ltså totl tøyning er elstisk plstisk lyt, flytespenning Dersom et mteril hr evnen til plstisk flyt, sier vi det er duktilt. Den spenningen som skl til for å få et mteril til å flyte klles flytespenningen og etegnes i konstruksjonseregninger med f y. Elstisk deformsjon, Hooke s lov. Elstiske mterilprmetere Så lenge vi ikke får rudd eller plstisk deformsjon, gjelder Hooke s lov for mteriler:

5 HIN Teknologisk vd. R Side 5 v 8, eller E E E er proporsjonlitetskonstnten ved elstisk deformsjon uttrykt som tøyning. Denne klles elstisitetsmodulen, forkortet E-modulen, og uttrykker mterilstivheten Den hr smme enhet som spenningen, men er for mnge mteriler et stort tll og ngis oftest i gigpscl, GP. Den hr meget stor vrisjon. Gummi hr lv E-modul, ned mot 0,001 GP (1 MP). Stiv plst hr E-modul omkring 1 GP. Trevirke er omkring 10 GP ved elstning i fierretningen. Betong ligger omkring 30 GP. Glssfierkompositt er typisk GP, luminium 70 GP, stål 00 GP og høymodul kronfierkompositt kn være opp mot 400 Gp i firenes retning. Hooke s lov gjelder under forutsetning v t den elstiske grensen ikke er overskredet. Den elstiske grensen er det smme som ruddgrensen for sprø mteriler. or duktile mteriler er den elstiske grensen den spenningen der det lir plstisk (vrig) deformsjon. iguren under viser strekkprøving v en luminiumslegering. Mn ser t flytegrensen ligger omkring 80 MP Strekkprøving v luminium (HiN-L) ndre elstiske mterilprmetere Når mn legger en strekkspenning på et prøvestykke, lir det en forlengelse. Dessuten lir prøvestykket tynnere. Denne grden v tynning, vrierer noe mer forskjellige mteriler, og er definert med Poisson-tllet,. l l0 l l l 0 0 Poissontllet er forholdet mellom tøyningene på lngs og på tvers, legg merke til fortegnet: l l 0 t Poissontllet vrierer mellom 0 og 0,5. Det kn vises t poissontll 0,5 tilsvrer t

6 HIN Teknologisk vd. R Side 6 v 8 volumevring under elstningen (trykk eller strekk). Kompkte og meget myke mteriler hr poissontll opp mot 0,5 (eks. gummi). Kompkte og stive mteriler hr poissontll omkring 1/3 (stål og luminium, de fleste metller). Porøse mteriler hr lvere poissontll (grått støpejern, etong, kork). MP Nominell Herdet stål Nominell 600 Herdet luminium MP HDPE Gummi 0 Duktilt stål GRP 0,5 % Nominell 0 % 5 % 100 % Nominell Prinsipielle spenning -tøynings kurver for noen mteriltyper Kurven for duktilt stål hr en liten "vsts" der mterilet flyter ved konstnt spenning. GRP er glssfier rmert plst, f.eks. epoxyimpregnert glssfierduk herdet ved 160 C. HDPE er High Density Polyetylen en plsttype. Kurvene er ment som illustrsjon. Isotropi og nisotropi Mterilene som er omtlt under Hooke's lov nses for å være isotrope. Det vil si t de mekniske egenskpene er like i lle retninger. Det er åpenrt t firete mteriler ikke er isotrope, men nisotrope. Trevirke hr E-modul omkring 10 GP i fierretningen. På tvers v firene er E-modulen lngt lvere. Kller vi E- modulen i fierretningen for E, kn vi klle E-modulen på tvers v fierretningen E. x Dermed lir Poissontllet også mer komplisert, idet det nå åde vil finnes xy og yx. Det smme vil gjelde for fierrmerte kompositter, der firene legges i ønskede retninger for å optimlisere egenskpene. Legg merke til t fierkompositter v denne typen lltid hr to retninger (x- og y), som kn kontrolleres med firene og en z-retning (ut v plnet), der det ikke er forsterkning v fire. Meknisk nisotropi finner mn også i vlsede metllplter. Vlsingen påvirker mterilegenskpen og gir forskjellige egenskper i vlseretning, på tvers v vlseretningen, smt på tvers v plteplnet. y

7 l l HIN Teknologisk vd. R Side 7 v 8 Beregninger med elstiske mteriler Eksempel 1 Stål hr E-modul 10 GP. sthetsklssen v stål, S355, hr flytegrense 355 MP. En 5 meter lng stng v stål S355 elstes så den forlenges noen cm. Hr den egynt å flyte? Kn vi regne ut spenningen ut fr E-modulen? P 3 Tøyning ved flyt: E 1, E 1010 P L 3 3 orlengelse ved flyt: L L 51, ,45 10 m 8,45 mm L Når stngen forlenges mer enn 8,45 mm vil den flyte. Svret er: J, den hr egynt å flyte. Og: Nei, vi kn ikke eregne spenningen ved hjelp v E-modulen. Ønsker vi å vite spenningen må vi ruke en strekkprøvingskurve for det ktuelle metllet. Eksempel En stiv jelke B med tyngde 180 kn er opphengt i stver, se figuren. Det er 3 stver i lt, to stver v typen med lengde l og en stv v typen med lengde l. Stvene er lget i luminium: Tverrsnitt 1000 mm, E-modul E 70 GP og flytespenning f 150 MP. y Stven er lget v stål: Tverrsnitt 800 mm, E- modul E 10 GP og flytespenning f 50 MP. Vi skl eregne kreftene som virker i stvene. y B N N 180 kn N Vi kn formulere 3 likevektsligninger. Ligningen x 0 gir ingen opplysninger d ll lst er vertikl. En momentligning gir smme opplysning som symmetrietingelsen, nemlig t kreftene i de to stvene v type er like. D står vi igjen med: 180 kn y 0: N N (1) Det er to ukjente krefter. Prolemet er ltså sttisk uestemt. Vi trenger en til ligning for å kunne løse prolemet. Dette t jelken regnes å være stiv etyr t stvene og forlenges like mye, og vi kn formulere en forskyvningsetingelse: l l l l () N r mterilligningene og E får vi så

8 HIN Teknologisk vd. R Side 8 v 8 N N E og (3) E N N E (4) E (3) og (4) settes inn i (): N N l l N 4,8N (5) E E som settes inn i (1) N 4,8N 180 N 6.5 kn innstt i (5) får vi så N 17 kn. Beregningene forutsetter t elstisk grense ikke er overskredet. Vi må kontrollere t flytespenningene ikke er overskredet: N 6, 4 MP f y(l). OK N 160 MP f y( stål). OK Dermed kn vi konkludere: N 6.5 kn og N 17 kn

Kap. 3 Krumningsflatemetoden

Kap. 3 Krumningsflatemetoden SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning

Detaljer

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper

Tema i materiallære. HIN Allmenn Maskin RA 12.09.02 Side 1av7. Mekanisk spenning i materialer. Spenningstyper Side 1av7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer

Tema i materiallære. HIN IBDK RA Side 1 av 7. Mekanisk spenning i materialer Side 1 av 7 Mekanisk spenning i materialer Tema i materiallære En kraft er et skyv eller drag som virker på et legeme og har sin årsak i et annet legeme. Eksempel: Et tungt legeme utgjør en last som skal

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a =

TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 8. a = TFY414 Fysikk. Institutt for fysikk, NTNU. Lsningsforslg til ving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, s elektronets kselersjon blir = e m E lts mot venstre. b) C Totlt elektrisk felt i

Detaljer

2.2.1 Grunnleggende betraktninger

2.2.1 Grunnleggende betraktninger 38 C2 BJELKER eksentrisk plssering på lgrene eller skjevt innstøpte løftebøyler. Bjelken vil dermed få en sideutbøyning som kn skpe et stbilitetsproblem. Det er en prinsipiell forskjell på de to tilfellene.

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

B12 SKIVESYSTEM. Tabell B Bøyestivhet av skiver. (Fasthetsklasse etter NS )

B12 SKIVESYSTEM. Tabell B Bøyestivhet av skiver. (Fasthetsklasse etter NS ) δ B1 SKIVESYSTEM Tell B 1.1. Bøestivhet v skiver. (Fsthetsklsse etter NS 3473 1989) Fsthetsklsse t (m) h (m) A s = A s (mm ) N (kn) (h / R) 1 3 EI 1 15 (Nmm ) EI / EI 1 ε s 1 3 C 35, 4, 491 1 3, 1,3,63,59

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer 2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements

Detaljer

a) Hvordan skiller de mekaniske egenskapene seg fra hverandre for materialgruppene keramer og glasser, metaller og polymermaterialer?

a) Hvordan skiller de mekaniske egenskapene seg fra hverandre for materialgruppene keramer og glasser, metaller og polymermaterialer? ILI 1458 17.06.03. Tekst m. løsn. side 1 v 7 RA/23.06.2003 MATERIALER OG BEARBEIDING Fgkode: ILI 1458 Tid: 17.06.03 kl 0900-1400 Tilltte hjelpemidler: Klkultor med tomt minne. Lærebøkene: Corneliussen,

Detaljer

6. Beregning av treghetsmoment.

6. Beregning av treghetsmoment. Forelesningsnotter i mtemtikk Bruk v integrsjon Beregning v treghetsmoment Side 1 6 Beregning v treghetsmoment 61 Definisjoner Først de grunnleggende definisjonene: Momentkse r m en liten punktformet prtikkel

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

RA nov 2007. fasthet 1. Spenning. Spenningstyper. Skjærspenning F. A Normalspenning + strekk - trykk

RA nov 2007. fasthet 1. Spenning. Spenningstyper. Skjærspenning F. A Normalspenning + strekk - trykk asthet 1 Spenning Spenningstyper A 1 N mm 10 1 N = = 2 6 2 m 1MPa Skjærspenning τ = A A Normalspenning + strekk - trykk asthet 2 Materialers respons påp kreter Strekkspenning gir orlengelse Trykkspenning

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

B19 FORANKRING AV STÅL

B19 FORANKRING AV STÅL Av tellen kn mn lese følgende: Betongkpsiteten for strekk er lltid mindre enn stålets kpsitet. Betongkpsiteten for vskjæring er større enn stålets kpsitet med minimum fsthetsklsse B30. Imidlertid kn denne

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

Eksamen høsten 2015 Løsninger

Eksamen høsten 2015 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1, 4 4 = = 6 0, 4 4 Du kn innt mksimlt 6 g slt per dg. 00 0,8 0,8, 4 100 = = Én porsjon pizz

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

Løsningsforslag til Obligatorisk oppgave 2

Løsningsforslag til Obligatorisk oppgave 2 Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s

Detaljer

FYSIKK-OLYMPIADEN

FYSIKK-OLYMPIADEN Nors Fysilærerforening Nors Fysis Selss fggrue for undervisning FYSIKK-OLYMPIADEN 3 Andre runde: 6/ Sriv øverst: Nvn, fødselsdto, e-ostdresse og solens nvn Vrighet: 3 loetimer Hjelemidler: Tbell med formelsmling,

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

TFE4101 Krets- og Digitalteknikk Vår 2016

TFE4101 Krets- og Digitalteknikk Vår 2016 Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon.

Forkunnskaper i matematikk for fysikkstudenter. Integrasjon. De grunnleggende definisjonene L oss strte med følgende prolem: Gitt en ontinuerlig funsjon y = f der f for [, ] Beregn relet A som er vgrenset v grfen til f, -sen, og de to vertile linjene = og = Vi n

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Litt av matematikken bak solur

Litt av matematikken bak solur Anne Bruvold Revidert mrs 005 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015 Løsningsforslg til eksmensogver i ECON 00 våren 05 Ogve (7 oeng) Deriver følgende funskjoner 3 ) f ( ) gir f ( ) 3 ) f ( ) e e( ) gir f ( ) e c) f ( ) ln gir f ( ) 3 3 (3 ) 3 lterntivt f ( ) ln ln 3 gir

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

Statikk og likevekt. Elastisitetsteori

Statikk og likevekt. Elastisitetsteori Statikk og likevekt Elastisitetsteori 08.05.017 YS-MEK 1110 08.05.017 1 uke 19 0 1 3 8 15 9 5 man forelesning: elastisitetsteori forelesning: spes. relativitet Eksamensverksted Pinse 9 16 3 30 6 tir ons

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

Multippel integrasjon. Geir Ellingsrud

Multippel integrasjon. Geir Ellingsrud Multippel integrsjon. Geir Ellingsrud 2. pril 24 2 NB: Dette er en midlertidig versjon dtert 2. pril 24. Den kommer til å bli utvidet og korrigert fortløpende!!. Dobbelt integrlet over rektngler og iterert

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 4,5 % 3,6 % 0,9 % Økningen hr vært på 0,9 prosentpoeng. 0,9 % 100 % 5 % 3, 6 % Økningen hr

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Løsningsforslag Kollokvium 6

Løsningsforslag Kollokvium 6 Løsningsforslg Kollokvium 6 25. februr 25 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 6. Oppgve Diskusjonsoppgve Diskuter følgende spørsmål med hverndre og prøv å bli

Detaljer

EKSAMEN I EMNE TKT4122 MEKANIKK 2

EKSAMEN I EMNE TKT4122 MEKANIKK 2 INSTITUTT FOR KONSTRUKSJONSTEKNIKK Side 1 v 5 Fglig konk under eksmen: NORSK Kjell Holhe, 951 12 477 / 73 59 35 53 Jn. rseh, 73 59 35 68 EKSMEN I EMNE TKT4122 MEKNIKK 2 Fredg 11. desember 2009 Kl 09.00

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

TKP4100 og TMT4206 Løsningsforslag til øving 9

TKP4100 og TMT4206 Løsningsforslag til øving 9 TKP4 og TMT46 Løsningsforslg til øving 9 Oppgve ) Entlpi ved utløpet (5 br, C), kj/kg Entlpi ved innløpet (5 br, x =,95), 7 kj/kg overført: kj/kg Dvs. 4*/6 =,7 kw b) I området med overhetet dmp (T >4C

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer