UNIVERSITETET I OSLO

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I OSLO"

Transkript

1 UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Mndg 22. jnur 2018 Tid for eksmen: 09:00 13:00 Oppgvesettet er på 7 sider. Vedlegg: Ingen Tilltte hjelpemidler: Ingen Kontroller t oppgvesettet er komplett før du egynner å esvre spørsmålene. For hvert spørsmål kn du ruke resultter fr tidligere spørsmål, selv om du ikke hr esvrt dem. Terminologi: Vi nser t 0 er et nturlig tll, slik t 0 N. Notsjon: Gitt k, l Z, med k l skriver vi: [k, l ] {x Z : k x l}. (0.1) Potensmengden til en mengde I skrives P(I). Oppgve 1 (vekt 20 poeng) Ant t,, c Z er gitt og t c > 0. I hele oppgven lr vi d være største felles divisor for og c. Vis t følgende likning, med ukjent x Z: hr en løsning hvis og re hvis d deler. Likningen hr en løsning hvis og re hvis: x mod c, (1.1) x Z y Z x + cy, (1.2) som også kn uttrykkes som t er lineærkominsjon v og c. Det er ekvivlent med t d deler. (Fortsettes på side 2.)

2 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 2 Vi ntr nå t d deler. Forklr hvordn Euklids lgoritme kn rukes til å finne en løsning x 0 for likning (1.1). Vis også t d er x Z løsning hvis og re hvis det finnes k Z slik t x x 0 + kc/d. Euklids lgoritme finner største felles divisor for og c, som er d. Følger mn den i revers får mn x, y Z slik t d x +cy. Dermed får vi x /d + cy /d. Altså er x 0 x /d en løsning. Vi hr t: x mod c x x 0 mod c, (1.3) c (x x 0 ), (1.4) c/d /d(x x 0 ), (1.5) c/d (x x 0 ). (1.6) Siste linje gjelder siden c/d og /d ikke hr noen felles fktor. Dette kn også skrives som t det eksisterer k Z slik t x x 0 kc/d. Oppgve 2 (vekt 20 poeng) Ant t I, J og U er ikke-tomme mengder. Ant videre t (A i ) i I og (B j ) j J er fmilier v delmender v U. Vis t: ( A i ) ( B j ) i I j J A i B j. (2.1) Ant t x i I A i. Det vil si t for hver i I hr vi x A i. For hver (i, j) I J hr vi A i A i B j, dermed x A i B j. Altså hr vi x A i B j. Tilsvrende, hvis x j J B j. Dermed får vi den nnonserte inklusjonen. A i B j Vis t vi også hr: ( A i ) ( B j ). i I j J (2.2) (Fortsettes på side 3.)

3 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 3 Ant t: og t: x A i B j, (2.3) x ( i I A i ). (2.4) Velg i 0 I slik t x A i0. For lle j J hr vi x A i0 B j, dermed x B j. Dette viser t: x j J B j. (2.5) Dette viser den nnonserte inklusjonen. Begge deloppgvene kn også løses ved å skrive: ( A i ) ( B j ) (( A i ) B j ), (2.6) i I j J j J i I (A i B j ), (2.7) j J i I A i B j. (2.8) Oppgve 3 (vekt 20 poeng) Vis ved induksjon t hver ikke-tomme endelige delmengde v N hr et største element. For hver n N \ {0} lr vi P (n) være utsgnet: Hver endelige delmengde v N med krdinlitet n hr et største element. P (1) er snt : hver ettpunktsmengde hr sitt eneste element som største element. L n N \ {0} og nt t P (n) er snt. L I være en delmengde v N med krdinlitet n + 1. Velg x I og l J I \ {x}. D er J en delmengde v N med krdinlitet n. L y være det største elementet i J. Vi hr x y. Hvis y > x er y største element i I. Hvis y < x er x største element i I. Dette viser t P (n + 1) er snt. L A være mengden v endelige delmengder v N. Vis t vi hr: A n N P([0, n]), (3.1) og t A er tellr. (Fortsettes på side 4.)

4 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 4 Ant t I A. Hvis I hr vi I P([0, 0]). Hvis I ikke er tom hr den et største element, l oss si n. D hr vi I [0, n] dermed I P([0, n]). Dette viser t: A n N P([0, n]), (3.2) Ant nå t n N og t I P([0, n]). Det vil si I [0, n]. Siden [0, n] er endelig, er I endelig. Dette viser t: n N P([0, n]) A. (3.3) Vi hr nå vist den nnonserte likheten. For hver n er P([0, n]) endelig (med krdinlitet 2 n+1 ). Mengden A er d høyst tellr, som høyst tellr union v høyst tellre mengder. I tillegg er A ikke endelig, siden den inneholder {n} for hver n N. Mer presist: n {n} estemmer en injeksjon fr N til A. Dermed er A tellr. Oppgve 4 (vekt 30 poeng) L A R N være mengden v reelle følger. Vi definerer en inær opersjon på A som følger. Gitt u (u k ) k N og v (v k ) k N i A defineres følgen u v A ved: k N (u v) k u l v k l. (4.1) Vi etrkter en vildning f : N N R. Vis ved induksjon t for hver n N hr vi: f(k, l) f(k, l). (4.2) k0 kl (Fortsettes på side 5.)

5 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 5 For hver n N lr vi P (n) være utsgnet t denne likheten holder. P (0) er snt. L n N og nt t P (n) er snt. Vi hr: n+1 k0 f(k, l) k0 kl n+1 n+1 f(k, l) + f(n + 1, l), f(k, l) + f(n + 1, l) + f(n + 1, n + 1), f(k, l) + f(n + 1, n + 1), kl n+1 n+1 f(k, l). (4.3) kl Dette viser t P (n + 1) er snt. Vis t den inære opersjonen er ssossitiv, kommuttiv og hr et nøytrlt element estående v følgen e (e k ) k N definert ved: e 0 1 og k N k 1 e k 0. (4.4) (Fortsettes på side 6.)

6 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 6 Assossitivitet: L u, v, w A. Vi hr: ((u v) w) n Vi hr også: (u v) k w n k, (4.5) k0 k0 u l v k l w n k. (4.6) (u (v w)) n u l (v w) n l, (4.7) n l u l v k w n l k, (4.8) k0 kl u l v k l w n k. (4.9) Assossitivitet følger d v forrige spørsmål (vi merker oss t identiteten holder også når f vhenger v n og re er definert i (k, l) for 0 l k n). Kommuttivitet: L u, v A. Vi hr: (u v) k u l v k l u k l v l, (4.10) v l u k l (v u) k. (4.11) Nøytrlt element: L u A. Vi hr: (e u) k e l u k l 0 e l u k l u k. (4.12) c Vis t et element u A er invertielt i forhold til hvis og re hvis u 0 0, og t i såfll kn inversen til u konstrueres induktivt. (Fortsettes på side 7.)

7 Eksmen i MAT1140, Mndg 22. jnur 2018 Side 7 L u A. Ant t v er en invers til u. D hr vi u 0 v 0 e 0 1 dermed u 0 0. Ant t u 0 0. At v er en invers skrives u v e (siden er kommuttiv). Dette kn skrives: k 1 u 0 v 0 1, (4.13) u l v k l 0. (4.14) Det er ekvivlent med t: v 0 1/u 0, (4.15) k 1 v k (1/u 0 ) u l v k l. (4.16) Disse vilkårene estemmer v induktivt. l1 Oppgve 5 L U og V være ikke-tomme mengder og l f : U V være en vildning. Vi minner om følgende definisjoner. For A U er direkteildet gitt ved: For B V er inversildet gitt ved: f[a] {y V : x A f(x) y}. (5.1) f 1 [B] {x U : f(x) B}. (5.2) Vis t f er injektiv hvis og re hvis vi hr, for hver A U: f 1 [f[a]] A. (5.3) Ant t f er injektiv. L A U. L x f 1 [f[a]]. Det vil si f(x) f[a]. Velg y A slik t f(x) f(y). Siden f er injektiv får vi x y A. Dette viser t f 1 [f[a]] A. Ant t for hver A U hr vi f 1 [f[a]] A. Ant x, y U og t f(x) f(y). Det kn skrives f(x) {f(y)}. D får vi x f 1 [{f(y)}] f 1 [f[{y}]] {y}. Dermed får vi x y. Dette viser t f er injektiv. SLUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Fredg 8. desemer 2017 Tid for eksmen: 14:30 18:30 Oppgvesettet er på 5 sider. Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: STK1110 Sttistiske metoder og dtnlyse 1 Eksmensdg: Tirsdg 18. desemer 2018 Tid for eksmen: 09.00 13.00 Oppgvesettet er på 5 sider.

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n,

x 1, x 2,..., x n. En lineær funksjon i n variable er en funksjon f(x 1, x 2,..., x n ) = a 1 x 1 + a 2 x a n x n, Introduksjon Velkommen til emnet TMA45 Mtemtikk 3, våren 9 Disse nottene inneholder det vi gjennomgår i forelesningene, og utgjør, smmen med lle øvingene, pensum for emnet Læreoken nefles som støttelittertur

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

Løsningsforslag Kollokvium 6

Løsningsforslag Kollokvium 6 Løsningsforslg Kollokvium 6 25. februr 25 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 6. Oppgve Diskusjonsoppgve Diskuter følgende spørsmål med hverndre og prøv å bli

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

MAT 100A: Mappeeksamen 4

MAT 100A: Mappeeksamen 4 . november, MAT A: Mppeeksmen Løsningsforslg Oppgve ) Vi bruker produktregelen: f (x) x rctn x + x + x Siden x og rctn x hr smme fortegn, og x ldri er negtiv, er f (x) positiv overlt, bortsett fr t f ().

Detaljer

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har:

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har: Notat 4 for MAT1140 4 Mer om mengder 4.1 Familier av mengder Union og snitt. Aksiom 4.1. Dersom A er en mengde bestående av mengder, kan de sistnevnte føyes sammen til en stor mengde, kalt unionen til

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

1 dx cos 1 x =, 1 x 2 sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi u = Vi regner først ut den deriverte til u,

1 dx cos 1 x =, 1 x 2 sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi u = Vi regner først ut den deriverte til u, TMA0 Høst 205 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg 3.5.30: Vi bruker erivsjonsregelen for cos x, x cos x =, x 2 smmen me kjerneregelen for erivsjon. For å forenkle utregningen

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO. Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 10. desember 2012 Tid for eksamen: 09.00 13.00 Innledning La U være mengden

Detaljer

1 Mandag 25. januar 2010

1 Mandag 25. januar 2010 Mndg 5. jnur Vi fortsetter med å se på det bestemte integrlet, bl.. på hvordn vi kn bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis kn finne en nti-derivert. Videre skl vi t

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksmen : ECON00 Mtemtkk /Mkro (MM) Eksmensdg: 7.05.05 Sensur kunngjøres: 7.06.05 Td for eksmen: kl. 09:00 5:00 Oppgvesettet er på 4 sder Tlltte hjelpemdler: Det

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Nøtterøy videregående skole

Nøtterøy videregående skole Til elever og forestte Borgheim, 1. ugust 2018 Viktig info om vlg v mtemtikkfg for elever på vg1 studiespesilisering I vg1 får elevene vlget mellom to ulike mtemtikkfg. Mtemtikk 1T (teoretisk) og Mtemtikk

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

EKSAMENSOPPGAVE. Alle trykte og skrevne Kalkulator. Rute. Ola Løvsletten

EKSAMENSOPPGAVE. Alle trykte og skrevne Kalkulator. Rute. Ola Løvsletten Fkultet for nturvitenskp og teknologi EKSAMENSOPPGAVE Eksmen i: Brukerkurs i sttistikk STA-0001 Dto: 28.05.2018 Klokkeslett: 09.00-13.00 Sted: TEO H1, PLAN 3 Tilltte hjelpemidler: Alle trykte og skrevne

Detaljer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer 2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements

Detaljer

Institutt for elektroteknikk og databehandling

Institutt for elektroteknikk og databehandling Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Eksamen R2, Va ren 2014, løsning

Eksamen R2, Va ren 2014, løsning Eksmen R, V ren 04, løsning Tid: timer Hjelpemidler: Vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler er tilltt. Oppgve ( poeng) Deriver funksjonene ) f sin Vi bruker kjerneregelen på sin,

Detaljer

Notat om Peanos aksiomer for MAT1140

Notat om Peanos aksiomer for MAT1140 Notat om Peanos aksiomer for MAT1140 1 Tall Hva er egentlig tall? Tanken her, er ikke å si hva tall er, hva deres interne struktur muligens kan være, men å si hva vi kan gjøre med dem, sett utenifra. Vi

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017.

Hint til oppgavene. Uke 34. Uke 35. Fullstendige løsningsforslag finnes på emnesidene for 2017. Hint til oppgavene Fullstendige løsningsforslag finnes på emnesidene for 2017. Uke 34 Oppgave 1, 2, 3 og 4 kan alle løses ved å tegne sannhetstabeller, men i flere tilfeller kan man like gjerne manipulere

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Løsningsforslag til Obligatorisk oppgave 2

Løsningsforslag til Obligatorisk oppgave 2 Løsningsforslg til Oligtorisk oppgve INF1800 Logikk og eregnrhet Høsten 008 Alfred Brtterud Oppgve 1 Vi hr lfetet A = {} og språkene L 1 = {s s } L = {s s inneholder minst tre forekomster v } L 3 = {s

Detaljer

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100

Integrasjon Fundamentalteoremet Substitusjon Forelesning i Matematikk 1 TMA4100 Integrsjon Fundmentlteoremet Substitusjon Forelesning i Mtemtikk 1 TMA4100 Hns Jkob Rivertz Institutt for mtemtiske fg 23. september 2011 2 Mtemtisk induksjon Alle elefnter er ros! Vil bevise P n Alle

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er

Projeksjon. Kapittel 11. Ortogonal projeksjon i R 2. Skalarproduktet i R n. w på v. Fra figuren ovenfor ser vi at komponenten til w ortogonalt på v er Kpittel Projeksjon En projeksjon er en lineærtrnsformsjon P som tilfredsstiller P x P x. for lle x. Denne ligningen sier t intet nytt skjer om du benytter lineærtrnsformsjonen for ndre gng, og mn kn tenke

Detaljer

Eksamen våren 2018 Løsninger

Eksamen våren 2018 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 5x+ y = 4 x+ 4y = 6 Vi multipliserer likningen 5x+ y = 4 med på egge sider og får 10x+ 4y

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Melk: 2 14,95 2 15 30 Potet: 2,5 8,95 2,5 9 22,5 Ost: 0,5 89,95 0,5 90 45 Skinke: 0, 2 199

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen (med løsningsforslag) Dette er et utkast til løsningsforslag til eksamen i INF1080, og feil kan forekomme. Hvis du finner noen feil, si ifra til

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

7 Ordnede ringer, hele tall, induksjon

7 Ordnede ringer, hele tall, induksjon Notat 07 for MAT1140 7 Ordnede ringer, hele tall, induksjon Definition 7.1. La R være utstyrt med addisjon og multiplikasjon slik at vi har å gjøre med en kommutativ ring. Anta videre at R er utstyrt med

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF1080 Logiske metoder for informatikk Eksamensdag: 27. november 2012 Tid for eksamen: 13:00 16:00 Oppgave 1 Mengdelære (15 poeng)

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng]

INF1080 Logiske metoder for informatikk. 1 Små oppgaver [70 poeng] 1.1 Grunnleggende mengdelære [3 poeng] 1.2 Utsagnslogikk [3 poeng] INF1080 Logiske metoder for informatikk Digital eksamen Tid: Onsdag 7. desember 2016 kl. 14.30 18.30 (4 timer) Tillatte hjelpemidler: Ingen Eksamen består av to deler som er verdt omtrent like mye. Den

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Kapittel 6: Funksjoner

Kapittel 6: Funksjoner MAT1030 Diskret Matematikk Forelesning 14: Mer om funksjoner Roger Antonsen Institutt for informatikk, Universitetet i Oslo Kapittel 6: Funksjoner 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) MAT1030

Detaljer

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir

Andre funksjoner som NAND, NOR, XOR og XNOR avledes fra AND, To funksjoner er ekvivalente hvis de for alle input-kombinasjoner gir 2 1 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion n Arhiteture Kort repetisjon fr forrige gng Komintorisk logikk Anlyse v kretser Eksempler på yggelokker Forenkling vh. Krnugh-igrm

Detaljer

x A e x = x e = x. (2)

x A e x = x e = x. (2) Notat om Algebra for MAT1140 1 Algebra 1.1 Operasjoner Definisjon 1.1. En operasjon på en mengde A er en avbildning fra A A til A. Bemerkning 1.1. Mer generelt kan man snakke om n-ære operasjoner på A,

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1

dx = 1 2y dy = dx/ x 3 y3/2 = 2x 1/2 + C 1 NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så y + 3y = e + 3e = e. b) En hr t y = e 3 e (3/), så y + 3y = e 3e (3/) + 3e + 3e (3/) = e. c)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-turviteskpelige fkultet Eksme i: STK1110 Sttistiske metoder og dtlyse Løsigsforslg Eksmesdg: Tirsdg 18. desemer 2018 Tid for eksme: 09.00 13.00 Oppgvesettet er på 5 sider.

Detaljer

SENSORVEILEDNING ECON 1410; VÅREN 2005

SENSORVEILEDNING ECON 1410; VÅREN 2005 SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve f = + f ( ) = 6 ( ) 3 g = ( ) e g = + = + ( ) e e e ( ) h = 3 ( ) ln( ) 3 h ( ) = 3 = 3 3 Oppgve

Detaljer

FASIT, tips og kommentarer

FASIT, tips og kommentarer FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller

Detaljer

MAT1030 Forelesning 14

MAT1030 Forelesning 14 MAT1030 Forelesning 14 Mer om funksjoner Roger Antonsen - 10. mars 2009 (Sist oppdatert: 2009-03-10 11:34) Kapittel 6: Funksjoner Surjektive funksjoner Den neste gruppen av funksjoner vi skal se på er

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Alger Aritmetiske opersjoner ( + c) = + c + c Potensregler Polynom = + c + c d + c = d c c d = d c = d c x y = x+y x = x / x y = x y n x = x /n 0 = x n = x n ( x ) y = xy () x =

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x

Detaljer

Eksamen MAT H Løsninger

Eksamen MAT H Løsninger Eksamen MAT1140 - H2014 - Løsninger Oppgave 1 Vi setter opp en vanlig sannhetsverditabell. La Φ betegne formelen i oppgaven. Tabellen vil bli som følger: A B C A B A C Φ T T T T T T T T F T T T T F T F

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Løsningsforslag oblig. innlevering 1

Løsningsforslag oblig. innlevering 1 Løsningsforslag oblig. innlevering 1 IN1150 Logiske metoder Høsten 2017 Oppgave 1 - Mengdelære (10 poeng) a) Ut fra opplysningene under, angi hvilke mengder A og B er. A B = {1, 2, 3, 4, 5, 6} A B = {2,

Detaljer