Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Størrelse: px
Begynne med side:

Download "Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003."

Transkript

1 Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene. Unntket er siste spørsmål, hvor mn lir edt om å forklre om everfunksjonen. Oppgve 1. Mn kn gå frm på to måter: Alterntiv 1: Først ``ser mn direkte fr grmmtikken (eller den opplgt ekvivlente grmmtikken med produksjoner S S S S S S) t den definerer språket ( ) ( )* En utomt for ( ) er En utomt for ( )* er Kopler mn de to etter hverndre, får mn følgende utomt for ( ) ( )* Side 2 v 3

2 Alterntiv 2: Hvis vi ersttter grmmtikken med den opplgt ekvivlente grmmtikken S B S A A F A S B F B S F kn vi ruke metoden i prolem 59 klengs, og få utomten (der tilstndene til venstre er ovenfr og ned -- A, S, B, og tilstnden til høyre er F) Dette er en nnen utomt enn vi fikk i første løsningslterntiv, men den er like god. Så ruker vi metoden i prolem 52. D må vi først gjøre strt-tilstnden til en ytre tilstnd, slik: Så kn vi t vekk den øverste tilstnden. For å sikre t vi fremdeles kn komme oss mellom de gjenværende tilstndene som før, legger vi til nye knter Side 3 v 3

3 Tilsvrende fjerning v nederste tilstnd gir Ved å knytte smmen lterntive trnsisjoner, får vi så Til slutt tr vi vekk den midterste tilstnden, og får ( )* ( ) Det regulære uttrykket ( )* ( ) lir ltså vårt svr. Oppgve 1. S B B B S B S B B B S A Side 4 v 3

4 Oppgve 1c Vi oppgir stkkutomten ved hjelp v en tell, som følger: Når vi er i denne tilstnden, og leser dette fr input, og finner dette øverst på stkken, d kn vi fjerne dette fr stkken, gå til denne tilstnden, P S P B P S P A P A P P A P S P B P P B P S P A P AA P B P BB P P P P og legge disse symolene inn på stkken. (Symolet lengst til høyre nederst, det lengst til venstre øverst) P er strt-tilstnd og ksepterende tilstnd, og strt-stkk er en stkk med nøyktig ett symol, nemlig S. Oppgve 2. Vi skl ltså skrive et regulært uttrykk for språket som inneholder strenger v typen P Q P Q og så videre. Alfetet estår d v de seks symolene P Q Når vi skriver regulære uttrykk, ruker vi tegnet for å uttrykke union. For å unngå foreveksling mellom de to tegnene, skrives union under ved hjelp v tegnet. Et regulært uttrykk for det ktuelle språket lir d: ( ) (P Q ) ( ( ) (P Q ) )* ( ( ) (P Q ) ( ( ) (P Q ) )*)* Liten forklring: (Ikke nødvendig som del v esvrelse.) Språket v litterler ngis ved ( ) (P Q ) Kll dette LITT. Språket v (ikke-tomme) konjunksjoner v litterler ngis ved LITT ( LITT)* Kll dette KONJ. Språket v (ikke-tomme) disjunksjoner v slike konjunksjoner ngis ved KONJ ( KONJ)* Oppgve 2. Vi skl nå tegne en endelig utomt som leser inn slike utsgn, og ksepterer dem som er snne i den ngitte tolkningen. Hv mskinen gjør hvis input ikke er et slikt utsgn, trenger vi ikke å ry oss om. D er fire tilstnder nok:, P, P,Q,,,, Q Q P,,, P, Q, Side 5 v 3

5 Noen v pilene hr flere tegn på seg, for eksempel den øverste. Vi leser dette som en forkortet skrivemåte for tre trnsisjoner på en gng: Vi lir værende i strt-tilstnden hvis vi leser, og hvis vi leser P, og hvis vi leser. Tilstnden i midten er ltså strt-tilstnden. Vi kunne klt den denne konjunksjonen er snn så lngt. Vi lir værende her (med unntk v vstikkere til høyre når vi leser negsjon) så lenge vi leser snne litterler. Herfr kn vi enten gå videre til tilstnden til venstre, som vi kunne klt OK. Dit kommer vi når vi hr funnet en hel konjunksjon som re estår v snne litterler. Vi vet t vi hr nådd slutten v en konjunksjon når vi ser tegnet. Den nederste tilstnden kunne vi klt edre lykke enste gng. Hit hvner vi fr tilstnden over når vi hr oppdget et usnt litterl. Vi lir værende her til en ny dukker opp og signliserer en ny sjnse. Oppgve 2. Vi tenker oss en Turingmskin med uendelig tpe mot høyre, med symolene P,Q,,,,, 0 (lnk) og Som input får vi en tpe med først (ltså til venstre), deretter utsgnet vi skl teste, og så lnke. Mskinen trenger ldri skrive noe: Det er tilstrekkelig t den først går fr venstre mot høyre mens den gjør kkurt det smme som mskinen over. Vi sjekker ltså først for snnhet i tolkningen hvor P, er snne og Q er gl. Er utsgnet ikke snt her, kn mskinen stoppe og si nei med en gng. I motstt fll går den tilke til strten v tpen og etterlikner så en helt tilsvrende endelig utomt som sjekker for snnhet i forhold til tolkningen hvor P og Q er usnne mens er snn: P 0 Q Q 0 NEI L 0 Q P Q P 0 JA Denne mskinen skriver ltså ikke. På hver trnsisjonspil finnes det derfor re ett symol. Dette står ved strten v pilen, og ngir lest tegn. Fr strt-tilstnden er det tegnet ut-trnsisjoner for symolene Q,,, 0. Husk på t det er underforstått i vår måte å tegne på t det d også går trnsisjoner fr denne tilstnden til seg selv for de øvrige symolene P,,,. Hvis vi skl sjekke logisk gyldighet v slike utsgn, må vi sjekke snnhet i forhold til lle de åtte mulige tolkningene. Dette kn gjøres ved å kople åtte mskiner etter hverndre på måten vi her hr gjort med disse to. Side 6 v 3

6 Oppgve 3. En flittig ever er en ever som skriver minst like mnge ett-tll som lle de ndre everne med smme ntll tilstnder. L n være et hvilket som helst tll; d finnes det re endelig mnge (forskjellige) evere med n tilstnder. Dette er fordi en ever re ruker symolene 0,1,, og det re er et endelig ntll kominsjonsmuligheter for hvordn en mskin kn oppføre seg når den leser disse tegnene mens den er i de n forskjellige tilstndene. Av de endelig mnge everne med n tilstnder, vil det lltid være noen som skriver minst like mnge 1-tll som lle de ndre, og for hver n vil det derfor finnes flittige evere med n tilstnder. (Det kn være flere v dem, men de skriver like mnge 1-tll.) Beverfunksjonen tr inn et tll n og gir tilke ntllet 1-tll som en flittig ever med n tilstnder skriver. Vi skriver B for everfunksjonen. Vi hr lltid B(n) B(m) hvis n m: For det første, hvis n=m så hr vi selvfølgelig B(n)= B(m) og derfor også B(n) B(m). Hvis n<m, resonnerer vi som følger: T en hvilken som helst flittig ever med n tilstnder, og gjør ingenting nnet med den enn å legge til m-n nye tilstnder som vi ldri kn komme til. (T en tegning v den flittige everen, og tegn inn m- n nye tilstnder med ingen trnsisjoner inn til seg fr den opprinnelige mskinen.) Den nye everen oppfører seg nøyktig som den forrige, men hr m tilstnder. Den er en ever, og skriver B(n) ett-tll. Nå finnes det også en flittig ever med m tilstnder, og den produserer pr. def. minst like mnge 1-tll, ltså B(n) eller flere. Med ndre ord, B(m) B(n). Side 7 v 3

Løsningsforslag til ukeoppgaver i INF3110/4110

Løsningsforslag til ukeoppgaver i INF3110/4110 Løsningsforslg til ukeoppgver i INF3/4 Uke 42 (5-723) Oppgve Jernbnedigrm: FlotingPointLiterl Digits Digits xponentprt xponentprt Digits Digits Digit xponentprt Digit xponentprt Digits + - 2 Omskriving

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Notater: INF2080. Veronika Heimsbakk veronahe@student.matnat.uio.no. 14. oktober 2014. 1 Intro 3

Notater: INF2080. Veronika Heimsbakk veronahe@student.matnat.uio.no. 14. oktober 2014. 1 Intro 3 Notter: INF2080 Veronik Heimskk veronhe@student.mtnt.uio.no 14. oktoer 2014 Innhold 1 Intro 3 2 Terminologi 3 2.1 Mengder.............................. 3 2.2 Boolsk logikk........................... 3

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

Institutt for elektroteknikk og databehandling

Institutt for elektroteknikk og databehandling Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Pensumoversikt - kodegenerering. Maskinen det oversettes til. Kodegenerering del 2: tilleggsnotat, INF5110 v2006

Pensumoversikt - kodegenerering. Maskinen det oversettes til. Kodegenerering del 2: tilleggsnotat, INF5110 v2006 Pensumoversikt - kodegenerering Kodegenerering del 2: tilleggsnott, INF5110 v2006 Arne Mus, Ifi UiO 8.1 Bruk v mellomkode 8.2 Bsle teknikker for kodegenerering 8.3 Kode for refernser til dtstrukturer (ikke

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslg til eksmen i INF2270 Omi Mirmothri (oppgve 1 4) Dg Lngmyhr (oppgve 5 6) 13. juni 2014 Eksmen 2270 V2013 - Fsit 1) Konverter følgene tll til inært. Vis utregning (5%). (43)es 43 / 2 = 21

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Kvalitetssikring av elektronisk pasientjournal - Skjema 1

Kvalitetssikring av elektronisk pasientjournal - Skjema 1 70778 EPJ Kvlitetssikring Skjem v. Hllvrd Lærum (tlf. 79886) Kvlitetssikring v elektronisk psientjournl - Skjem I dette spørreskjemet ønsker vi å få vite noe om din prktiske ruk v og ditt syn på elektronisk

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin?

Leger. A. Om din stilling. Klinisk stilling: Turnuslege Assistentlege Overlege. B. Om din erfaring med bruk av datamaskin. 1 Eier du en datamaskin? 2357434042 A. Om din stilling Leger 1 11 Kryss v slik: Ikke slik: Klinisk stilling: Turnuslege Assistentlege Overlege B. Om din erfring med ruk v dtmskin 1 Eier du en dtmskin? J Nei 2 Hvor mnge fingre

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

Microsoft PowerPoint MER ENN KULEPUNKTER

Microsoft PowerPoint MER ENN KULEPUNKTER Mirosoft PowerPoint MER ENN KULEPUNKTER INNHOLDSFORTEGNELSE: Opprette en ny presentsjon: «Ml» vs. «tomt skll» Bilder: Sette inn ilder fr Google ildesøk. Bilder: Sette inn llerede lgrede ilder. Bilder:

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

TFE4101 Krets- og Digitalteknikk Vår 2016

TFE4101 Krets- og Digitalteknikk Vår 2016 Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40

Detaljer

SENSORVEILEDNING ECON 1410; VÅREN 2005

SENSORVEILEDNING ECON 1410; VÅREN 2005 SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak Tvng og mkt Omfng v tvng og mkt, og kommunl kompetnse Hv er tvng og mkt? Tiltk som tjenestemottkeren motsetter seg eller tiltk som er så inngripende t de unsett motstnd må regnes som ruk v tvng eller mkt.

Detaljer

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1 Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest

Detaljer

510 Series Color Jetprinter

510 Series Color Jetprinter 510 Series Color Jetprinter Brukerhåndok for Windows Feilsøking for instllering En sjekkliste for å finne løsninger på vnlige instlleringsprolemer. Skriveroversikt Lære om skriverdelene og skriverprogrmvren.

Detaljer

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver

Snarveien til. MySQL og. Dreamweaver CS5. Oppgaver Snrveien til MySQL og Dremwever CS5 Oppgver Kpittel 1 Innledning Oppgve 1 Forklr kort hv som menes med følgende egreper: disksert weområde serversert weområde Oppgve 2 Hv er viktig å tenke gjennom når

Detaljer

INF1800 Forelesning 19

INF1800 Forelesning 19 INF1800 Forelesning 19 Førsteordens logikk Roger Antonsen - 21. oktober 2008 (Sist oppdtert: 2008-10-21 20:12) Repetisjon Semntikk Hvis M er en modell og ϕ er en lukket formel, så definerte vi M = ϕ. Vi

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir 2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

Fasit. Oppgavebok. Kapittel 3. Bokmål

Fasit. Oppgavebok. Kapittel 3. Bokmål Fsit Oppgveok Kpittel Bokmål KAPITTEL Brøk. og d og. c og c og e og f 0 og 0.. c d c e. d f 0. = c d e f. > c < e < > d > f < g h. kg. c 00 e d f. teskjeer.,,, 0,. = og = =.. c d 0. c c d.0 c d e f 0.

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Feilestimeringer. i MAT-INF1100

Feilestimeringer. i MAT-INF1100 Feilestimeringer i MAT-INF11 Ett v de viktigste punktene i MAT-INF11, og smtidig det som nsees som det vnskeligste i pensum, er feilestimter. Vi bruker mye tid på å beregne tilnærmede verdier for funksjoner,

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

Oversikt II. Innhold. INF1000 (Uke 12) Oversikt I. Sortering. Lære å lage proff programvare ved å lage. en generell klasse for sortering

Oversikt II. Innhold. INF1000 (Uke 12) Oversikt I. Sortering. Lære å lage proff programvare ved å lage. en generell klasse for sortering INF1000 (Uke 12) Sortering Grunnkurs i progrmmering Institutt for Informtikk Universitet i Oslo Are Mgnus Bruset og Anj B. Kristoffersen Oversikt I Lære å løse et vnskelig problem Sortering mnge metoder,

Detaljer

Innhold. INF1000 (Uke 12) Sortering og eksamensoppgaver. Oversikt II. Oversikt I. Om sortering. Litt om dokumentasjon av kode. Deler av eksamen H03

Innhold. INF1000 (Uke 12) Sortering og eksamensoppgaver. Oversikt II. Oversikt I. Om sortering. Litt om dokumentasjon av kode. Deler av eksamen H03 Innhold INF1000 (Uke 12) Sortering og eksmensoppgver Om sortering Sortering v heltll og tekster Litt om dokumentsjon v kode Grunnkurs i progrmmering Institutt for Informtikk Universitet i Oslo Deler v

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10 FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer