ALTERNATIV GRUNNBOK BOKMÅL

Størrelse: px
Begynne med side:

Download "ALTERNATIV GRUNNBOK BOKMÅL"

Transkript

1 Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL

2 CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt vtle med Cppelen Dmm AS er enhver eksemplrfrmstilling og tilgjengeliggjøring bre tilltt i den utstrekning det er hjemlet i lov eller tilltt gjennom vtle med Kopinor, interesseorgn for rettighetshvere til åndsverk. Utnyttelse i strid med lov eller vtle kn medføre ersttningsnsvr og inndrgning, og kn strffes med bøter eller fengsel. Tusen millioner 5 7 følger læreplnene for Kunnskpsløftet i fget mtemtikk og er lgd til bruk på grunnskolens brnetrinn. Illustrtør: Bjørn Eidsvik Omslgsdesign: 07 Gruppen s / Kristine Steen Omslgsillustrsjon: Bjørn Eidsvik Grfisk formgiver: 07 Gruppen s / Kristine Steen Forlgsredktør: Espen Skovdhl Trykking/innbinding: Livoni Print SIA, Ltvi 2011 Utgve 1 Opplg 1 ISBN Fotogrfier GV-Press: Brtomeu Amengul s. 6 Smfoto: Jens Sølvberg s. 78, Tom Schndy / NN s. 104, Trym Ivr Bergsmo s. 130, Thorfinn Bekkelund s. 180 Scnpix: Kulk/zef/Corbis s. 38, Frncois Pugnet / Kip/Corbis s. 130

3 Innledning Velkommen til Tusen millioner 7B Alterntiv grunnbok. Den lterntive grunnbok følger de smme kpitlene som i grunnbok, men hr forenklet lærestoff og utfyllingsoppgver. Kpitlene er delt inn i fire deler: Lærestoff og oppgver Kn jeg? Litt v hvert Oppsummering Noen v oppgvene er merket med disse symbolene: Klkultor kopi 1.1 Kopieringsoriginl Finn ut Smrbeid I oppgvebøkene finner du i tillegg oppgver i tre vnskelighetsgrder og flere repetisjonsoppgver. Nettsted: Vi håper du vil få glede v rbeidet med Tusen millioner! Hilsen Anne Rsch-Hlvorsen og Oddvr Asen

4 Innhold 8 Tll og lgebr Store tll Smmenstte tll og primtll Vi regner med prentes Negtive tll Å ddere eller subtrhere et negtivt tll Regning med bokstver Kn jeg? Jeg regner mer Oppsummering Divisjon Divisjon som gir rest Noen gnger blir svret i en divisjon mindre enn én Divisjon med et flersifret tll Divisjon v desimltll med et helt tll Divisjon v desimltll med et desimltll Kn jeg? Jeg regner mer Oppsummering Brøk og desimltll Brøk Addisjon og subtrksjon v brøker med lik nevner Utviding v brøk og likeverdige brøker Addisjon og subtrksjon v brøker med ulik nevner Forkorting v brøk Multipliksjon v en brøk med et helt tll Multipliksjon v brøker Smmenhengen mellom brøk og desimltll Kn jeg? Jeg regner mer Oppsummering Geometri Speiling Prllellforskyving Dreiing Symmetri Kn jeg? Jeg regner mer Oppsummering

5 12 Smmenstte enheter Vi regner med frt Vi regner med priser Vi regner med lønn Vlut Kn jeg? Jeg regner mer Oppsummering Regnerk Hv er et regnerk? Kn jeg? Jeg regner mer Oppsummering Prosent og desimltll Prosentbegrepet Brøk og prosent Prosentvis forndring Kn jeg? Jeg regner mer Oppsummering Klr, ferdig, regn! 5

6 Vi regner med bokstver og tenker på dem som tll.

7 8 Tll og lgebr MÅL I dette kpitlet skl du lære om store tll smmenstte tll og primtll primtllsfktorisering regning med prenteser negtive tll regning med bokstvuttrykk ddisjon og subtrksjon med negtive tll KOPIERINGSORIGINALER Tllinjer Felles problemløsing Tll og lgebr 7

8 Store tll Denne internettsid forteller oss t kkurt i dg er det er så mnge mennesker i verden! 6 Hvordn uttler vi tllet på dtskjermen? : 1 tusen : 1 million : 1 millird : 1 billion : 1 billird : 1 trillion : 1 trillird Seks millirder seks hundre og sekstifem millioner ni hundre og syttien tusen tre hundre og sekstifem Det er ingen grense for hvor store tll vi kn lge seks millirder seks hundre og sekstifem millioner ni hundre og syttien tusen tre hundre og sekstifem 8

9 1 Skriv tllene med bokstver. ) 1253 b) 3041 c) d) Skriv tllene med siffer. ) To tusen og femti: b) Nitti tusen fire hundre og syttiseks: c) Ti tusen seks hundre og tjueto: d) Fire hundre tusen: 3 Skriv tllene med siffer. ) Ett tusen: b) En million: c) Hvor mnge gnger større er én million enn ett tusen? Tll og lgebr 9

10 4 Se på tllet til høyre: Hvilken verdi hr plssen til ) sifferet 4? b) sifferet 8? c) sifferet 9? Se på tllet i oppgve 4. På hvilken plss står ) sifferet 0? b) sifferet 6? c) sifferet 7? 6 ) Skriv med bokstver. b) Hvilket siffer står på titusenplssen? c) Hv får du hvis du legger 100 til tllet? d) Hv får du hvis du legger 2100 til tllet? 7 Skriv bre svrene. Multipliser 267 med ) ti: c) tusen: b) hundre: d) ti tusen: 8 Skriv bre svrene. Divider med ) ti: c) tusen: b) hundre: d) ti tusen: 10

11 Smmenstte tll og primtll Hvilke v tllene er smmenstte tll? To v tllene er primtll! Hvilke v tllene er smmenstte tll, og hvilke er primtll? Et smmenstt tll kn skrives som et produkt v to eller flere fktorer. Ingen v fktorene må være 1. 6 er et smmenstt tll fordi det kn skrives som: 6 = 2 3 produkt fktor fktor Når vi skriver et tll på denne måten, sier vi t vi hr fktorisert tllet. Et primtll kn bre skrives som et produkt v 1 og seg selv. Et primtll hr lltid bre to fktorer, 1 og seg selv. Eksempel 13 = 1 13 Tretten er et primtll. 7 = 1 7 Sju er et primtll. 2 er både prtll og primtll! Her ser du de åtte første primtllene: Tll og lgebr 11

12 9 Sett ring rundt de smmenstte tllene Sett ring rundt de smmenstte tllene Sett ring rundt de smmenstte tllene Sett ring rundt de smmenstte tllene Skriv lle primtll som er mindre enn 30. Skriv her: 14 Sett ring rundt primtllene Sett ring rundt primtllene

13 24 = = = = Noen tll kn fktoriseres på flere måter. 16 Fktoriser tllene. Velg selv. ) 15 = b) 18 = c) 27 = d) 36 = 17 Primtllsfktoriser tllene. ) 12 = c) 14 = b) 8 = d) 20 = 18 Primtllsfktoriser tllene. ) 16 = c) 32 = b) 27 = d) 22 = Hvis vi fktoriserer et tll slik t lle fktorene er primtll, sier vi t vi hr primtllsfktorisert tllet. Eksempel 24 = er en primtllsfktorisering, fordi 2 og 3 er primtll. 24 = 3 8 er en fktorisering, men ikke en primtllsfktorisering fordi 8 ikke er et primtll. Tll og lgebr 13

14 Vi regner med prentes Klrer du å regne ut 7 13 i hodet? Hvis jeg tenker t 13 = , tror jeg t jeg klrer det Hvordn kn Simen tenke videre for å få riktig svr? Hvis vi skl skrive med tll hvordn Simen tenker, må vi bruke prentes: 7 13 = 7 (10 + 3) = = 91 Jeg gnger først 7 med 10 og deretter 7 med 3. D hr jeg gnget 7 med (10 + 3) =

15 19 Regn ut. ) 5 12 = 5 (10 + 2) = 50 + = b) 4 13 = 4 (10 + 3) = + 12 = c) 6 13 = 6 (10 + 3) = + = d) 8 12 = 8 (10 + 2) = + = 20 ) 14 6 = (10 + 4) 6 = 60 + = b) 38 3 = (30 + ) 3 = + = c) 45 5 = ( + 5) 5 = + = d) 52 7 = (50 + ) 7 = + = 21 Regn ut ved hjelp v prentes. Skriv hele stykket. ) 28 5 = b) 35 8 = c) 56 6 = d) 64 4 = 22 Skriv tllet som mngler ) (30 + 6) 4 = 4 b) ( ) 5 = 5 c) 9 (80 + 7) = 9 d) 7 (40 + 8) = 7 e) 8 (70 + 9) = 8 Tll og lgebr 15

16 Hei, Simen! Jeg skylder deg 50 kroner, men hr bre 30 kroner. Er det greit t du får resten på mndg? Negtive tll Klrt det! Du er litt på minussid, skjønner jeg! Hvor mnge kroner kn vi si t Julie «hr»? Julie hr 30 kr, men skylder Simen 50 kr. Vi får dette regnestykket: 30 kr 50 kr = 20 kr Julie skylder 20 kr. Vi kn d si t Julie «hr» 20 kr. Minustegnet betyr t hun ikke hr pengene, men skylder dem. På tllinj ser dette slik ut: > 23 Vis regnestykkene på tllinjene. ) 1 4 = > b) 5 9 = > 16

17 Tenk deg t du hopper lngs tllinj! 24 Vis regnestykkene på tllinj. ) 2 5 = b) 4 6 = c) 1 3 = > > > d) 2 6 = > 25 Regn ut. ) = c) = b) = d) = 26 Regn ut. ) = c) = b) = d) = Tll og lgebr 17

18 27 Regn ut. ) = c) = b) = d) = 28 Regn ut. ) = c) = b) = d) = 29 Kj og Mi reiser til byen for å kjøpe fødselsdgsgve til moren til Kj. Gven koster 120 kr, men Kj hr bre 50 kr. Hun låner resten v Mi. Skriv med negtive tll hvor mnge kroner Kj «hr» etterpå. kr 18

19 Vi bruker også negtive tll til å vise kuldegrder på en grdestokk. Grdestokken til høyre viser 7 C, som er sju grder under nullpunktet. I går vr det åtte grder vrmere! I går vr det 8 grder vrmere. D kn vi regne på denne måten for å finne ut hvilkentempertur det vr: 7 C + 8 C = 1 C På tllinj ser dette slik ut: > 30 I Tromsø vr temperturen en dg 5 C. Hv ble temperturen neste dg hvis den snk med ) 5 grder? C c) 7 grder? C b) 10 grder? C d) 20 grder? C 31 En nnen dg vr temperturen 3 C i Bodø. Hv ble temperturen neste dg hvis den steg med ) 8 grder? C c) 2 grder? C b) 13 grder? C d) 30 grder? C Tll og lgebr 19

20 Å ddere eller subtrhere et negtivt tll = 2 + ( 3) = 2 ( 3) = 2 3 = 2 + ( 3) kn knskje bety t du hr 2 kroner og skylder 3 kroner? Hvis du betler tilbke de 2 kronene du hr, d hr du fremdeles 1 krone i gjeld, ltså 1 krone. Hvordn kn vi regne stykkene på tvl? Når vi dderer eller subtrherer negtive tll, må vi lltid sette det negtive tllet i prentes. D vet vi hv som er regneopersjonen (pluss eller minus) og hv som er fortegnet. Eksempel 2 ( 3) = Regneopersjonen «minus» Fortegnet som forteller t tllet er negtivt Vi får: 2 + ( 3) = 2 3 Pluss et negtivt tll blir minus. 2 ( 3) = Minus et negtivt tll blir pluss. 20

21 32 Sett inn riktig regneopersjon og regn ut. ) 12 + ( 6) = 12 6 = Å legge til noe negtivt er det smme som å trekke fr. Å trekke fr noe negtivt er det smme som å legge til. b) 11 + ( 10) = = c) 13 + ( 3) = 13 3 = d) 4 + ( 4) = 4 4 = 33 Regn ut. ) 7 + ( 5) = c) 15 + ( 3) = b) 10 + ( 10) = d) 9 + ( 4) = 34 Sett inn riktig regneopersjon og regn ut. ) 5 ( 6) = 5 6 = b) 6 ( 4) = 6 4 = c) 2 ( 2) = 2 2 = d) 7 ( 8) = 7 8 = 35 Regn ut. ) 4 ( 8) = c) 20 ( 20) = b) 12 ( 5) = d) 12 ( 8) = 36 Sett inn riktig regneopersjon og regn ut. ) 5 + ( 3) = 5 3 = b) 8 + ( 4) = 8 4 = c) 10 ( 3) = 10 3 = d) 7 ( 9) = 7 9 = Tll og lgebr 21

22 Regning med bokstver b 3 cm 4 cm Hvordn kn du skrive omkretsen v det blå rektngelet? Vi finner omkretsen v det gule rektngelet på denne måten: O = 4 cm + 3 cm + 4 cm + 3 cm = 14 cm O = 2 4 cm cm Hvis vi går frm på smme måten med det blå rektngelet, får vi: O = + b + + b O = b Her kn og b være hvilke som helst positive tll. 37 Finn et uttrykk for omkretsen v treknten. 0 = b 22

23 38 Tegn et rektngel med lengde og bredde b. Skriv et uttrykk for omkretsen. Tegn her: b) lengde x og bredde y Tegn her: 39 Figuren under er et rektngel med lengde l og bredde b. b l ) Finn et uttrykk for omkretsen v rektngelet. 0 = b) Regn ut omkretsen når l = 4,2 cm og b = 3,7 cm. Regn her:

24 40 Figuren under er et kvdrt med side s. s ) Finn et uttrykk for omkretsen v kvdrtet. b) Regn ut omkretsen v kvdrtet når s er 5 m. Regn her: 41 Finn et uttrykk for omkretsen v seksknten. 0 = 0 = 42 Finn et uttrykk for omkretsen v seksknten. 0 = 2 Klipp ut kortene på rbeidsrket. Gå smmen i grupper og fordel kortene. Finn løsningen smmen. Klr for felles problemløsing! Tll og lgebr 24 24

25 Kn jeg? Oppgve 1 Skriv tllene med bokstver. ) 2009 b) 1408 c) Oppgve 2 Skriv tllet trettiseks tusen fire hundre og sju med siffer. Nå skl vi se Oppgve 3 Skriv tllet som Jon skl lese med bokstver. Tll og lgebr 25

26 Oppgve 4 Fktoriser tllene. Velg selv. ) 14 = b) 42 = c) 19 = Oppgve 5 Fktoriser 12 på flest mulige måter. Løs oppgven her: Oppgve 6 Sett ring rundt primtllene Oppgve 7 Primtllsfktoriser tllene. ) 18 = b) 27 = Oppgve 8 Fyll inn tllene som mngler og regn ut. ) 14 6 = (10 + 4) 6 = 60 + = b) 16 5 = (10 + 6) 5 = + 30 = c) 5 23 = 5 (20 + ) = + = 26

27 Oppgve 9 Trekk strek fr desimltllene til riktig plss på tllinj. 3,5 4,5 1,5 0,5 0,5 2, > Oppgve 10 Regn ut. ) = c) = b) 0 12 = e) = Oppgve 11 Sett inn riktig regnetegn og regn ut. ) 14 ( 8) = 14 8 = b) 12 + ( 3) = 12 3 = c) 10 ( 7) = 10 7 = Oppgve 12 Finn et uttrykk for omkretsen v figuren. 0 = Oppgve 13 Snt eller usnt? Sett Påstnd Snt Usnt 4 er et negtivt tll. 7 > 5 7 > 9 49 er et primtll. Tllet 30 kn primtllsfktoriseres som 30 = ( 7) = Tll og lgebr 27

28 Litt v hvert 1 Trekk pil fr hvert tll til riktig plss på tllinj > 2 Regn i hodet. ) = b) = 3 Skriv plssverdien til sifrene i tllet , 4 6 < > < > > 4 Se på tllet til høyre: Hvilket siffer står på ) tierplssen? b) hundrerplssen? c) enerplssen?

29 5 Trekk pil fr hvert tll til riktig plss på tllinj > 6 Skriv tllet som hr 3 på hundrerplssen, 5 på tierplssen, 6 på tidelsplssen, 1 på hundredelsplssen og 9 på enerplssen. 7 Mi får 35,50 kr per time hun gjør hgerbeid. ) Hvor mye tjener Mi på fire timer? kr 3 5, Mi vil kjøpe seg en skoledgbok til 87,50 kr. b) Hvor mye hr hun igjen v pengene sine etter å h kjøpt dgboken? Skriv her: Tll og lgebr 29

30 9 Regn ut. ) b) c) d) En onsdg er det 8 C ved Li skole. Skidgen på torsdg blir vlyst hvis temperturen synker sju grder. Hvor kldt må det bli for t skidgen blir vlyst? C 30

31 Oppsummering Store tll Noen v de store tllene hr fått nvn på denne måten: : 1 tusen : 1 million : 1 millird : 1 billion : 1 billird : 1 trillion : 1 trillird Når vi leser store tll, kn vi gruppere sifrene tre og tre fr venstre: Vi sier: 4 millirder to hundre og åttitre millioner fem hundre og sju tusen seks hundre og førtien Smmenstte tll og primtll Et smmenstt tll kn skrives som et produkt v to eller flere fktorer. Ingen v fktorene må være 1. Eksempel 12 = er et smmenstt tll. Et primtll kn bre skrives som et produkt v 1 og seg selv. Eksempel 19 = er et primtll. Tll og lgebr 31

32 Primtllsfktorisering Hvis vi fktoriserer et tll slik t lle fktorene er primtll, sier vi t vi hr primtllsfktorisert tllet. Eksempel 28 = Vi skriver vnligvis primtllene etter størrelsen. Regning med prenteser Det kn ofte være lurt å dele den ene fktoren i et multipliksjonsstykke inn i to ledd. D bruker vi prentes når vi skriver regnestykket: = 6 (10 + 2) = = 72 Vi multipliserer først 6 med 10 og deretter med 2. Negtive tll De negtive tllene ligger til venstre for null på tllinj Negtive tll Positive tll > Vi bruker negtive tll for eksempel når vi skylder penger, eller når det er kldere enn null grder. Hvis vi ikke hr noen penger, men skylder 50 kr, skriver vi 50 kr. Hvis det er tre kuldegrder, viser grdestokken 3 C. 32

33 Å ddere eller subtrhere negtive tll Å ddere et negtivt tll er det smme som å subtrhere det positive tllet. Eksempel 3 + ( 5) = 3 5 = 2 Å subtrhere et negtivt tll er det smme som å ddere det positive tllet. 3 ( 5) = = 8 Regning med bokstver Vi kn lge uttrykk, for eksempel for omkretsen v en figur, når det ikke står tll, men bre bokstver på sidene. Eksempel Uttrykket for omkretsen v rektngelet nedenfor blir: O = + b + + b O = b = 2 + 2b b Hvis = 5 cm og b = 3,8 cm, får vi: O = b = 2 5 cm + 2 3,8 cm = 10 cm + 7,6 cm = 17,6 cm Tll og lgebr 33

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål

Tusen millioner. Grunnbok A Grunnbok B Oppgavebok. B ok m ål An n e R as ch-h alv o rs e n O d d v ar Aa s e n Tusen millioner Fasit Grunnbok A Grunnbok B Oppgavebok B ok m ål CAPPELEN DAMM AS, 0 ISBN 98-8-0--. utgave,. opplag 0 Materialet i denne publikasjonen

Detaljer

Anne-Lise Gjerdrum Espen Skovdahl. I llus t ras joner : Anne Holt og J ohn Thor esen. Tusen millioner. n nb. u r 2B. Bokmål.

Anne-Lise Gjerdrum Espen Skovdahl. I llus t ras joner : Anne Holt og J ohn Thor esen. Tusen millioner. n nb. u r 2B. Bokmål. Anne-Lise Gjerdrum Espen Skovdahl I llus t ras joner : Anne Holt og J ohn Thor esen n nb u r 2B ok G Tusen millioner Bokmål Tusen millioner snøfnugg daler, lever tusen millioner virvler rundt og svever

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: Anne Holt og John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W Kristiansen Illustrasjoner: Anne Holt og John Thoresen Tusen millioner B Grunnbok Bokmål Tusen millioner barn kan være venner tusen millioner fra nær og fjerne strender venn

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Løsninger til oppgaver i boka

Løsninger til oppgaver i boka Løsninger til oppgver i ok Kpittel 1 Alger Løsninger til oppgver i ok 1.9 d På ildet ser vi t den lengste siden i tkåpningen er omtrent så lng som den korteste. Om vi kller den korteste siden for x, hr

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Matematikk Oppgavesamling

Matematikk Oppgavesamling Mtemtikk Oppgvesmling Odd T Heir Gunnr Erstd John Engeseth Ørnulf Borgn Per Inge Pedersen BOKMÅL Mtemtikk T Oppgvesmling er en del v læreverket Mtemtikk T. Verket dekker målene i læreplnen v 00 for Mtemtikk

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1 Forkurs i mtemtikk Kompendium v Amir Hshemi, UiB. Notter, eksempler og oppgver med fsit/løsningsforslg Mtemtisk Institutt UiB Innhold Sist oppdtert 07. juni 0 i Forord... Kpittel 0 Test deg selv... Oppgver

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen Loklt gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: sommerskolen Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012

Kompendium av Amir Hashemi, HiB. Notater, eksempler og oppgaver med fasit/løsningsforslag Institutt for Matematikk og Statistikk, UiT, Høsten 2012 Forkurs i mtemtikk til MAT-, ugust Kompendium v Amir Hshemi, HiB. Notter, eksempler og oppgver med fsit/løsningsforslg Institutt for Mtemtikk og Sttistikk, UiT, Høsten Innhold Forord... Kpittel Test deg

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 18. ugust Del 1: oppgve 1 4 Del 2: oppgve 5 10 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve 11

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

Fag: Matematikk 1P for yrkesfag for elever og privatister

Fag: Matematikk 1P for yrkesfag for elever og privatister Lokl gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

Lokalt gitt eksamen 2010

Lokalt gitt eksamen 2010 Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 28. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 9 Del 3: oppgve 12 13

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s)

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s) Integrl Kokeboken 4 3 4 6 8 log sinπ sinh π 4 + loglog loglog + C cos + sin π s e Γs n n s Γsζs π + sin +cos log + cos i Del I. Brøk................................... Trigonometriske funksjoner.....................

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å "legge sammen" tall.

Ordliste matematikk. Addere (addisjon) Areal. Divisjon. Addere er å legge sammen tall. Ordliste matematikk Addere (addisjon) Addere er å "legge sammen" tall. Regnetegnet for addisjon er +. 3+4 er en addisjon. Summen er 7. Tallene som adderes kalles ledd. Areal Areal er et mål for hvor stor

Detaljer

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene

Detaljer

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.

Detaljer

IKT-trapp for Lade skole

IKT-trapp for Lade skole IKT-trpp for Lde skole Vr mot ndre pi nettet som du vil t ndre skl vre mot deg. Vr forsiktig med i gi ut opplysninger om deg selv. Skl du mote noen du hr chftet med p5 nett? T med en voksen eller en venn.

Detaljer

Vurderingsrettleiing Vurderingsveiledning Desember 2007

Vurderingsrettleiing Vurderingsveiledning Desember 2007 Vurderingsrettleiing Vurderingsveiledning Desember 007 Mtemtikk sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Vurderingsveiledning til sentrlt gitt eksmen i Kunnsksløftet

Detaljer

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg!

Kom i gang med Panorama Smartbok! Vi veileder deg steg for steg! Kom i gng med Pnorm Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

Problemløsning eller matematiske idéer i undervisningen?

Problemløsning eller matematiske idéer i undervisningen? Prolemløsning eller mtemtiske idéer i undervisningen? n Lksov Något som oft förekommer i diskussionen om skolns mtemtikundervisning är vvägningen melln prolemlösning och teori. I denn rtikel poängterr

Detaljer

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215 2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke

Detaljer

Kapittel 2 Mer om tall og tallregning Mer øving

Kapittel 2 Mer om tall og tallregning Mer øving Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,

Detaljer

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver Snrveien til MySQL og Dremwever CS5 Oppgver Kpittel 1 Innledning Oppgve 1 Forklr kort hv som menes med følgende egreper: disksert weområde serversert weområde Oppgve 2 Hv er viktig å tenke gjennom når

Detaljer

Hvor mye koster 10 kurver plommer?

Hvor mye koster 10 kurver plommer? Hvor mye koster 10 kurver plommer? 13 Jeg runder av tallene til 50 kr, 200 kr og 350 kr for å se om jeg har nok! Smart, ikke sant!? Kr 48,- Kr 199,- Kr 353,- Hoderegning og avrunding MÅL I dette kapittelet

Detaljer

a) Protokoll fra LMU-møte 30. april 2013 (se hil.no) b) Referat fra studienemndsmøte 26. april 2013 c) Referat fra studienemndsmøte 24.

a) Protokoll fra LMU-møte 30. april 2013 (se hil.no) b) Referat fra studienemndsmøte 26. april 2013 c) Referat fra studienemndsmøte 24. Møteprotokoll Tid: 14:00-15:5 tirsdg 19.9.01 Sted: Ø-01, HiL Læringsmiljøutvlget HiL Utskriftdto: 0. september 01 Side 1 Fste medlemmer som møtte: Jens Uwe Korten FA Ingrid Tvete Leder FA (forlot møtet

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Hastigheten til bob-en er 120 km/t. Hva vil det si?

Hastigheten til bob-en er 120 km/t. Hva vil det si? Hastigheten til bob-en er 120 km/t. Hva vil det si? 12 Hm, ett britisk pund koster 11,45 kr! Sammensatte enheter MÅL I dette kapitlet skal du lære om fart priser lønn valuta KOPIERINGSORIGINALER 12.1 Felles

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Mer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538

Mer om algebra. Sti 1 Sti 2 Sti 3 500, 501, 503, 504, 505, 511 513, 514, 515, 516, 517, 519, 520, 521, 525 531, 534, 535, 538 5 Mer om lger Kompetnsemål: Mål for opplæringen er t eleven skl kunne regne me rsjonle og kvrtiske uttrykk me tll og okstver og ruke kvrtsetningene til å fktorisere lgeriske uttrykk løse likninger, ulikheter

Detaljer

Vurderingsveiledning 2010

Vurderingsveiledning 2010 Vurderingsveiledning 00 Mtemtikk, sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Vurderingsveiledning til sentrlt gitt skriftlig eksmen 00 Denne veiledningen

Detaljer

Kvalitetssikring av elektronisk pasientjournal - Skjema 1

Kvalitetssikring av elektronisk pasientjournal - Skjema 1 70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

Hvor mye må jeg betale for 2 kg appelsiner?

Hvor mye må jeg betale for 2 kg appelsiner? Hvor mye må jeg betale for 2 kg appelsiner? 5 Jeg har omtrent 380 kr 400 kr! Avrunding og overslag MÅL I dette kapitlet skal du lære om avrunding av hele tall avrunding av desimaltall overslag i addisjon

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

Er hvitveisen speilsymmetrisk?

Er hvitveisen speilsymmetrisk? Er hvitveisen speilsymmetrisk? 11 Geometri 2 MÅL I dette kapitlet skal du lære om flytting av figurer ved speiling, parallellforskyving og dreining speilingssymmetri KOPIERINGSORIGINALER 11.1 Speiling

Detaljer

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk

Resultatet måles med en sensor. Feilen er forskjellen mellom sensorens utgang og vårt ønske. Hva er reguleringsteknikk Forelening FYS0 uke 4 H009 Tilbkekobling og tbilitet Innhold HVA ER REGULERINGSTEKNIKK... Generell bekrivele v et tyrt ytem... Ekemel: Amunden å ki til Sydolen.... Synd hn kom ldri til ydolen!... 6 EKSEMPEL

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rasch-Halvorsen Oddvar Aasen Illustratører: Bjørn Eidsvik og Gunnar Bøen 7A NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 200 Materialet i denne publikasjonen er omfattet av åndsverklovens

Detaljer

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg!

Kom i gang med Tett på Smartbok! Vi veileder deg steg for steg! Kom i gng med Tett på Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke fine funksjoner for god studieteknikk. Du kn mrkere gode nøkkelord og lge egne notter mens du lytter

Detaljer

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 1 Grunnleggende regning

1,055 kg 1,5 kg 1,505 kg. Hverdagsmatte. Praktisk regning for voksne Del 1 Grunnleggende regning 1,055 kg 1,5 kg 1,505 kg Hverdagsmatte Praktisk regning for voksne Del 1 Grunnleggende regning Innhold Del 1, Grunnleggende regning Tall 1 Penger i Norge 12 Legge sammen og trekke fra 14 Vekt og mål 27

Detaljer

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg!

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg! Kom i gng med Perspektiver Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke funksjoner for god studieteknikk. Du kn blnt nnet mrkere nøkkelord og lge notter mens du lytter

Detaljer