1 Geometri KATEGORI Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer"

Transkript

1 Oppgver

2 1 Geometri KTGORI Vinkelsummen i mngeknter Oppgve ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen. Oppgve ) Tegn en seksknt og del seksknten i fire treknter. b) Finn vinkelsummen i en seksknt. c) n regulær seksknt hr like store vinkler mellom de to sidekntene i hvert hjørne. Hv er vinkelen mellom to sideknter i en regulær seksknt? Oppgve Tegn en likebeint treknt der = og vinkelen er 72. Hvor store er vinklene og? 1.2 Vinkler i formlike figurer Oppgve F er formlik med. 8 F 98 8 Finn de ukjente vinklene i de to trekntene. 277

3 Oppgve I treknten er linj prllell med. Videre er = 52 og =. ) Hvilke to treknter er formlike? b) Finn de ukjente vinklene i treknten. Oppgve I prllellogrmmet er = 5 og = ) Forklr t er formlik med. b) Finn. 1.3 Lengder i formlike figurer Oppgve På figuren er prllell med. Videre er = 9,0 cm, = 7,0 cm, = 3,0 cm og = 2,0 cm. ) Hvilke treknter er formlike på figuren? b) Finn og. Oppgve Figuren nedenfor viser en metode vi kn bruke når vi skl finne høyden v et hus. F er en rett stokk som står nær huset. Huset og stokken kster skyggene og. er 1,5 m, og er 2,8 m. Stokken F er 2,1 m lng. ) Forklr t trekntene og F er formlike. b) Finn høyden v huset. Oppgve i flggstng kster en skygge på 8,1 m smtidig som et tørkesttiv kster en skygge på 2,7 m. Tørkesttivet er 2,0 m høyt. ) Tegn figur med flggstng og tørkesttivet og sett på målene. b) Hvor høy er flggstng? Oppgve Trekntene på figuren nedenfor er formlike. Finn i hvert v de to tilfellene. ) b) 6 5 F Sinus 1T > Geometri

4 Oppgve 1.13 Figuren viser to formlike firknter og FGH, der er smsvrende med F. Videre er = 50, = 110 og = 70. Omkretsen v den store firknten er 2 cm. Oppgve 1.11 I den rettvinklede er = 13 cm, = 12 cm og = 5 cm. Vi feller en norml fr ned på hypotenusen. 12 cm 5 cm H 12 cm 5 cm ) Finn. b) Finn omkretsen v den lille firknten. 1. Rettvinklede treknter Oppgve 1.10 I den rettvinklede er = 10 cm, = 8 cm og = 6 cm. Vi feller en norml ned fr til hypotenusen. 8 cm 6 cm F G 13 cm ) Finn og. b) Forklr t er formlik med. c) Forklr med støtte i formlikheten i oppgve b t = d) Vis t vi kn skrive likningen i oppgve c slik: () 2 =. e) Finn. 1.5 Pytgorssetningen Oppgve Finn den ukjente siden i den rettvinklede treknten. ) 10 cm ) ruk formlikhet til å forklre t = Finn. b) ruk formlikhet til å forklre t = Finn. 7 cm 2 cm b) 12 cm 5 cm c) 12 cm 15 cm 279

5 Oppgve ) Finn hypotenusen i en rettvinklet treknt når ktetene er 1) 5 cm og 12 cm 2) 10 cm og 2 cm b) Finn den ndre kteten i en rettvinklet treknt når 1) den ene kteten er 7 cm og hypotenusen er 25 cm 2) den ene kteten er 32 cm og hypotenusen er 0 cm Oppgve Gunnr setter opp en grunnmur. Hn vil kontrollere om et v hjørnene er rett. Hn legger ei rett fjøl over hjørnet slik figuren viser, og måler disse vstndene: = 52 cm, = 39 cm og = 65 cm. Oppgve Finn relet v disse figurene. ) 5 7 b) 3 Oppgve er et prllellogrm. Finn relet v det mørkegule området på figuren Oppgve Finn relet v det gule området cm 65 cm ) b) cm Finn ut om hjørnet er rett. 1.6 rel Oppgve Finn relet v disse figurene. ) b) Oppgve 1.16 ruk de oppgitte verdiene på figuren til å finne ) relet v prllellogrmmet b) relet v det gule trpeset F 21 cm 7 17 cm 17 cm cm F 280 Sinus 1T > Geometri

6 KTGORI Vinkelsummen i mngeknter Oppgve ) Tegn en vilkårlig seksknt og finn vinkelsummen i seksknten. b) Vi sier t seksknten er regulær hvis lle vinklene er like store og lle sidene er like lnge. Hv blir vinkelen mellom to sideknter i en regulær seksknt? c) Hvis vi legger regulære mngeknter inntil hverndre, kn vi i noen tilfeller få flislgt en flte med bre én type mngeknt. Hvilket krv må vi stille til summen v de sidekntvinklene som møter hverndre i et hjørne i en slik flislegging? d) Vinkelen v mellom to sideknter i en regulær n-knt er v = n, n 3 Finn ut hvilke regulære mngeknter som kn brukes til en slik flislegging. Oppgve Femknten f på figuren er regulær. (Vinklene i femknten er like store og sidene like lnge.) Linjene gjennom sidekntene treffer hverndre i fem punkter og dnner en femtkket stjerne. f Oppgve Vi hr tegnet en femknt som består v et kvdrt med en rettvinklet treknt som tk. enne spesielle femknten kn vi bruke til å dekke hele plnet. Tegn v denne femknten fire gnger og klipp femkntene ut. et fins tre ulike måter å legge hjørnene mot hverndre på slik t femkntene dekker plnet. Finn disse tre måtene. 1.2 Vinkler i formlike figurer Oppgve I er = 35. Videre er og begge rette. 35 ) Finn. b) Finn. c) Finn. d) Hvilke treknter er formlike på figuren? ) Finn vinkelsummen i en vilkårlig femknt. b) Finn vinkelen mellom to sideknter i f. c) Hvor stor er? 281

7 Oppgve I firknten er, og like store. Oppgve På figuren nedenfor er og prllelle linjer ) Finn. b) Finn og. Oppgve I firknten er prllell med ) Hvilke to treknter er formlike på figuren? b) Forklr hvorfor de to trekntene er formlike. c) Finn og b. Oppgve I er = 15,, = 2,0 og = 18,. b Trekk digonlene i firknten. Kll skjæringspunktet for. Finn to formlike treknter. 2,0 18, 1.3 Lengder i formlike treknter Oppgve Trekntene og F nedenfor er formlike. Her er sidene og smsvrende. Finn de ukjente sidene. 15, ) Forklr t er formlik med. b) Finn vstnden F 282 Sinus 1T > Geometri

8 1. Rettvinklede treknter Oppgve 1.20 I den rettvinklede treknten er = 65, = 25 og = 60. er normlen fr ned på. Oppgve 1.22 I treknten er = 90, og er normlen fr ned på. Vi setter =, = y, = b, = og = c b 65 ) Finn. b) Finn og. Oppgve 1.21 ) I treknten er = 90, og er normlen fr ned på. Vi setter =, = y og = h. h y c ) ruk formlikhet og vis t 2 = yc. b) ruk formlikhet og vis t b 2 = c. c) I en rettvinklet treknt er = 90. Normlen fr til treffer denne linj i slik t = 3 cm og = 6 cm. 1) Finn. 2) Finn. Oppgve 1.23 ) Tegn en sirkel. Merk v sentrum S og trekk en dimeter (ei linje gjennom S) i sirkelen. Kll endepunktene til dimeteren for og. Merk v tre ndre punkter P, Q og R på sirkelen. Mål vinklene P, Q og R. Hv ser du? y ruk formlikhet og vis t R Q h 2 = y b) I en rettvinklet treknt er = 90. Normlen fr til treffer denne linj i slik t = 6 cm og = cm. Finn. S P b) Vinklene P, Q og R kller vi periferivinkler fordi de hr toppunkt på sirkelperiferien. Vi sier t de spenner over dimeteren. Oppgve tyder på t det gjelder en generell regel om periferivinkler som spenner over en dimeter i en sirkel. Formuler regelen og bevis den. 283

9 1.5 Pytgorssetningen Oppgve Undersøk om treknten er rettvinklet når sidene hr disse målene (i centimeter). ) 27, 36 og 5 b) 2,0,,8 og 5,2 c) 2, 70 og 78 Oppgve Finn høyden i en likesidet treknt med sider. Oppgve Jord er tilnærmet kuleformet med rdius r = 600 km. Tenk deg t du befinner deg i et fly i et punkt P over tlnterhvet. h P r d Oppgve Finn vstnden på figuren Oppgve Finn, b, c, d og e på figuren nedenfor. 1 e 1 1 d c b 1 1 ) Finn vstnden d (i kilometer) til horisonten når høyden over hvet er m. b) Finn vstnden d (i kilometer) til horisonten når høyden over hvet er h meter. Oppgve Pytgorssetningen sier t relet v kvdrtet på hypotenusen i en rettvinklet treknt er lik summen v relene v kvdrtene på de to ktetene (se figuren til venstre). 1 Oppgve 1.25 Finn på figuren nedenfor r setningen fortstt riktig hvis vi bytter ut ordet «kvdrt» med «likesidet treknt»? Sgt på en nnen måte: r relet v en likesidet treknt på hypotenusen i en rettvinklet treknt lik summen v relene v de likesidete trekntene på ktetene (se figuren til høyre ovenfor)? 28 Sinus 1T > Geometri

10 Oppgve ) et fins mnge bevis for pytgorssetningen. tt v dem bygger på figuren til venstre nedenfor. Fire rettvinklede treknter med kteter og b og hypotenus c er stt smmen til et kvdrt med sider + b. Vis først t firknten med sider c er et kvdrt. Sett så opp to forskjellige uttrykk for relet v kvdrtet med sider + b, og bruk disse uttrykkene til å bevise pytgorssetningen 2 + b 2 = c 2. b b c c c c b b b b b) Tenk deg t de fire trekntene på figuren i oppgve er plssert innenfor en rmme. Flytt trekntene slik t du får figuren til høyre ovenfor. Forklr t pytgorssetningen følger v de to figurene. Oppgve n åker hr form og mål som på figuren. Finn relet v åkeren. 120 m 100 m 160 m Oppgve Figuren viser et prllellogrm rel Oppgve Finn relet v trpeset. 30 cm 36 cm Finn relet v prllellogrmmet uttrykt ved. Oppgve Sidene og i trpeset er prllelle. = 8,0 cm og =,0 cm. Videre er = = 5,2 cm. ) Tegn figur og finn relet v trpeset. b) Konstruer trpeset. 2 cm 285

11 Oppgve 1.26 Figuren viser en sirkel med et innskrevet og et omskrevet kvdrt. Rdien i sirkelen er 1. ) Finn relet v det gule området. b) Finn relet v det indre kvdrtet. Oppgve To nbobønder hr kornåkre som grenser til hverndre slik figuren viser. e ønsker å skifte ut grens som består v linjestykkene og, med ei rett grenselinje som er slik t de nye kornåkrene får smme rel som nå. Tegn inn ei ny grenselinje mellom åkrene og forklr hvordn du fststte denne linj. Oppgve L P være et vilkårlig punkt inne i en likesidet treknt med side s og høyde h. s z P Hv blir summen + y + z s h v de tre vstndene fr P til sidene i treknten? Vink: relene v P, P og P blir til smmen lik relet v. y s LN OPPGVR Oppgve Sissel vil finne ut hvor høyt et tre er, og holder en linjl mot treet slik figuren viser. Linjlen er 30 cm lng. Fr Sissels øyne til linjlen er vstnden 8 cm. Hun måler vstnden til treet til 31,0 m. Hvor høyt er treet? 8 cm 30 cm 31,0 m Oppgve I en rettvinklet treknt er de to ktetene 16 cm og 30 cm. Finn lengden v hypotenusen og høyden på hypotenusen. 286 Sinus 1T > Geometri

12 Oppgve Mrit vil finne vstnden mellom to punkter og som ligger på hver sin side v ei elv. Området som de to punktene og elv ligger i, er fltt. Mrit går frm på denne måten: Først setter hun v = 200 m vinkelrett på, og så setter hun v = 50 m vinkelrett på slik figuren viser. eretter finner hun punktet på linj slik t også ligger på linj. Til slutt måler hun vstnden og finner ut t den er 160 m. Hjelp Mrit med å regne ut vstnden. Oppgve n trekntet tomt hr som rett vinkel. Videre er = 90 m og = 120 m. ) Finn lengden v. b) Tomt skl deles med et gjerde lngs slik t blir rett, og = 60 m. Forklr t treknten blir formlik med treknten. c) Finn lengden v gjerdet. d) Finn relet v området. Oppgve Trekntene og F er formlike. lv Oppgve I et trpes er de prllelle sidene lik 50 og 30. e ndre sidene er begge lik 26. Finn relet v trpeset. Oppgve 1.30 I en rettvinklet treknt er sidene 3, og 5 cm lnge. Hvor lng er linj som går fr den rette vinkelen og ned til midten v hypotenusen? 3 5 5,0 6,5,7 F,0 ) Finn de ukjente sidene i trekntene. b) i linje skl trekkes fr ned på. Kll skjæringspunktet mellom denne linj og for G. Finn G slik t blir formlik med G. Oppgve Hvis vi trekker rette linjer fr hvert hjørne v en treknt til midtpunktet på den motstående siden, får vi delt treknten i seks små treknter. evis t lle de seks trekntene hr det smme relet. Vink: Se etter treknter med lik grunnlinje og høyde. 287

13 Oppgve et er gitt to punkter og på smme side v ei rett elv. et skl nlegges en vei fr det ene punktet bort til elvebredden og videre bort til det ndre punktet. ) Tegn inn noen slike veier og mål lengden v dem. Forsøk å finne den korteste veien. b) Kn du finne en enkel måte å tegne inn den korteste veien på? Forklr i så fll hvorfor tegningen din blir riktig. enne oppgven kn du også løse elektronisk. Se nettsidene. Oppgve Figuren viser en firknt. I firknten er =, dessuten er = = 90. Videre er = 20 og = ) Forklr t er formlik med. b) Finn og. c) Finn relet v firknten. Oppgve Finn relet v denne figuren der målenheten er meter. Oppgve Finn relet v denne figuren der målenheten er meter. b) Oppgve Finn relet v disse figurene der målenheten er meter. ) b) Oppgve et er gitt to punkter og på hver sin side v ei elv som vist på figuren. et skl nlegges en vei fr det ene punktet til det ndre med bruforbindelse over elv. ru skl plsseres normlt på elvebreddene. ) Tegn inn noen slike veier og mål lengden v dem (inkl. lengden v bru). Prøv å finne den korteste veien. b) Kn du finne en enkel måte å tegne inn den korteste veien på? Forklr i så fll hvorfor tegningen din blir riktig enne oppgven kn du også løse elektronisk. Se nettsidene. 288 Sinus 1T > Geometri

14 Oppgve 1.31 ) Tegn en sirkel. Merk v sentrum S og trekk en dimeter (linje gjennom S) i sirkelen. Kll endepunktene til dimeteren for og. Merk v et punkt mellom og på sirkelen. Mål vinklene og S. Ser det ut til å være noen smmenheng mellom dem? S Oppgve ) Tegn en sirkel. Merk v sentrum S og velg to punkter og på sirkelen. Velg et tredje punkt P på sirkelen slik t P ikke fller smmen med eller og heller ikke ligger i det indre v S. Vinkelen P kller vi en periferivinkel og S en sentrlvinkel. Vi sier t vinklene S og P spenner over den smme sirkelbuen. Mål vinklene S og P. Hv ser du? b) Gjør oppgve om igjen når punktet ligger et nnet sted på sirkelen. Hv ser du? c) Vi kller en periferivinkel fordi toppunktet ligger på sirkelperiferien, og vi kller S en sentrlvinkel. Vi sier t de to vinklene spenner over den smme sirkelbuen. Formuler en regel om smmenhengen mellom de to vinklene. evis regelen. P S b) Gjør oppgve på nytt med litt ndre plsseringer v punktene, og P på sirkelen. Hv ser du nå? Formuler en regel som ser ut til å gjelde for smmenhengen mellom en sentrlvinkel og en periferivinkel som spenner over den smme sirkelbuen. c) evis den regelen du formulerte i oppgve b. Vink: Trekk opp dimeteren gjennom P og S og bruk resulttet i oppgve

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

YF kapittel 7 Flate Løsninger til oppgavene i læreboka

YF kapittel 7 Flate Løsninger til oppgavene i læreboka YF kpittel 7 Flte Løsninger til oppgvene i læreok Oppgve 701 Vinkel C er en rett vinkel. Altså er C = 90. c AB er motstående side til den rette vinkelen i treknten. Derfor er AB ypotenus. AC er osliggende

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du? KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

1P kapittel 4 Lengder og vinkler

1P kapittel 4 Lengder og vinkler Løsninger til oppgvene i ok 1P kpittel 4 Lengder og vinkler Løsninger til oppgvene i ok Oppgve 4.1 6 MW 6 1 000 000 W 6 000 000 W 7,5 MW 7,5 1 000 000 W 7 500 000 W c 8 000 000 W 8 1 000 000 W 8 MW d 14

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215 2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka R1 kpittel 6 Vektorer Løsninger til oppgvene i ok Løsninger til oppgvene i ok 6.1 Tilfellene, e og f er vektorstørrelser fordi de hr retning. Tilfellene, og d er sklrer fordi de ikke hr retning. 6. d e

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri

Løsningsskisser til oppgaver i Kapittel 2: Trigonometri Løsningsskisser til oppgver i Kpittel : Trigonometri.07 Treknten i figuren hr: (Alle mål i cm.) grunnlinje: g 5 1 høyde: h Tilhørende sirkelsektor spenner over vinkelen v, der cosv 5 v 1.159 Arel Treknt

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Trigonometri og geometri

Trigonometri og geometri 6 Trigonometri og geometri 6.1 Sinus til en vinkel Oppgave 6.110 a) Hvilken av disse påstandene er riktig? 1) sin = 3) sin = 2) sin = b) Hvilken av disse påstandene er riktig? b a Oppgave 6.111 ruk lommeregneren

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Geometri. Mål. for opplæringen er at eleven skal kunne

Geometri. Mål. for opplæringen er at eleven skal kunne 8 1 Geometri Mål for opplæringen er at eleven skal kunne bruke geometri i planet til å analysere og løse sammensatte teoretiske og praktiske problemer knyttet til lengder, vinkler og areal 1.1 Vinkelsummen

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Trigonometri. Omregning mellom grader og radianer skjer etter formelen nedenfor:

Forkunnskaper i matematikk for fysikkstudenter. Trigonometri. Omregning mellom grader og radianer skjer etter formelen nedenfor: Forkunnskper i mtemtikk for fysikkstudenter.. Vinkelmål. Vinkler måles trdisjonelt i grder. Utgngspunktet er d t en hel sirkel deles i 6 like store deler, der her del klles en grd. En grd kn deles inn

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1 Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl. 1200 (Svrtbell på siste side.) Opplysninger:

Detaljer

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern:

Geogebra er viktig i dette kapitlet, samt passer, linjal, blyant og viskelær! Tommy og Tigern: Tempoplan: Etter dette kapitlet repetisjon og karaktergivende prøver! 7: Geometri Kunnskapsløftet de nye læreplanene legger vekt på konstruksjon av figurer! I utgangspunktet kan det høres ganske greit

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Løsningsforslag uke 42

Løsningsforslag uke 42 Løsningsforslag uke 42 Oppgave 2 (Eksamen 2008). La,, være hjørnene i en trekant i planet, og la de motstående sidene ha lengdene a, b, c. Punktet D på linjen er slik at D står normalt på. La være det

Detaljer

Løsningsforslag til oppgavene i avsnitt 1.15

Løsningsforslag til oppgavene i avsnitt 1.15 til oppgver... til oppgvene i vsnitt.... August 00, oppgve Linjestykket er gitt Gitt et kvdrt ABCD der AB. Punktet E på BC og punktet F på CD ligger slik t AE BF. AE og BF skjærer hverndre i M. Konstruer

Detaljer

Litt av matematikken bak solur

Litt av matematikken bak solur Anne Bruvold Revidert mrs 005 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d)

Løsning til KONTROLLOPPGAVER Sinus S2 1 Rekker Uten hjelpemidler OPPGAVE 1 a) 1) b) 1) c) d) Løsning til KONTROLLOPPGAVER Sinus S Rekker Uten hjelpemidler OPPGAVE ) ) Når følgen er ritmetisk, er 3 d 8 = + d 8 = d 6 d 8 d 8 0 ) Når følgen er geometrisk, er k 3 8 = k k = 8 = 9 k = 3 eller k = 3

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

R1 kapittel 8 Eksamenstrening

R1 kapittel 8 Eksamenstrening Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter. Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan

Detaljer

Lokalt gitt eksamen 2010

Lokalt gitt eksamen 2010 Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 28. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 9 Del 3: oppgve 12 13

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

1P kapittel 5 Areal og volum

1P kapittel 5 Areal og volum Løsninger til oppgvene i ok 1P kpittel 5 Arel og volum Løsninger til oppgvene i ok 5.1 Vi skl gå ett hkk mot høyre og gnger derfor med 100. 14 m 14 100 mm 1400 mm Vi skl gå to hkk mot høyre og gnger derfor

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Litt av matematikken bak solur

Litt av matematikken bak solur Anne Bruvold Revidert oktoer 003 Bkgrunn Min interesse for solur le vekket d jeg i 000 skulle holde et lite foredrg om kjeglesnitt og under foreredelsen v dette kom over rtikler som kolet kjeglesnitt med

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning:

Lærerveiledning. Oppgave 1. Hva er arealet av det grå området i figuren? Tips til veiledning: Oppgave 1 Hva er arealet av det grå området i figuren? A 3 B 5 C 6 D 9 E 1 Hva slags geometriske figurer er det grå området er sammensatt av? Finn grå områder som er like store. Tenke dere de mørke bitene

Detaljer

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

1 Å konstruere en vinkel på 60º

1 Å konstruere en vinkel på 60º 1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Kapittel 7. Lengder og areal

Kapittel 7. Lengder og areal Kapittel 7. Lengder og areal Dette kapitlet handler om å: Beregne sider i rettvinklede trekanter med Pytagoras setning. Beregne omkrets av trekanter, firkanter og sirkler. Beregne areal av enkle figurer,

Detaljer

Løsningsforslag til eksamen i MAT101 vår 2016

Løsningsforslag til eksamen i MAT101 vår 2016 sforslag til eksamen i MAT101 vår 2016 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 567 åtte = ti ii) 476 ti = åtte : i) 567 åtte = 5 8 2 + 6 8 + 7 = 375 ti ii) 476 ti = 7 8

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen

S2 kapittel 1 Rekker Utvalgte løsninger oppgavesamlingen Utvlgte løsiger oppgvesmlige S kpittel Rekker Utvlgte løsiger oppgvesmlige 0 Vi k prøve med differsemetode Differsee mellom leddee utover er 4,6,8, så det er rimelig t differse mellom femte og fjerde ledd

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen Loklt gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: sommerskolen Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Generell trigonometri

Generell trigonometri 7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1. Del 1 skal du levere innen 2 timer.ere innen 2 timer. Del 2 leverer du innen 5 timer.

Årsprøve trinn Del 1. Navn: Informasjon for del 1. Del 1 skal du levere innen 2 timer.ere innen 2 timer. Del 2 leverer du innen 5 timer. Årsprøve 2015 10. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 skl du levere innen 2 timer.ere innen 2 timer.

Detaljer

Den foreliggende oppfinnelsen gjelder en tank for lagring av kryogenisk fluid, f.eks. kondensert naturgass (LNG).

Den foreliggende oppfinnelsen gjelder en tank for lagring av kryogenisk fluid, f.eks. kondensert naturgass (LNG). (12) Oversettelse v eurpeisk ptentskrift (11) NO/EP 227 B1 (19) NO NORGE (1) nt Cl. F17C 13/00 (06.01) Ptentstyret (21) Oversettelse publisert 14.03.17 (80) Dt fr Den Eurpeiske Ptentmyndighets publisering

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer