Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen

Størrelse: px
Begynne med side:

Download "Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen"

Transkript

1 Loklt gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: sommerskolen Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve I del 3 skl du gjøre oppgvene for det utdnningsprogrmmet du går på.

2 Eksmenstid: Hjelpemidler under eksmen: Totlt fire klokketimer for del 1, del 2 og del 3. Vi nefler t du ikke ruker mer enn én klokketime på del 1. Du må levere inn del 1 før du får utdelt klkultoren og formelsmlingen din. Del 1: tegne- og skrivesker. Du kn verken ruke klkultor eller ndre hjelpemidler på del 1. Del 2 og del 3: Du kn ruke lle hjelpemidler som ikke tillter kommuniksjon med ndre. Det er ikke tilltt å smreide. Antll sider i oppgven: Vurderingskriterier: Til smmen 10 sider i del 1 og del 2 inklusiv forside og opplysningsrk. Del 3 inneholder 2 oppgver. Ved vurderingen vil del 1 telle. 25 %. Del 2 og del 3 vil til smmen telle. 75 %. På del 1 vil hver v deloppgvene (dvs.,,, d osv.) telle like mye. På del 2 og del 3 vil hver v deloppgvene (dvs.,,, d osv.) telle like mye. Krkteren fstsettes etter en helhetlig vurdering. Det etyr t sensor vurderer i hvilken grd du: viser grunnleggende mtemtiske ferdigheter kn ruke hjelpemidler gjennomfører logiske resonnementer ser smmenhenger i fget, er oppfinnsom og kn nvende fgkunnskp i nye smmenhenger vurderer om svr er rimelige forklrer frmgngsmåten og egrunner svr skriver oversiktlig og er nøyktig med utregninger, enevninger, teller og grfiske fremstillinger Andre opplysninger: Der oppgveteksten ikke sier noe nnet, kn du fritt velge fremgngsmåte. Om oppgven krever en estemt løsningsmetode, vil også en lterntiv metode kunne gi noe uttelling. Det skl gå tydelig frem v esvrelsen hvordn du er kommet frem til et svr. Før inn nødvendige mellomregninger. I følgende oppgver er det nok re å skrive svr: 1, 2, 2, 2, 4, 4 og 5. Du skl løse oppgve 10 med regnerk. Du skl levere inn regnerkutskrifter (står forklrt i oppgven).

3 Pss på t du skriver kndidtnummer på lle regnerkutskriftene du leverer. Bruk gjerne topptekst. Dersom du løser oppgve 10 uten ruk v regnerk, får du re hlvprten v den poengsummen du kn få dersom du løser oppgven med regnerk. Du skl ikke skrive noe på oppgverkene.

4 Del 1 Oppgve 1 Figuren over estår v kvdrter der sidene er 2 dm. Hvor stor røkdel v rutene er frgelgt? Beregn relet v den frgelgte delen. Beregn omkretsen v den frgelgte delen. Oppgve 2 Utfør omregningene: 52 dl = liter 7 tonn = kg 500 mm = m Oppgve 3 Regn ut og skriv så enkelt som mulig: 6 2(3 3) = 4 m m 70 dm mm = 2 (3 2) 2 (2 3) =

5 Oppgve 4 Hv vr forventet levetid for kvinner i 1975? I hvilket år vr forventet levetid for menn 76 år? Oppgve 5 Løs likningen: 100x 40 = 90x + 10 En vekstfktor le oppgitt til 0,80. Hv er nedgngen i prosent? Av 240 elever rukte 20 % riller. Hvor mnge rukte riller? d Det første året hdde en edrift 200 nstte. Året etter vr ntllet 10 % høyere. Fr det ndre til det tredje året le ntllet nstte redusert med 10 %. Hvor mnge nstte hdde edriften det tredje året?

6 Oppgve 6 Til et rneselskp kte fr 48 oller til 12 rn. Hvor mnge oller må hn ke til 15 rn hvis de skl få like mnge oller hver? En person hr kkurt 5 1 kg rent gull. Hv lir verdien i kroner hvis verdien til 1 g rent gull er 250 kr? Tegn en eske i topunktsperspektiv. Ikke fjern hjelpelinjene. Vis hvordn du hr gått frem.

7 DEL 2 Oppgve 7 Tellen viser lønnsutviklingen for en reider dersom lønnen hdde fulgt konsumprisindeksen (kpi) Årslønn ,6? Kpi 19,1 83,7 128,2 En reider hdde kr i årslønn i Beregn hv dette tilsvrer i 2010 dersom lønnen hdde fulgt kpi-indeksen. Regn ut hvor mnge prosentpoeng og prosent lønnen til reideren steg fr 1971 til Oppgve 8 Sirkel A hr en dimeter på 50 m. Regn ut omkretsen v sirkelen. A B Sirkel B hr omkrets på 628 m. Regn ut rdiusen i denne sirkelen. Regn ut forholdet mellom sirkel B og sirkel A. Skriv svret som målestokken mellom de to sirklene.

8 Oppgve 9 En prkeringsplss skl h form og mål som vist under: 31 m 22 m 9 m 42 m Prkeringsplssen skl tegnes i målestokk 1 : 200. Regn ut hvor lng den lengste siden på prkeringsplssen lir på tegningen. Regn ut relet v prkeringsplssen. Det skl settes gjerde rundt prkeringsplssen, ortsett fr i den ene enden der det skl være en åpning for inn- og utkjøring på 9 m. Beregn hvor mnge meter gjerde som må kjøpes.

9 Oppgve 10 Skriv ut lle oppgvene med rutenett, rd- og kolonneoverskrifter. Lg to utskrifter: én med formler og én uten formler. Husk å skrive på kndidtnummeret ditt på lle sidene i regnerket. (Bruk gjerne topptekst.) Dersom du løser oppgve 10 uten ruk v regnerk, får du re hlvprten v den poengsummen du kn få dersom du løser oppgven med regnerk. Selim er student og får stipend og lån. I tillegg hr hun deltidsjo i en utikk. En måned estemmer hun seg for å sette opp et udsjett for å få edre oversikt over økonomien sin. I mi regner hun med disse inntektene og utgiftene: - Lån og stipend kr - Lønn kr - Klær og sko kr - Helse og hygiene 800 kr - Reisekostnder 500 kr - Moil 600 kr - Fritid kr - Mtvrer kr - Diverse 500 kr Sett opp et udsjett for Selim med forventede inntekter, utgifter og resultt. Her er de virkelige inntektene og utgiftene for Selim denne måneden: Helse og hygiene 240 kr Bukse 790 kr Mt 368 kr Lønn kr Flexikort 180 kr Mt 220 kr Kino 400 kr Sko 949 kr Bøker 750 kr Disko 800 kr Mt 680 kr Moilregning 492 kr Mt 134 kr Lån og stipend kr Flexikort 180 kr Helse og hygiene 735 kr Sett opp et regnskp med de virkelige inntektene, utgiftene og resulttet. Regn ut lle vvikene mellom udsjettllene og regnskpstllene.

10 Oppgve 11 Et glss hr en nedre rdius på 5 m og en øvre rdius på 8 m. Glsset er 12 m høyt. R = 8 m Formelen for volumet v en vkuttet kjegle er: V = π ( r + r R + R ) h 3 V = volumet r = rdien i unnen v glsset R = rdien på toppen v glsset h = høyden v glsset r = 5 m Regn ut glssets volum ved hjelp v formelen over. Beregn h dersom V = m 3, R = 8 m og r = 5 m.

11 DEL 3 Bygg- og nleggsteknikk Oppgve 12 Ahmed og Henrik skl støpe en grunnmur i etong til et hundehus. Alle mål på tegningen over er i mm. Lengde: mm, redde: mm og tykkelse og høyde: 250 mm. Regn ut volumet v grunnmuren. Oppgi svret i m³. Hvor mnge liter etong må de lnde når de regner et svinn på 15 %? Mønehøyden over grunnmuren vil være mm, og grunnmurens kotehøyde er 146,798 meter over hvet. Hv er mønets høyde over hvet? Oppgi svret i meter.

12 Oppgve 13 D h 430 E 113 A B 750 C 1500 På tegningen over ser du en tksperre til et hundehus. Alle målene er i mm. Hvor lng er overgurten DE? Oppgi svret i m. Hv er lengden på tkutstikket AB? Oppgi svret i m.

13 DEL 3 Design og håndverk Oppgve 12 Ornsje Rød Figuren viser et frgekrt med forholdet mellom hvitmling og frge. Hvor mnge prosent frge er det i frgen merket A? Hvor mye hvitmling trenger du for å lge 6 liter v frge B? Du lnder frgene A og B med lik mengde. Regn ut hvor mnge prosent rødfrgen utgjør i den nye lndingen. Oppgve 13 Clude Monet The Artist's House t Argenteuil in Tegn hjelpelinjer og finn horisontlinje og forsvinningspunkt på ildet (ruk vedlegget på neste side). Tegn en del v et hus med vindu og dør inn på ildet. Bruk smme forsvinningspunkt (ruk vedlegget på neste side).

14 Vedlegg til oppgve 13 for design og håndverk Kndidtnummer: Denne siden skl rives v og legges ved esvrelsen. Tegn huset her

15 DEL 3 Elektrofg Oppgve 12 Et kretskort er tegnet i størrelse 4 : 1. Lengden på kortet er 1,5 gnger så lng som redden. Bredden på kretskortet er 30 m på tegningen. Hvor redt er kretskortet i virkeligheten? Hvor lngt er kretskortet i virkeligheten? Oppgve 13 P = R. I 2 l R = ρ. A U = R I P = effekten (W) R = resistnsen (Ω) R = resistnsen (Ω) R = resistnsen (Ω) l = lengden v tråden (m) I = strømmen (A) I = strømmen (A) A = tverrsnittet til tråden (mm 2 ) U = spenningen (V) ρ = resistiviteten til metllet Spenningen over en krets er 12 V og resistnsen er 20 Ω. Regn ut strømmen i kretsen. Formelen for effekt er: P = R. I 2 Løs formelen med hensyn på I. Beregn strømmen når resistnsen er 12 kω og effekten er 5 W. En koertråd hr et tverrsnitt på 0,2 mm 2, resistnsen til koertråden er 28 Ω og ρ = 0,0175 Ω. mm 2 /m. Beregn lengden v koertråden.

16 DEL 3 Helse- og sosilfg Oppgve 12 Gjør om til l og legg smmen: 0,4 liter + 2 dl + 11 l ml En psient trenger 4 l v en medisin dglig. En måleskje tr 5 ml. Hvor mnge skjeer med medisin må psienten t hver dg? Oppgve 13 Næringsmidler inneholder lnt nnet proteiner, krohydrter og fett. Energimengden E målt i kilojoule (kj) er gitt ved formelen: E = 17 P + 17 K + 38 F der P er proteinmengden, K er krohydrtmengden og F fettmengden i grm. På en pose AXA Go Dg fruktmüsli står det t næringsinnholdet per 100 grm er: Protein: 5,0 g Fett: 1,5 g Krohydrter: 32,0 g Regn ut energiinnholdet i porsjonen på 100 grm. Pizzen Grndios iff og løk hr et energiinnhold per 100 g på 870,4 kj, proteininnhold på 11 g og fettinnhold på 6,8 g. Du spiser hele pizzen på 400 g. Hvor mnge joule (J) får du i deg? Regn ut hvor mnge grm krohydrter 100 g v pizzen inneholder.

17 DEL 3 Medier og kommuniksjon Oppgve 12 Utsnittet v ildet er formlikt med hele ildet. Forholdet er 6 : 1. Utsnittet er 8,5 m redt og 6,6 m høyt. Beregn høyden og redden på hele ildet. I utsnittet v ildet er det 45 x 58 piksler. Regn ut hvor mnge piksler det er på hele ildet. Hvor mnge piksler er det per m 2?

18 Oppgve 13 En onde ønsker å mle et ilde på siloen sin. Siloen hr form som en sylinder. Den er 10,0 meter høy og hr en dimeter på 3,0 meter. Bonden ønsker å mle et ilde på hlve siloveggen. Hvor mnge m 2 må onden mle? Bonden må kjøpe 60 liter mling for å mle ildet. Motivet skl være i tre frger: rødt, gult og lått. Forholdet mellom frgene er 8 : 3 : 1. Hvor mnge liter mling må onden kjøpe v hver frge?

19 DEL 3 Nturruk Oppgve 12 Det skl settes gjerde rundt en innhegning for hester. Jordet er rektngulært og er 110 m lngt og 106 m redt. Beregn omkretsen v innhegningen. En nnen innhegning hr en omkrets på 452 m. Det skl settes opp et gjerde rundt innhegningen. Gjerdenettingen er på ruller som hr en lengde på 6 m. Det er nødvendig med 5 % mer gjerdenetting på grunn v kpp og tilpsning. Regn ut hvor mnge ruller som må kjøpes. Oppgve 13 Et lomstered estår v to store sirkler som vist på tegningen. Dimeteren i den store sirkelen er 3 m og i den lille sirkelen 1 m. Regn ut relet v det grønne feltet. Tenk deg t du skl sette lomster i et liknende lomstered. Det hr et rel på 8 m 2. Hver plnte trenger 4 dm 2. Beregn hvor mnge plnter som må kjøpes inn. For å holde ugress unn lomsteredene lger du en lnding der du skl lnde ugressmiddel med vnn i forholdet 1 : 250. Du skl lge en ferdig lnding på 5 liter. Beregn hvor mye ugressmiddel du må h til 5 liter ferdig lnding.

20 DEL 3 Resturnt- og mtfg Oppgve 12 Næringsmidler inneholder lnt nnet proteiner, krohydrter og fett. Energimengden E målt i kilojoule (kj) er gitt ved formelen: E = 17 P + 17 K + 38 F der P er proteinmengden, K er krohydrtmengden og F fettmengden i grm. På en pose AXA Go Dg fruktmüsli står det t næringsinnholdet per 100 grm er: Protein: Fett: Krohydrter: 5,0 g 1,5 g 32,0 g Regn ut energiinnholdet i porsjonen på 100 g. Pizzen Grndios iff og løk hr et energiinnhold per 100 g på 870,4 kj, proteininnhold på 11 g og fettinnhold på 6,8 g. Du spiser hele pizzen på 400 g. Hvor mnge joule (J) får du i deg? Regn ut hvor mnge grm krohydrter 100 g v pizzen inneholder.

21 Oppgve 13 Du skl innrede et møterom for 12 personer og skl kjøpe inn ord. Hver person trenger 60 m ordplss. Møelforretningen hr tre modeller du kn kjøpe. Bordtype Mål i m Bord A 120 x 80 Bord B 80 x 80 Bord C Dimeter 80 Bord A Bord B Bord C Du skl h 2 stk. v ord C. Hvilke ordtyper må du velge i tillegg til de to C-ordene for å få plss til lle ved smme ord? Kjøp færrest mulig ord. Tegn en skisse v det du vlgte i oppgve og eregn relet til det smmenstte ordet.

22 DEL 3 Servie og smferdsel Oppgve 12 Christin tjener 175 kr per time. Etter kl får hn 50 % tillegg, og etter kl får hn 100 % tillegg. Hn lir trukket 35 % i sktt. En uke leverer hn inn denne timelisten: Dg Kom Gikk Mndg Tirsdg Onsdg Torsdg Fredg Hvor mnge timer reidet Christin totlt denne uken? Hvor mnge timer joet hn med 50 % tillegg, og hvor mnge timer joet hn med 100 % tillegg? Hvor mye fikk Christin utetlt denne uken? Christin hr kr i nken på en BSU-konto, og hn får 4,5 % rente per år. Hvor stort er eløpet på kontoen etter t årets rente er lgt til?

23 Oppgve 13 Du skl innrede et møterom for 12 personer og skl kjøpe inn ord. Hver person trenger 60 m ordplss. Møelforretningen hr tre modeller du kn kjøpe. Bordtype Mål i m Bord A 120 x 80 Bord B 80 x 80 Bord C Dimeter 80 Bord A Bord B Bord C Du skl h 2 stk. v ord C. Hvilke ordtyper må du velge i tillegg til de to C-ordene for å få plss til lle ved smme ord? Kjøp færrest mulige ord. Tegn en skisse v det du vlgte i oppgve og eregn relet til det smmenstte ordet.

24 DEL 3 Teknikk og industriell produksjon Oppgve 12 En motor hr et slgvolum på 1200 m 3. Hvor mnge liter og mm 3 tilsvrer dette? En metllplte skl lkkeres. Gul og lå lkk lndes i forholdet 2 : 1. Det skl lges 6 dl ferdig lnding. Beregn hvor mye som må rukes v hver frge. Oppgve 13 En metllplte er kvdrtisk med side 15 m. Det skjæres ort en 1 sirkel i hvert hjørne 4 som vist på figuren. Rdius i sirkelen er 3 m. Regn ut overflten v metllplten. Metllplten er 4 mm tykk. Regn ut metllpltens volum. En metllplte hr et volum på 80 m 3, og en tetthet på 7,5 g/m 3. Regn ut mssen v metllplten. Msse Tetthet = Volum Tetthet hr enhet g/m 3 Msse hr enhet g Volum hr enhet m 3

Fag: Matematikk 1P for yrkesfag for elever og privatister

Fag: Matematikk 1P for yrkesfag for elever og privatister Lokl gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene

Detaljer

Lokalt gitt eksamen 2010

Lokalt gitt eksamen 2010 Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 28. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 9 Del 3: oppgve 12 13

Detaljer

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 18. ugust Del 1: oppgve 1 4 Del 2: oppgve 5 10 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve 11

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Fag: Matematikk 1P-Y for yrkesfag for elever og privatister. Eksamensdato: 16. januar 2012

Fag: Matematikk 1P-Y for yrkesfag for elever og privatister. Eksamensdato: 16. januar 2012 Loklt gitt eksmen Eksmen Fg: Mtemtikk 1P-Y for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 16. jnur 2012 Del 1: oppgve 1 6 Del 2: oppgve 7 12 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215 2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1P kapittel 8 Eksamenstrening

1P kapittel 8 Eksamenstrening Løsninger til oppgvene i ok 1P kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 Vi ytter ut 7,60 kr med 8 kr og 104 euro med euro. Det gir: 8 kr 4 300 kr. For fire overnttinger

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Vurderingsrettleiing Vurderingsveiledning Desember 2007

Vurderingsrettleiing Vurderingsveiledning Desember 2007 Vurderingsrettleiing Vurderingsveiledning Desember 007 Mtemtikk sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Vurderingsveiledning til sentrlt gitt eksmen i Kunnsksløftet

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Kvalitetssikring av elektronisk pasientjournal - Skjema 1

Kvalitetssikring av elektronisk pasientjournal - Skjema 1 70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk

Detaljer

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13.

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13. BASISÅR I IDRETTSVITENSKAP 1/13 Us individuell skriflig eksmen i IDR 13- Funksjonell nomi Onsdg 8. ugus 13 kl. 1.-13. Hjelpemidler: klkulor og formelsmling som lir del u på eksmen Eksmensoppgven esår v

Detaljer

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak Tvng og mkt Omfng v tvng og mkt, og kommunl kompetnse Hv er tvng og mkt? Tiltk som tjenestemottkeren motsetter seg eller tiltk som er så inngripende t de unsett motstnd må regnes som ruk v tvng eller mkt.

Detaljer

Matematikk Oppgavesamling

Matematikk Oppgavesamling Mtemtikk Oppgvesmling Odd T Heir Gunnr Erstd John Engeseth Ørnulf Borgn Per Inge Pedersen BOKMÅL Mtemtikk T Oppgvesmling er en del v læreverket Mtemtikk T. Verket dekker målene i læreplnen v 00 for Mtemtikk

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin?

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin? 2357434042 A. Om din stilling Leger 1 11 Kryss v slik: Ikke slik: Klinisk stilling: Turnuslege Assistentlege Overlege B. Om din erfring med ruk v dtmskin 1 Eier du en dtmskin? J Nei 2 Hvor mnge fingre

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

Vurderingsveiledning 2010

Vurderingsveiledning 2010 Vurderingsveiledning 00 Mtemtikk, sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Vurderingsveiledning til sentrlt gitt skriftlig eksmen 00 Denne veiledningen

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

Problemløsning eller matematiske idéer i undervisningen?

Problemløsning eller matematiske idéer i undervisningen? Prolemløsning eller mtemtiske idéer i undervisningen? n Lksov Något som oft förekommer i diskussionen om skolns mtemtikundervisning är vvägningen melln prolemlösning och teori. I denn rtikel poängterr

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

1P kapittel 5 Areal og volum

1P kapittel 5 Areal og volum Løsninger til oppgvene i ok 1P kpittel 5 Arel og volum Løsninger til oppgvene i ok 5.1 Vi skl gå ett hkk mot høyre og gnger derfor med 100. 14 m 14 100 mm 1400 mm Vi skl gå to hkk mot høyre og gnger derfor

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Løsninger til oppgaver i boka

Løsninger til oppgaver i boka Løsninger til oppgver i ok Kpittel 1 Alger Løsninger til oppgver i ok 1.9 d På ildet ser vi t den lengste siden i tkåpningen er omtrent så lng som den korteste. Om vi kller den korteste siden for x, hr

Detaljer

R1 kapittel 8 Eksamenstrening

R1 kapittel 8 Eksamenstrening Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er

Detaljer

Mer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538

Mer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538 5 Mer om lger Kompetnsemål: Mål for opplæringen er t eleven skl kunne regne me rsjonle og kvrtiske uttrykk me tll og okstver og ruke kvrtsetningene til å fktorisere lgeriske uttrykk løse likninger, ulikheter

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

Kapittel 2 Mer om tall og tallregning Mer øving

Kapittel 2 Mer om tall og tallregning Mer øving Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver Snrveien til MySQL og Dremwever CS5 Oppgver Kpittel 1 Innledning Oppgve 1 Forklr kort hv som menes med følgende egreper: disksert weområde serversert weområde Oppgve 2 Hv er viktig å tenke gjennom når

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Montering av Grand Star leddporter

Montering av Grand Star leddporter Montering v Grnd Str leddporter Slik holder du porten fin i mnge år Før du strter å mle, gi porten ett til to strøk Visir eller tilsvrende grunning. Bruk nerkjent, god husmling. To til tre strøk er å nefle.

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

SENSORVEILEDNING ECON 1410; VÅREN 2005

SENSORVEILEDNING ECON 1410; VÅREN 2005 SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede

Detaljer

Kapittel 10 Setningsledd

Kapittel 10 Setningsledd Kpittel 10 Setningsledd 10.1 Kn de hjelpe oss? J, dem kn vi lltid stole på. Bestemor hns or i Spni. Henne esøker hn hver vinter. I dg inviterte mnnen som or i noleiligheten meg på kffe. De unge i yen krever

Detaljer

om vurdering av eksamensbesvarelser 2015

om vurdering av eksamensbesvarelser 2015 Eksmensveiledning om vurdering v eksmensbesvrelser 015 Mtemtikk. Sentrlt gitt skriftlig eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Ny eksmensordning fr og med våren 015

Detaljer

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer.

Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres inn senest etter 5 timer. Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: Veiledning om vurderingen: Andre opplysninger: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2

Detaljer

Oppgaver i naturfag, 9-åringer

Oppgaver i naturfag, 9-åringer Oppgver i nturfg, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene til 9- åringene er innelt i isse emnene: Biologi Fysikk/kjemi Geofg Emnetilhørighet er ngitt forn hver oppgve. S012033

Detaljer

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator G høgskolen i oslo nne: Mterillære og husbyggingsteknikk Gruppe(r): BC, BB ogtba Emnekode: LO270 B Fglig veiieder:- Morten Opshl. Dto: 27.05.04 Eksmenstid: 09.00 - Eksmensoppgven består v: r- : -- Antll

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir 2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm

Detaljer

Terminprøve Sigma 1T høsten 2009

Terminprøve Sigma 1T høsten 2009 Terminprøve Sigma 1T høsten 2009 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

DEL1 Uten hjelpemidler

DEL1 Uten hjelpemidler DEL1 Uten hjelpemidler Oppgave 1 a) Skrivtallene32000000og0,000678påstandardform. b) Hvilket tall er størst av tallet 70 i titallsystemet og tallet 1001001 i totallsystemet? c) Forholdetmellomnogperlik140.Hvorstorerpdersomner70?

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Eksamen 21.05.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål

Eksamen 21.05.2012. MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2. Bokmål Eksamen 21.05.2012 MAT0010 Matematikk Grunnskoleeksamen for voksne deltakere og privatister DEL 2 Bokmål Eksamensinformasjon for Del 2 Eksamenstid Hjelpemidler til Del 2 09.00 14.00, totalt 5 timer Del

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1003 Matematikk 2P Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1003 Matematikk P Eksamen 30.11.009 Bokmål MAT1003 Matematikk P HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer