Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)"

Transkript

1 Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst tre riktige svr på oppgve, kunne sette opp virkningen på BNP ved redusert eksport (ligning 6), forklre dette resulttet, og vise noe forståelse v hvordn modellen virker (oppgve 2), smt h med noen gyldige momenter/resonnementer på oppgve 3. Svkere besvrelse v disse punktene kn oppveies hvis helhetsinntrykket ut fr resten v besvrelsen er klrt bedre. Oppgve Forklr kort hv som er forskjellen på ) Hndelsblnsen og den offentlige budsjettblnsen b) Konsum og relinvestering c) Bruttonsjonlprodukt og disponibel inntekt for lndet d) Rellønn og nominell lønn e) Obligsjon og ksje (nt t obligsjonen og ksjen gjelder smme bedrift) f) Nominell vlutkurs og relvlutkurs g) Konkurrnseutstt og skjermet sektor Svr ) Hndelsblnsen er eksport minus import, mens den offentlige budsjettblnsen er offentlige inntekter minus offentlige utgifter. Hndelsblnsen gjelder dermed lndets forhold til utlndet, mens budsjettblnsen bre gjelder det offentlige. b) Konsum er kjøp v vrer og tjenester til å dekke behov nå, som mt, klær, trnsporttjenester o.l., mens relinvestering er kjøp v ny relkpitl, som nye fbrikker, mskiner, boliger osv. c) BNP er den smlede verdiskpingen i lndet. Disponibel inntekt er BNP minus kpitlslit, pluss formuesinntekt og lønn fr utlndet, minus tilsvrende til utlndet, pluss netto stønder og løpende overføringer til utlndet. d) Rellønn er lønnen målt i forhold til prisnivået, dvs. hvor mye mn kn kjøpe for lønnen. Nominell lønn er lønnen målt i kroner. e) Obligsjon er et lån, som gir rente, mens en ksje er en eierndel som gir rett til utbytte. f) Nominell vlutkurs er f.eks. hvor mnge kroner vi må betle for en euro, mens relvlutkursen er hvor høyt prisnivået er i et lnd i forhold til et nnet lnd, målt i felles vlut. Hvis vi f.eks. kn kjøpe 20 prosent flere vrer i Sverige dersom vi vekslet 000 norske kroner om til svenske kroner og hndlet i Sverige, enn dersom vi hdde brukt 000 kroner til å hndle i Norge, betyr det t prisnivået relvlutkursen - er 20 prosent høyere i Norge

2 g) Konkurrnseutstt sektor er bedrifter som produserer vrer og tjenester som også kn produseres i utlndet, og som derfor hr utenlndske konkurrenter. Skjermet sektor er bedrifter som produserer vrer og tjenester som bre kn produseres i Norge, og som derfor ikke hr utenlndske konkurrenter. se pensum, særlig og Oppgve 2 Veiledning I denne oppgven skl du forklre de økonomiske meknismene i hver deloppgve, men det er ikke ment t du skl bruke tid på å forklre modellen utover det som blir spurt om i oppgven. Oppgve: T utgngspunkt i modellen () Y= C + I + G+ X Q, (2) C= c0 + cy ( T), c 0 > 0, 0 < c <, (3) T = t0 + ty, 0 < t < (4) Q = Y 0 < < der Y er bruttonsjonlproduktet (BNP), C er privt konsum, I er privte relinvesteringer, G er offentlig kjøp v vrer og tjenester (som kn deles i offentlig konsum C off og offentlige relinvesteringer I off, slik t G = C off + I off ), X er eksporten, Q er importen, T er nettosktter (sktter og vgifter minus trygder og ndre overføringer), t er "skttestsen", t 0 er sktter som er uvhengige v BNP. c 0, c og er prmetre som beskriver hvordn økonomien virker. Vi ntr t disse prmetrene hr kjente verdier. Myndighetenes virkemidler er G, t 0 og t. De endogene vriblene er Y, C, T og Q. Modellen kn løses for Y, noe som gir (5) Y = ( c0 ct0 + I + G + X ) (i) (ii) (iii) (iv) Hv blir virkningen på BNP, hndelsblnsen, og den offentlige budsjettblnsen v en reduksjon i eksporten, ΔX < 0? Ant t myndighetene ønsker å bruke offentlig kjøp v vrer og tjenester for å forhindre t BNP endres. Hv kn myndighetene i så fll gjøre? Hv ville i så fll skje med hndelsblnsen og offentlige budsjettblnsen? Ant t lndet hr stor gjeld til utlndet, slik t myndighetene velger å bruke finnspolitikken til å forhindre t hndelsblnsen svekkes. Vis hvordn dette kn gjøres ved å endre omfnget v offentlig kjøp v vrer og tjenester. Hv blir virkningen på BNP? Drøft fordeler og ulemper ved de to politikk-lterntivene beskrevet i (ii) og (iii). (Her skl du også drøfte momenter som ikke er med i modellen.) Svr: 2

3 ii) Fr (5) får vi t virkningen på BNP blir (6) Y = X < 0 BNP reduseres. Redusert eksport fører til redusert smlet etterspørsel, slik t BNP synker. Lvere produksjon gir lvere inntekter til husholdningene, slik t de reduserer sitt konsum ytterligere, dvs. smlet etterspørsel og BNP fller. Denne virkningen klles multipliktoreffekt. Effekten blir dempet ved t noe v inntektsreduksjonen innebærer reduserte sktter, noe som demper reduksjonen i disponibel inntekt og dermed demper reduksjonen i konsumet. Effekten blir også dempet ved t redusert BNP gir redusert importetterspørsel, slik t noe v reduksjonen i etterspørselen rmmer utlndet. Virkningen på hndelsblnsen (som er NX = X Q) blir: NX = X Q = X Y = X X c( t) = X = X < 0 Hndelsblnsen svekkes fordi eksporten reduseres. Virkningen blir imidlertid dempet ved t reduksjonen i BNP fører til t også importen reduseres. Virkningen på den offentlige budsjettblnsen (som er B = T - G) blir: t (7) B = T G = t Y = X < 0 ( siden G = 0) Reduksjonen i BNP fører til reduserte sktteinntekter, slik t budsjettblnsen svekkes. ii) Myndighetene setter ΔG for å forhindre t BNP fller: Y = ( X + G) = 0 G = X > 0 Myndighetene må øke offentlig kjøp med like mye som eksporten er blitt redusert. Virkningen på hndelsblnsen NX = X Q = X Y = X < 0 (siden ΔY=0). Hndelsblnsen svekkes mer, siden myndighetenes politikk hr forhindret t importen reduseres. Virkningen på den offentlige budsjettblnsen blir: 3

4 B= T G = t Y + X = X < 0 (siden ΔY=0 og ΔG=-ΔX). Den offentlige budsjettblnsen svekkes. Svekkelsen er større enn dersom G holdes konstnt, fordi økningen i G isolert sett også bidrr til å svekke budsjettblnsen. Dette kn ses ved t brøken forn ΔX i ligning (7) er mindre enn en, slik t svekkelsen v B er mindre enn nedgngen i eksporten. Vi ser det ved t t < c(-t) 0 < (-c)(-t). (iii) Myndighetene setter ΔG for å forhindre t hndelsblnsen svekkes: NX = X Y = 0 X ( X + G) = 0 ( ( )) ( ) ( ) X X + G = 0 c t X = G c( t) G = X < 0 Virkningen på BNP blir nå c( t) ( X + G) = X + X = + c( t) = X = X < 0 c t ( ( ) + ) Reduksjonen i BNP forsterkes ved t myndighetene reduserer G. (Virkningen på G kn finnes end enklere direkte fr ligningen ΔNX = ΔX ΔY =0.) (iv) Stbilisering v BNP under (ii) er vnlig stbiliseringspolitikk/motkonjunkturpolitikk. Fordel er t det motvirker økning i rbeidsledigheten og fll i produksjon og konsum. Ulemper er t det fører til svekket budsjettblnse. Mer generelt innebærer stbiliseringspolitikk flere problemstillinger. Vrisjon i offentlig kjøp over tid kn gi dårligere bruk v offentlige midler. Det er problemer knyttet til timing og dosering. Hvis politikken brukes symmetrisk (mer ekspnsiv politikk enn kontrktiv politikk), så vil det kunne gi økte budsjettunderskudd og økte underskudd på hndelsblnsen over tid. Stbilisering v NX under (iii) hr en fordel ved t en motvirker svekket hndelsblnse og økt utenlndsgjeld. Ulemper er t økonomien blir mer ustbil, ved t ledigheten øker og BNP synker. I tillegg kommer problemer med stbiliseringspolitikk knyttet til ustbilitet i offentlige kjøp, og timing og dosering. Oppgve 3 Veiledning: 4

5 I denne oppgven skl du ikke bruke en mtemtisk modell, men forklre med ord hvilke effekter som kn virke i økonomien ved det som spørres om i oppgven. Oppgve: I de fleste lnd hr myndighetene mål om t både rbeidsledigheten og inflsjonen skl være lve. Drøft om det kn være motsetninger mellom disse to målene, på kort og lng sikt. Momenter: Kort sikt er det gjerne en negtiv smmenheng mellom inflsjon og rbeidsledighet, ved kortsiktig fllende Phillipskurve. Høy rbeidsledighet gir lv lønnsvekst, og dermed blir prisveksten lv. Dersom myndighetene skl redusere inflsjonen, må de bruke strm politikk, økt rente eller kontrktiv finnspolitikk, som innebærer redusert etterspørsel og økt rbeidsledigheten. Det fører til lvere inflsjon, men som sgt også økt ledighet. (økt rente gir også lvere inflsjon gjennom vlutkursknl og forventningsknl). På lng sikt er Phillipskurven loddrett. Arbeidsledigheten lik likevektsledigheten unsett nivå for inflsjonen. Derfor er det ingen motsetning mellom lv inflsjon og lv ledighet. Kn evt drøft hysterese, ved t høy rbeidsledighet hr en tendens til å bli vrig. Strm politikk for å få ned inflsjonen kn føre til vrig høy rbeidsledighet. Se 5

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave høsten 2011

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave høsten 2011 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligtorisk øvelsesoppgve høsten 2 Ved sensuren tillegges oppgve vekt,3, oppgve 2 vekt,4, og oppgve 3 vekt,3. For å bestå eksmen, må besvrelsen

Detaljer

Obligatorisk øvelsesoppgave ECON1310 Våren 2009

Obligatorisk øvelsesoppgave ECON1310 Våren 2009 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren tillegges oppgve vekt 0,, oppgve 2 vekt 0,5, og oppgve 3 vekt 0,4. Obligtorisk øvelsesoppgve ECON30 Våren 2009 Oppgve (i) (ii) Beskriv

Detaljer

Ved sensuren tillegges oppgave 1 vekt 0,1, oppgave 2 vekt 0,5, og oppgave 3 vekt 0,4.

Ved sensuren tillegges oppgave 1 vekt 0,1, oppgave 2 vekt 0,5, og oppgave 3 vekt 0,4. ECON3 Sensorveiledning eksamen H6 Ved sensuren tillegges oppgave vekt,, oppgave vekt,5, og oppgave 3 vekt,4. Oppgave Hvilke av følgende aktiviteter inngår i BNP i Norge, og med hvilket beløp? a) du måker

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk oppgave H12 ECON 1310

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk oppgave H12 ECON 1310 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk oppgave H12 ECON 131 Ved sensuren tillegges oppgave 1 vekt 1/6, oppgave 2 vekt ½, og oppgave 3 vekt 1/3. For å bestå eksamen, må besvarelsen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren tillegges oppgve vekt 25%, oppgve 2 vekt 25% og oppgve 3 vekt 5%. Sensorveiledning 3, obligtorisk oppgve H-7 Oppgve () Definer begrepene nettorelinvestering,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Fasit - Obligatorisk øvelsesoppgave ECON 30, H09 Ved sensuren tillegges oppgave vekt 0,, oppgave vekt 0,45, og oppgave 3 vekt 0,45. Oppgave (i) Forklar kort begrepene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V10

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V10 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 3, V Ved sensuren tillegges oppgave og 3 vekt /4, og oppgave vekt ½. For å bestå, må besvarelsen i hvert fall: gi riktig svar på oppgave a, kunne sette

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Sensorveiledning ECON 1310 Høsten 2005

Sensorveiledning ECON 1310 Høsten 2005 Sensorveiledning ECON 3 Høsten 25 Oppgavene tillegges lik vekt ved sensuren. Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som blir spurt om

Detaljer

1310 høsten 2010 Sensorveiledning obligatorisk øvelsesoppgave

1310 høsten 2010 Sensorveiledning obligatorisk øvelsesoppgave 3 høsten 2 Sensorveiledning obligatorisk øvelsesoppgave For å bestå oppgaven, må besvarelsen i hvert fall vise svare riktig på 2-3 spørsmål på oppgave, kunne sette opp virkningen på BNP ved reduserte investeringer

Detaljer

ECON 1310 Våren 2006 Oppgavene tillegges lik vekt ved sensuren.

ECON 1310 Våren 2006 Oppgavene tillegges lik vekt ved sensuren. ECON 30 Våren 2006 Oppgavene tillegges lik vekt ved sensuren. Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som blir spurt om i oppgaven. Oppgave:

Detaljer

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < t < 1 = der 0 < a < 1

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < t < 1 = der 0 < a < 1 Fasit Oppgaveverksted 2, ECON 30, V5 Oppgave Veiledning: I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men det er ikke ment at du skal bruke tid på å forklare modellen

Detaljer

Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, høsten 2013

Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, høsten 2013 Sensorveiledning obligatorisk øvelsesoppgave ECON 30, høsten 203 Ved sensuren skal oppgave og 3 telle 25 prosent, og oppgave 2 telle 50 prosent. Alle oppgaver skal besvares. Det er lov å samarbeide når

Detaljer

SENSORVEILEDNING ECON 1410; VÅREN 2005

SENSORVEILEDNING ECON 1410; VÅREN 2005 SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2010

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Vår 2 Ved sensuren tillegges oppgave vekt,2, oppgave 2 vekt,5, og oppgave 3 vekt,3. For å bestå eksamen, må besvarelsen i hvert fall vise svare riktig på 2-3 spørsmål

Detaljer

Sensorveiledning ECON 1310 Høsten 2004

Sensorveiledning ECON 1310 Høsten 2004 Sensorveiledning ECON 3 Høsten 24 Oppgave Veiledning I denne oppgaven er det ikke ment at du skal bruke tid på å forklare modellen utover det som det spørres om i oppgaven. Oppgave: Ta utgangspunkt i modellen

Detaljer

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < a < 1

Ta utgangspunkt i følgende modell for en åpen økonomi. der 0 < a < 1 Fasit Oppgaveverksted 2, ECON 30, H5 Oppgave Veiledning: I denne oppgaven skal du forklare de økonomiske mekanismene i hver deloppgave, men det er ikke ment at du skal bruke tid på å forklare modellen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren illegges oppgve vek,, oppgve 2 vek,5, og oppgve 3 vek,4. Oppgve Peroleumsinneker i nsjonlregnskpe Forklr kor hvordn Norges inneker fr peroleumsvirksomheen

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave ECON 30, h6 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å få godkjent besvarelsen,

Detaljer

Econ 1310 Oppgaveverksted nr 3, 23. oktober Oppgave 1 Ta utgangspunkt i en modell for en lukket økonomi,

Econ 1310 Oppgaveverksted nr 3, 23. oktober Oppgave 1 Ta utgangspunkt i en modell for en lukket økonomi, Econ 3 Oppgaveverksted nr 3, 23. oktober 22 Oppgave Ta utgangspunkt i en modell for en lukket økonomi, () YC I G, (2) C = c + c(y- T) c >, < c , < b 2

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1 n E Y Y

Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi. der 0 < t < 1 n E Y Y Fasit oppgaveseminar 3, ECON 1310, V15 Oppgave 1 IS-RR-PK- modellen Ta utgangspunkt i følgende modell for en lukket økonomi (1) Y = C + I + G (2) C e C = z + c1 ( Y T ) c2 ( i π ), der 0 < c 1 < 1 og c

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 1310, H13

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 1310, H13 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 131, H13 Ved sensuren tillegges oppgave 1 vekt,, oppgave vekt,5, og oppgave 3 vekt,3. For å bestå eksamen, må besvarelsen i hvert fall: Ha nesten

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2014

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2014 Fasit til øvelsesoppgave EON 30 høsten 204 Keynes-modell i en åpen økonomi (i) Ta utgangspunkt i følgende modell for en åpen økonomi () Y = + + G + X - Q (2) = z + c( Y T) cr 2, der 0 < c < og c 2 > 0,

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V12

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT oppgave 1310, V12 UNIVERSIEE I OSLO ØKONOMISK INSIU oppgave 30, V Ved sensuren tillegges oppgave vekt /6, oppgave vekt ½, og oppgave 3 vekt /3. For å bestå eksamen, må besvarelsen i hvert fall: gi minst tre nesten riktige

Detaljer

Sensorveiledning /løsningsforslag ECON 1310, våren 2014

Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Sensorveiledning /løsningsforslag ECON 1310, våren 2014 Ved sensuren vil oppgave 1 telle 30 prosent, oppgave 2 telle 40 prosent, og oppgave 3 telle 30 prosent. Alle oppgaver skal besvares. Oppgave 1 I

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave våren 2012 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligaorisk øvelsesoppgave våren 22 Ved sensuren illegges alle oppgavene lik vek For å få godkjen besvarelsen må den i hver fall: gi mins

Detaljer

Universitetet i Oslo, Økonomisk Institutt Sensorveiledning 1310, V13

Universitetet i Oslo, Økonomisk Institutt Sensorveiledning 1310, V13 Universitetet i Oslo, Økonomisk Institutt Sensorveiledning 30, V3 May 9, 203 Oppgave skal vektlegges med 25%, oppgave 2 med 50%, og oppgave 3 med 25%. For å bestå eksamen, må besvarelsen i hvert fall:

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2005

Fasit til øvelsesoppgave 1 ECON 1310 høsten 2005 Fasit til øvelsesoppgave 1 ECON 131 høsten 25 NB oppgaven inneholder spørsmål som ikke ville blitt gitt til eksamen, men likevel er nyttige som øvelse. Keynes-modell i en åpen økonomi (i) Ta utgangspunkt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h15

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave ECON 1310, h15 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave ECON 30, h5 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å få godkjent besvarelsen,

Detaljer

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak

Hva er tvang og makt? Tvang og makt. Subjektive forhold. Objektive forhold. Omfanget av tvangsbruk. Noen eksempler på inngripende tiltak Tvng og mkt Omfng v tvng og mkt, og kommunl kompetnse Hv er tvng og mkt? Tiltk som tjenestemottkeren motsetter seg eller tiltk som er så inngripende t de unsett motstnd må regnes som ruk v tvng eller mkt.

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 1310, H12

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 1310, H12 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning 30, H Ved sensuren tillegges oppgave vekt /4, oppgave vekt ½, og oppgave 3 vekt /4. For å bestå eksamen, må besvarelsen i hvert fall: gi minst

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON1310, h16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning ECON1310, h16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning ECON1310, h16 Ved sensuren tillegges oppgave 1 vekt 20%, oppgave 2 vekt 60% og oppgave 3 vekt 20%. For å få godkjent besvarelsen, må den i hvert

Detaljer

ii) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir

ii) I vår modell fanger vi opp reduserte skatter ved Δz T < 0. Fra (6) får vi at virkningen på BNP blir Fasit Oppgaveverksted 2, ECON 30, V6 Oppgave i) Fra (6) får vi at virkningen på BNP blir (7) Δ Y = Δ X < 0 c ( t) b + a BNP reduseres. Redusert eksport fører til redusert samlet etterspørsel, slik at BNP

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Våren 2009 Hvis ikke annet avtales med seminarleder, er det ikke seminar i uke 8, 10 og 13. 1) Måling av økonomiske variable. Blanchard

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Høsten 2011 1) Måling av økonomiske variable. Blanchard kap 1, Holden, Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er de

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Våren 2011 1) Måling av økonomiske variable. Blanchard kap 1, Holden, Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er de

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

Fasit Oppgaveverksted 3, ECON 1310, H16

Fasit Oppgaveverksted 3, ECON 1310, H16 Fasit Oppgaveverksted 3, ECON 1310, H16 Oppgave 1 Arbeidsmarkedet a) På kort sikt vil økte offentlige utgifter ved økt ledighetstrygd føre til økt privat disponibel inntekt, og dermed økt konsumetterspørsel.

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil!

Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! Under noen av oppgavene har jeg lagt inn et hint til hvordan dere kan går frem for å løse dem! Send meg en mail om dere finner noen feil! 1. Husk at vi kan definere BNP på 3 ulike måter: Inntektsmetoden:

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Høsten 2012 1) Måling av økonomiske variable. Blanchard kap 1, Holden, (i) Hva er hovedstørrelsene i nasjonalregnskapet, og hvordan er

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave, ECON 1310, v16

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning obligatorisk øvelsesoppgave, ECON 1310, v16 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Sensorveiledning obligatorisk øvelsesoppgave, ECON 30, v6 Ved sensuren tillegges oppgave vekt /6, oppgave 2 vekt 2/3, og oppgave 3 vekt /6. For å få godkjent besvarelsen,

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

Un o I. Unio kommunes krav 1. Hovedta riffoppgiøret 2At6. Tirsdag 12. april20l6 kl. 13

Un o I. Unio kommunes krav 1. Hovedta riffoppgiøret 2At6. Tirsdag 12. april20l6 kl. 13 Un o I Unio kommunes krv 1 Hovedt riffoppgiøret 2At6 Tirsdg 12. pril20l6 kl. 13 L Hovedtriffoppgiøret 2016 Den største utfordringen for kommunesektoren fremover er å møte den demogrfiske utviklíngen og

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Våren 2015 Hensikten med seminarene er at studentene skal lære å anvende pensum gjennom å løse oppgaver. Vær forberedt til seminarene

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Fasit - oligatorisk øvelsesoppgave ECON 3, V Ved sensuren tillegges oppgave vekt,, oppgave vekt,5, og oppgave 3 vekt,3. Oppgave I 7 var BNP per innygger i Norge,

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning 1310, H14

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. Sensorveiledning 1310, H14 UNVERSTETET OSLO ØKONOMSK NSTTUTT Sensorveiledning 30, H4 Ved sensuren tillegges oppgave vekt 20%, oppgave 2 vekt 60%, og oppgave 3 vekt 20%. For å bestå eksamen, må besvarelsen i hvert fall: Ha nesten

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1

1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 1. Betrakt følgende modell: Y = C + I + G C = c 0 + c(y T ), c 0 > 0, 0 < c < 1 T = t 0 + ty, 0 < t < 1 Hvor Y er BNP, C er privat konsum, I er private realinvesteringer, G er offentlig kjøp av varer og

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015 Løsningsforslg til eksmensogver i ECON 00 våren 05 Ogve (7 oeng) Deriver følgende funskjoner 3 ) f ( ) gir f ( ) 3 ) f ( ) e e( ) gir f ( ) e c) f ( ) ln gir f ( ) 3 3 (3 ) 3 lterntivt f ( ) ln ln 3 gir

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver EON 1310 Økonomisk aktivitet og økonomisk politikk Høsten 2014 1) Måling av økonomiske variable. Holden forelesningsnotat 2, Blanchard kap 1, (i) Hva er hovedstørrelsene i nasjonalregnskapet,

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

Steinar Holden, september 2016

Steinar Holden, september 2016 Steinar Holden, september 2016 Fasit til oppgave i tilknytning til Keynes-modell i Excel For enkelhets skyld skriver jeg ut hele resultattabellen, ikke bare de som det spørres om, og det bare skissemessig

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Steinar Holden, september Fasit til oppgave i tilknytning til Keynes-modell i Excel. Bruk ark 3, konsekvensanalyse

Steinar Holden, september Fasit til oppgave i tilknytning til Keynes-modell i Excel. Bruk ark 3, konsekvensanalyse Fasit til oppgave i tilknytning til Keynes-modell i Excel Bruk ark 3, konsekvensanalyse Steinar Holden, september 2009 For enkelhets skyld skriver jeg ut hele resultattabellen, ikke bare de som det spørres

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor. 4. Forelesning ECON

Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor. 4. Forelesning ECON Del 2: Keynes-modell Åpen økonomi, offentlig og privat sektor 4. Forelesning ECON 1310 3.2.2009 Repetisjon - makroøkonomiske modeller Sentrale forutsetninger og forklaringer Ligninger Nødvendige restriksjoner

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk

Seminaroppgaver ECON 1310 Økonomisk aktivitet og økonomisk politikk Seminaroppgaver ECON 30 Økonomisk aktivitet og økonomisk politikk Høsten 205 Hensikten med seminarene er at studentene skal lære å anvende pensum gjennom å løse oppgaver. Vær forberedt til seminarene (se

Detaljer

Mønsterbesvarelse i ECON1310 eksamen vår 2012

Mønsterbesvarelse i ECON1310 eksamen vår 2012 Mønsterbesvarelse i ECON1310 eksamen vår 2012 Lastet opp på www.oadm.no Oppgave 1 i) Industrisektoren inngår som konsum i BNP. Man regner kun med såkalte sluttleveringer til de endelige forbrukerne. Verdiskapningen

Detaljer

UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT. Oppgaveverksted 3, v16

UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT. Oppgaveverksted 3, v16 UNIVERSITETET I OSLO, ØKONOMISK INSTITUTT Oppgaveverksted 3, v16 Oppgave 1 Ta utgangspunkt i følgende modell for en lukket økonomi (1) Y = C + I + G (2) C = z c + c 1 (Y-T) c 2 (i-π e ) der 0 < c 1 < 1,

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om

Talsnes ONE - 995850168 Enhver form for mangfoldiggjørelse av hele eller deler av innholdet av dette materiale er i henhold til norsk lov om 1 Deskriptivt utsagn: En setning som uttrykker om noe er sant eller usant (hvordan ting er). "Styringsrenten i Norge er 2%" Normativt utsagn: En setning som uttrykker en norm eller vurdering (hvordan ting

Detaljer