Effektivitet og fordeling

Størrelse: px
Begynne med side:

Download "Effektivitet og fordeling"

Transkript

1 Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning mellom effektivitet og fordeling? Når et lnd åpner for fri hndel er det vinnere og tpere i lndet hvordn kn vi vite om nettoeffekten er positiv? Sktter og vgifter skper en kile mellom den pris kjøper etler og den pris selger får hvorfor kn dette lede til ineffektivitet? Og hvorfor kn det noen gnger lede til økt smfunnsøkonomisk effektivitet som ved miljøvgifter? Både kjøpere og selgere tjener på susidier. Hvorfor gir det likevel lvere smfunnsøkonomisk overskudd? Leseveiledning : Læreok kp.7 og 9 + dette nottet å forelesningen: Vise hv produsentoverskudd (O), konsumentoverskudd (KO) og smfunnsøkonomisk overskudd (SO) er. Forklre kriterier for effektivitet mrginletrktninger (fr side 5 i dette nottet) Eksempler og oppgver: Sktt, hndelsrestriksjoner, 1

2 Hv etyr smfunnsøkonomisk effektivitet? 1. roduserer med minst mulig ruk v ressurser 2. roduserer optiml mengder v ulike vrer og tjenester 3. Fordele godene etter etlingsvillighet. Hvis ikke 1-3 er oppfylt kn vi gjøre endringer slik t minst én får det edre uten t noen får det verre. En slik endring klles en «reto-foredring». Når vi hr gjort lle slike endringer er llokeringen reto-optiml «reto-efficient» - læreok s.180), det vil si t ingen kn få det edre uten t minst én får det verre. Å finne en reto-optiml llokering inneærer å gjøre smfunnsøkonomisk overskudd (SO) størst mulig: SO = Smlet etlingsvillighet smlede kostnder Uten susidier eller vgifter (sktter) er Smfunnsøkonomisk overskudd lik summen v konsumentoverskudd (KO) og produsentoverskudd (O). Konsumentoverskudd (KO) = etlingsvillighet for et kvntum minus fktisk etling. Mnkiw&Tylor s rodusentoverskudd (O) = Inntekter () minus kostndene ved å produsere. M&T s Smfunnsøkonomisk overskudd (SO): M&T s Kort forklring på KO, O og SO på de neste sidene.. 2

3 Konsumentoverskudd se figur 1 Konsumentoverskudd for et kvntum er det konsumentene er villige til å etle for dette kvntumet, relet cde, minus hv de fktisk etler, relet de (som er lik ) Konsumentoverskuddet lir ltså det skrverte relet cd. c d e Figur 1 3

4 rodusentoverskudd se figur 2 = Det produsentene får etlt for å produsere, relet cde (som er lik ), minus hv det koster å produsere. c d e Figur 2 Kostndene ved å produsere er lik relet de, det vil si relet under MC-kurven fr 0 til (For de som hr lært integrsjon: Integrlet v mrginlkostndene fr 0 til ). Forklring: Høyden på MC-kurven viser kostnden ved å produsere «en enhet til». Når vi legger smmen mrginlkostnden for lle enhetene får vi relet under kurven. rodusentoverskuddet lir ltså det skrverte relet cd. 4

5 Smfunnsøkonomisk overskudd se figur 3 og 4 Smfunnsøkonomisk overskudd (SO) for et kvntum er kjøpernes etlingsvillighet for kvntumet minus kostndene ved å produsere kvntumet. De skrverte relene på figur 3 og 4 under er SO for henholdsvis og. T E Figur 3 T E Figur 4 5

6 Stoffet nedenfor er ikke eksplisitt forklrt i læreok men er en hjelp til å forstå smfunnsøkonomiske vurderinger under temer som Eksterne virkninger og Mrkedsmkt. Læreok nevner etingelsene ovenfor indirekte på side Betingelser for en effektiv dvs. reto-optiml- llokering: 1. Mrginlkostnden ved å produsere en vre (tjeneste) må være den smme for lle produsentene. Hvis produsent A hr høyere mrginlkostnder enn B kn mn produsere smme kvntum med lvere kostnder (mindre ressursruk) ved å overføre produksjon fr A til B inntil mrginlkostndene er den smme for egge. å figur 5 ser vi på hvordn en gitt produksjonsmengde skl fordeles på to edrifter, A og B, slik t produseres til lvest mulig kostnder. Kostndene er minimert når mrginlkostndene er like - dvs. når A produserer A og B produserer B. Dersom fordeles på en nnen måte er det mulig å spre kostnder: Ant for eksempel t A og B skulle produsere like mye, dvs. /2 hver. Vi ser v figuren t d er mrginlkostndene høyere i B enn i A. Ved å flytte mengden fr B til A vil A s kostnder øke med de, men dette er mindre enn kostndsesprelsen cde i B. Reduksjonen i kostnder ved å flytte fr B til A er ltså cd. MK B d MK A ½ e ½ A B Figur 5 (rodusert kvntum i A, A, måles fr venstre hjørne mot høyre, og B s kvntum, B, fr høyre hjørne mot venstre. Vi må lltid h A + B = ) 6

7 2. Mrginl etlingsvillighet for en vre målt i enheter v den ndre vren må være den smme for lle konsumentene = Alle muligheter for gjensidig fordelktig ytte må være utnyttet. Eksempel: To stmmer, A og B. A hr mye nøtter og få spyd omvendt for B. L MBV NS være mrginl etlingsvillighet for 1 kg nøtter, målt i ntll spyd Ant t MBV NS er lik 1 for A og 4 for B. D vil egge tjene på t A ytter ort nøtter mot spyd til en pris pr kg nøtter på mellom 1 og 4 spyd (reto-foredring) Etter hvert som A får flere spyd og færre nøtter og omvendt for B - vil MBV NS øke for A og vt for B. Når de er like er det ikke noe å tjene på å ytte mer. 3. Mrginl etlingsvillighet (MBV) for en vre må være lik mrginlkostnden (MK) ved å produsere vren Hvis MBV>MK er noen villige til å etle mer for én enhet mer v vren enn hv det koster å produsere én enhet mer og d kn minst en få det edre ved t produksjonen økes. Dersom det ikke er mrkedssvikt (eksterne virkninger for eksempel) er MBV=MK i en mrkedslikevekt uten inngrep, susidier eller sktter. å figur 6 ser vi t dersom vi produserer et kvntum til venstre for mrkedslikevekten er MBV>MK. Det vil si t kjøperne er villige til å etle mer for én enhet mer enn hv det koster å produsere én enhet mer. D er det smfunnsøkonomisk optimlt å øke produksjonen: Smfunnsøkonomisk overskudd øker med det skrverte relet når vi øker kvntum fr til : Betlingsvilligheten for økningen i er relet cde, mens de økte kostndene er de. c T d e E Figur 6 7

8 Et mrked med fullkommen konkurrnse leder til t 1-4 lir oppfylt, dvs. mrkedet gir en effektiv llokering. Hvorfor? Betingelse 1: Siden lle produsentene står overfor smme produktpris p vil hver v dem tilpsse seg slik t p=mk, og dermed lir MK den smme for lle produsentene. Betingelse 2: Hver konsument vil kjøpe mer v vre 1 så lenge de hr en mrginl etlingsvillighet som overstiger prisen p, dvs. de vil velge en mengde v vren slik t MBV = p. Siden lle konsumentene står overfor smme pris på vre 1, p 1, vil MBV være den smme for lle konsumentene. En nnen måte å si det smme på: Det vi hr klt mrginl etlingsvillighet (MBV) er det smme som Mrginl Rte of Sustitution (MRS). Hver konsument vil velge en kominsjon vre 1 og 2 som er slik t MRS 12 = p 1 /p 2, dvs for vre 1 (målt i enheter v vre 2) er lik pris på vre 1 (målt i enheter v vre 2). Siden lle konsumentene står overfor smme prisforhold, p 1 /p 2, vil MRS 12 være den smme for lle konsumentene. Betingelse 3: Mrkedslikevekt: rodusentene tilpsser seg slik t MK = p. Konsumentene tilpsser seg slik t MBV = p. Dette gir: MK = MBV = p. Alle ktørene står overfor de smme prisene. Dersom ulike ktører står overfor ulike priser holder ikke lle etingelsene lenger. 8

9 Effektivitet og fordeling Effektivitet er ikke noe mål i seg selv men er et middel til å øke innyggernes velferd. I noen tilfeller er det en vveining mellom effektivitet og fordeling. A s velferd c B s velferd Figur 2 Den uede kurven på figur 2 er en såklt «reto-frontier»: Alle punkter lngs kurven er reto-optimle, dvs. det ikke mulig å øke A s velferd uten t B s velferd går ned og vice vers. I ethvert punkt på kurven er produksjon og llokering v produksjonen effektiv, dvs. etingelse 1-3 er oppfylt. Omfordelingspolitikk som sktter kn lede til et punkt innfor kurven, som punkt. I dette punktet er det ineffektivitet, dvs. en eller flere v etingelsene 1-3 er ikke oppfylt. Vi kn vurdere som en smfunnsøkonomisk edre løsning enn, selv om hr effektiv produksjon og llokering mens ikke hr det. Både A og B ville foretrekke c frmfor, men c kn være uoppnåelig med tilgjengelig omfordelingspolitikk 9

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skal svare på spørsmål som dette: Hva betyr det at noe er samfunnsøkonomisk effektivt? Er det forskjell på samfunnsøkonomisk og bedriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

Hva betyr det at noe er samfunnsøkonomisk effektivt? Er det forskjell på samfunnsøkonomisk og bedriftsøkonomisk effektivitet?

Hva betyr det at noe er samfunnsøkonomisk effektivt? Er det forskjell på samfunnsøkonomisk og bedriftsøkonomisk effektivitet? Effektivitet Når et land fjerner handelshindre er det noe som tjener og noen som taper på endringene i markedene. Hvordan kan vi vite om det er en samlet gevinst slik at vinnerne i prinsippet kan kompensere

Detaljer

Hva betyr det at noe er samfunnsøkonomisk effektivt? Er det forskjell på samfunnsøkonomisk og bedriftsøkonomisk effektivitet?

Hva betyr det at noe er samfunnsøkonomisk effektivt? Er det forskjell på samfunnsøkonomisk og bedriftsøkonomisk effektivitet? Effektivitet og fordeling Når et land fjerner handelshindre er det noe som tjener og noen som taper på endringene i markedene. Hvordan kan vi vite om det er en samlet gevinst slik at vinnerne i prinsippet

Detaljer

Vi starter med et lite kontroversielt krav til fornuftig disponering og organisering av økonomien:

Vi starter med et lite kontroversielt krav til fornuftig disponering og organisering av økonomien: Leseveiledning til 22.09.14 Tema: Effektivitet Læreboka kap.7 og 9 Hvilken allokering av ressursene gir størst mulig velferd? Det vi produserer bør produseres med minst mulig bruk av ressurser (kostnadseffektivitet)

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

Nå skal vi vurdere det som skjer: Er det en samfunnsøkonomisk forbedring eller ikke?

Nå skal vi vurdere det som skjer: Er det en samfunnsøkonomisk forbedring eller ikke? Effektivitet Læreboka kap. 7 og 8 Hittil har vi analysert hva som skjer i markedet ved ulike inngrep Nå skal vi vurdere det som skjer: Er det en samfunnsøkonomisk forbedring eller ikke? Eksempel: 1. En

Detaljer

Hvordan gjøre samfunnsøkonomiske vurderinger? Effektivitet: Hvilken allokering av ressursene gir størst mulig velferd?

Hvordan gjøre samfunnsøkonomiske vurderinger? Effektivitet: Hvilken allokering av ressursene gir størst mulig velferd? Hvordan gjøre samfunnsøkonomiske vurderinger? Effektivitet: Hvilken allokering av ressursene gir størst mulig velferd? Fordeling: Hva er rettferdig fordeling? Er det en avveining mellom effektivitet og

Detaljer

Effektivitet Læreboka kap. 7 og 8

Effektivitet Læreboka kap. 7 og 8 Effektivitet Læreboka kap. 7 og 8 Dette notatet gir en oversikt over kva vi skal gjennomgå i stikkords form. Eksempler og figurer legges inn etter forelesningen 1 Hvordan få mest mulig velferd? «Statsminister

Detaljer

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015

Løsningsforslag til eksamensoppgaver i ECON 2200 våren 2015 Løsningsforslg til eksmensogver i ECON 00 våren 05 Ogve (7 oeng) Deriver følgende funskjoner 3 ) f ( ) gir f ( ) 3 ) f ( ) e e( ) gir f ( ) e c) f ( ) ln gir f ( ) 3 3 (3 ) 3 lterntivt f ( ) ln ln 3 gir

Detaljer

SENSORVEILEDNING ECON 1410; VÅREN 2005

SENSORVEILEDNING ECON 1410; VÅREN 2005 SENSORVEILEDNING ECON 40; VÅREN 2005 Oppgve er midt i pensum, og urde kunne esvres v dem som hr lest og fulgt seminrer. Her kommer en fyldig gjennomgng v det jeg hr ttt opp. ) Her ør kndidten gjøre rede

Detaljer

Samfunnsøkonomiske vurderinger : Fordeling og effektivitet. Hvordan gjøre samfunnsøkonomiske vurderinger?

Samfunnsøkonomiske vurderinger : Fordeling og effektivitet. Hvordan gjøre samfunnsøkonomiske vurderinger? Samfunnsøkonomiske vurderinger : Fordeling og effektivitet Hvordan gjøre samfunnsøkonomiske vurderinger? Effektivitet: Hvilken allokering av ressursene gir størst mulig velferd? Fordeling: Er det en avveining

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

Sensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og

Sensorveiledning ECON 1410: Internasjonal Økonomi; vår a) NORD har absolutt fortrinn i produksjonen av begge varer siden A < a og 1 Sesorveiledig ECO 1410: Itersjol Økoomi; vår 2004 ) ORD hr solutt fortri i produksjoe v egge vrer side < og < ; det rukes færre timer per ehet produsert v hver vre i ORD e i SØR. Komprtive fortri er

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Prosedyre for løsning av oppgaver. Jeg skal ved hjelp av to oppgaver; én i produksjonsteori og én i konsumentteori, gi

Prosedyre for løsning av oppgaver. Jeg skal ved hjelp av to oppgaver; én i produksjonsteori og én i konsumentteori, gi 1 Jon Vislie; ril 014 ECO 00 våren 014 Prosedyre for løsning v ogver Jeg skl ved hjel v to ogver; én i roduksjonsteori og én i konsumentteori, gi noen forslg til rosedyre/hjel/veivlg til å løse ogver i

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave høsten 2011

Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT. ECON 1310 Obligatorisk øvelsesoppgave høsten 2011 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT ECON 3 Obligtorisk øvelsesoppgve høsten 2 Ved sensuren tillegges oppgve vekt,3, oppgve 2 vekt,4, og oppgve 3 vekt,3. For å bestå eksmen, må besvrelsen

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksmen : ECON00 Mtemtkk /Mkro (MM) Eksmensdg: 7.05.05 Sensur kunngjøres: 7.06.05 Td for eksmen: kl. 09:00 5:00 Oppgvesettet er på 4 sder Tlltte hjelpemdler: Det

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

Miljømerking og handel Mads Greaker

Miljømerking og handel Mads Greaker Økonomiske nlyser 5/2002 Mds Greker Er miljømerking v mer miljøvennlige produkter først og fremst en form for skjult proteksjonisme? Dvs. ersttter I-lndene toll og ndre typer hndelshindringer med miljømerkeordninger

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

Sammenhengen mellom takst og avstand i regulerte- uregulerte markeder. Teori og empiri. av Terje Andreas Mathisen

Sammenhengen mellom takst og avstand i regulerte- uregulerte markeder. Teori og empiri. av Terje Andreas Mathisen Smmenhengen mellom tkst og vstnd i regulerte- uregulerte mrkeder. Teori og empiri. v Terje ndres Mthisen Våren 3 Logistikk og trnsport strt It is ommon presumption tht pssenger should py higher fre for

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 Flere utfordringer til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Forklr forskjellen på rsjonle og irrsjonle tll. Hv kjennetegner dem? Hvordn kn vi se t et tll er rsjonlt eller irrsjonlt? Skriv

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Følg med på kursets hjemmeside: http://www.uio.no/studier/emner/sv/oekonomi/econ1210/h12/ Leseveiledninger Oppgaver Beskjeder

Følg med på kursets hjemmeside: http://www.uio.no/studier/emner/sv/oekonomi/econ1210/h12/ Leseveiledninger Oppgaver Beskjeder ECON1210 Høsten 2012 Tone Ognedal, rom 1108 tone.ognedal@econ.uio.no Følg med på kursets hjemmeside: http://www.uio.no/studier/emner/sv/oekonomi/econ1210/h12/ Leseveiledninger Oppgaver Beskjeder Gå på

Detaljer

Kap. 3 Krumningsflatemetoden

Kap. 3 Krumningsflatemetoden SIDE. KRUMNINGSFLTEMETODEN I kpittel. og. hr vi sett t en bjelkes krefter og deformsjon kn beskrives ved fire integrler som henger smmen : Skjærkrft : V d Vinkelendring : φ M d Moment : M V d Forskyvning

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

YF kapittel 1 Tall Løsninger til oppgavene i læreboka

YF kapittel 1 Tall Løsninger til oppgavene i læreboka YF kpittel 1 Tll Løsninger til oppgvene i læreok Oppgve 10,, 0, 1,, 5,,, 0 Oppgve 10 Tllet 5 står til høyre for tllet på tllinj. Altså er 5>. Tllet 5 står til venstre for tllet 1 på tllinj. Altså er 5

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren tillegges oppgve vekt 25%, oppgve 2 vekt 25% og oppgve 3 vekt 5%. Sensorveiledning 3, obligtorisk oppgve H-7 Oppgve () Definer begrepene nettorelinvestering,

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Hvis du ikke allerede har gjort det: Les kap.3 i K&W grundig. Vi skal bruke stoffet når vi gjennomgår kap.7 om skatt.

Hvis du ikke allerede har gjort det: Les kap.3 i K&W grundig. Vi skal bruke stoffet når vi gjennomgår kap.7 om skatt. Leseveiledning: Hvis du ikke allerede har gjort det: Les kap.3 i K&W grundig. Vi skal bruke stoffet når vi gjennomgår kap.7 om skatt. Nedenfor er en oppsummering av det vi skal lære fra kapittel 7 og et

Detaljer

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon

Integrasjon del 2. October 15, Department of Mathematical Sciences, NTNU, Norway. Integrasjon Integrsjon del Deprtment of Mthemticl Sciences, NTNU, Norwy Octoer 5, 4 Integrsjon Sustitusjon for estemte integrler Husk kjærneregel d dt f (g(t)) = f (g(t)) g (t) ved fundmentlteoremet (del ) vi får

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Obligatorisk øvelsesoppgave ECON1310 Våren 2009

Obligatorisk øvelsesoppgave ECON1310 Våren 2009 Sensorveiledning UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Ved sensuren tillegges oppgve vekt 0,, oppgve 2 vekt 0,5, og oppgve 3 vekt 0,4. Obligtorisk øvelsesoppgve ECON30 Våren 2009 Oppgve (i) (ii) Beskriv

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

Effektivitetsvurdering av fullkommen konkurranse og monopol

Effektivitetsvurdering av fullkommen konkurranse og monopol Kapittel 14 Effektivitetsvurdering av fullkommen konkurranse og monopol Løsninger Oppgave 14.1 Konsumentoverskudd defineres som det beløpet en konsument vil betale for et gode, minus det beløpet konsumenten

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Forelesning 1. Tone Ognedal. 18.august 2014

Forelesning 1. Tone Ognedal. 18.august 2014 Forelesning 1 Tone Ognedal 18.august 2014 1 / 16 ECON1210 Høsten Tone Ognedal, rom 1108 tone.ognedal@econ.uio.no Følg med på kursets hjemmeside: www.uio.no/studier/emner/sv/oekonomi/econ1210/h14/ Leseveiledninger

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

Arbeidsinnvandring etter EU-utvidelsen - konsekvenser for byggenæringen

Arbeidsinnvandring etter EU-utvidelsen - konsekvenser for byggenæringen Areidsinnvndring etter EU-utvidelsen - konsekvenser for yggenæringen Norsk Ståldg 4 Advokt Kirsti Stoklnd 1 Tem BNL undersøkelse om ruk v utenlndsk reidskrft Kort om regelverket Den seriøse yggenæringen

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

EVALUERINGS- RAPPORT NOTAT SAMMENDRAG X X Helge Hugdahl 18

EVALUERINGS- RAPPORT NOTAT SAMMENDRAG X X Helge Hugdahl 18 EVALUERINGS- RAPPORT GJELDER 16. Nsjonle seminr om Hydrogeologi og Miljøgeokjemi GÅR TIL Jn Crmer Rolf Tore Ottesen VP-møtet BEHANDLING X X NOTAT UTTALELSE ORIENTERING X ETTER AVTALE PROSJEKT DATO SAKSBEARBEIDER/FORFATTER

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

Konsumentoverskudd, produsentoverskudd og samfunnsøkonomisk overskudd

Konsumentoverskudd, produsentoverskudd og samfunnsøkonomisk overskudd Økonomisk Institutt, oktober 006 Robert G. Hansen, rom 107 Oppsummering av forelesningen 03.10 Hovedtema: Konsumentoverskudd, produsentoverskudd og samfunnsøkonomisk overskudd (S & W kapittel 6 og 10 i

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

YF kapittel 7 Flate Løsninger til oppgavene i læreboka

YF kapittel 7 Flate Løsninger til oppgavene i læreboka YF kpittel 7 Flte Løsninger til oppgvene i læreok Oppgve 701 Vinkel C er en rett vinkel. Altså er C = 90. c AB er motstående side til den rette vinkelen i treknten. Derfor er AB ypotenus. AC er osliggende

Detaljer

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 18. ugust Del 1: oppgve 1 4 Del 2: oppgve 5 10 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve 11

Detaljer

Lærebok: Microeconomics, Mankiw&Taylor Øvrig pensum: Se kursets hjemmeside

Lærebok: Microeconomics, Mankiw&Taylor Øvrig pensum: Se kursets hjemmeside ECON1210 Våren 2013 Tone Ognedal, rom 1108 tone.ognedal@econ.uio.no Følg med på kursets hjemmeside: http://www.uio.no/studier/emner/sv/oekonomi /ECON1210/v13/ Leseveiledninger Oppgaver Beskjeder Følg seminar

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Eksempler: Nasjonalt forsvar, fyrtårn, gatelys, kunst i det offentlige rom, kunnskap, flokkimmunitet (ved vaksine), et bærekraftig klima

Eksempler: Nasjonalt forsvar, fyrtårn, gatelys, kunst i det offentlige rom, kunnskap, flokkimmunitet (ved vaksine), et bærekraftig klima Eksamen in ECON1210 V15 Oppgave 1 (vekt 25 %) Forklart kort følgende begreper (1/2-1 side på hver): Lorenz-kurve: Definisjon Kollektivt gode c) Nåverdi Sensorveiledning: Se side 386 i læreboka: «..the

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer