Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Størrelse: px
Begynne med side:

Download "Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012"

Transkript

1 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5 Del 2: oppgve 6-11

2 Eksmenstid: Hjelpemidler under eksmen: Fire klokketimer for del 1 og del 2 til smmen. Vi nefler t du ikke ruker mer enn én klokketime på del 1. Du må levere inn del 1 før du kn ruke hjelpemidler. Del 1: Tegne- og skrivesker. Du kn verken ruke klkultor eller ndre hjelpemidler på del 1. Del 2: Du kn ruke lle hjelpemidler ortsett fr hjelpemidler som tillter kommuniksjon med ndre. Det er ikke nledning til å smreide, enytte interne dtnettverk eller ekstern kommuniksjon. Antll sider i oppgven: 7 sider inklusiv forside og opplysningssider Vurderingskriterier: Ved vurderingen vil del 1 telle. 25 % og del %. På del 1 vil hver v deloppgvene (dvs.,,, d osv.) telle like mye. På del 2 vil hver v deloppgvene (dvs.,,, d osv.) telle like mye. Krkteren fstsettes etter en helhetlig vurdering. Det etyr t sensor vurderer i hvilken grd du: viser grunnleggende mtemtiske ferdigheter kn ruke hjelpemidler gjennomfører logiske resonnementer ser smmenhenger i fget, er oppfinnsom og kn nvende fgkunnskp i nye smmenhenger vurderer om svr er rimelige forklrer frmgngsmåten og egrunner svr skriver oversiktlig og er nøyktig med utregninger, enevninger, teller og grfiske frmstillinger. Andre opplysninger: Der oppgveteksten ikke sier noe nnet, kn du fritt velge frmgngsmåte. Om oppgven krever en estemt løsningsmetode, vil også en lterntiv metode kunne gi noe uttelling. Det skl gå tydelig frm v esvrelsen hvordn du er kommet frm til et svr. Før inn nødvendige mellomregninger. I følgende oppgver er det nok re å skrive svret: 1, 1, 4 og 7 Du skl ikke skrive noe på oppgverkene.

3 Del 1 Oppgve 1 Skriv tllet på vnlig måte: -4 3,67 10 Skriv tllene i stigende rekkefølge: Regn ut og skriv svret på stndrdform og på vnlig måte : Oppgve 2 Regn ut. Skriv svret så enkelt som mulig (2 + 5) = 6 5 : 3 + = ) ( x x = d (4 + ) = 2 4 e 1 3x x = 2y f Formelen for kroppsmsseindeks er: I = m 2 h Løs formelen med hensyn på h. g Kri er seks år eldre enn Berit og Christine to år yngre enn Kri. Til smmen er de 43 år. Sett opp en likning, og regn ut lderen til Berit.

4 Oppgve 3 Vis t: 2 2 = ( + ) ( ) Bruk regelen ovenfor til å regne ut: ( ) + ( ) ( ) = Oppgve 4 To lineære funksjoner går gjennom følgende punkter: Grf til funksjon f går gjennom punktene (1, 6) og (7, 0). Grf til funksjon g går gjennom punktene ( 3, 0) og (1.5, 3). Tegn de to grfene i smme koordintsystem. Hv er funksjonsuttrykkene til de to grfene? Regn ut skjæringspunktet mellom grfene, og finn grfisk hv skjæringspunktet mellom de to grfene er. Oppgve 5 Pytgors: (ktet 1 ) 2 + (ktet 2 ) 2 = hypotenus 2 En treknt hr sider med lengdene 5 m, 6 m og 8 m. Undersøk ved regning om treknten er rettvinklet. C 30 m F A 50 m B D 20 m E Trekntene er formlike. Beregn lengden til DF.

5 DEL 2 Oppgve 6 Blend og Ingunn hr strtet en ungdomsedrift og skl selge gensere som skl sendes til hele lndet. Eskene som genserne skl sendes i, er: 120 m x 60 m x 60 m. Hv lir volumet til en slik pkke? Gi svret i dm³. Jentene regner med å selge 200 gensere i løpet v det første året og 350 gensere i løpet v det ndre året. Hvor mnge prosent regner de med t slget skl øke? Jentene vurderer ulike typer pkker. Blend mener t en kueformet (terningformet) pkke gir størst volum. Ingunn tror t volumet lir end større hvis pkken ikke er kueformet, men hr redde og høyde som er like store. Summen v lengde + redde + høyde for en pkke er 210 m. Hv lir det største mulige volumet v pkken (i dm³), og hvem hr rett? Oppgve 7 Et lite grntre le plntet. Etter x år vr treet h(x) meter der h(x) = 1,0 + 0,17x 1,8 x [0, 20] Hvor høyt vr treet d det le plntet? Beregn høyden på treet etter 12 år. Regn ut den gjennomsnittlige veksten til treet per år fr det le plntet til det vr 12 år gmmelt. d Hvilket år etter plnting le treet 20 m? (Forklr hvordn du kom frm til svret.)

6 Oppgve 8 På figuren er vstndene AC og BC egge 1,5 meter. Avstnden mellom A og B er 2,5 meter. Regn ut høyden fr C til linjestykket AB. Beregn fllet på tket, vinkel D (vinkel EDF). Hvor stor er vinkelen i mønet V (vinkel DFE)? Oppgve 9 Vnnet i en termos hdde en tempertur på 90 ºC d det le fylt på termosen. Termosen stod ute. Temperturen ute vr 0 ºC. Temperturen på vnnet le så lest v ved forskjellige tidspunkter. Se tell under. Tid (timer) Temp. (ºC) Bruk lineær regresjon for å finne den funksjonen som psser est til dtene over og tegn grfen. T med punktene på figuren. Les v på grfen, og eregn temperturen i termosen etter 12 timer. Hvor lng tid tr det før vnnet i termosen hr en tempertur på 0 ºC? Les v grfisk og eregn.

7 Oppgve 10 Båten er fortøyd til ryggen med et 4,2 m lngt tu. Vinkel v er 60, og vinkel B er rettvinklet. Regn ut vstndenn fr åten til ryggen (vstnden AB). Fr situsjonen ovenfor hr vnnstnden sunket med 35 m (lvvnn). Lengden v tuet er uforndret. Hv er vstnden fr åten til ryggen nå, når tuet fremdeles er strmt? Oppgve 11 I firknten over er BC = 5,7 m, CD = 4,5 m, AD = 3,0 m og AC = 6,4 m. B = 52,1º, D = 116,6º og BAC = 44,2º Beregn lengden til side AB. Beregn relet til firknt ABCD.

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1 Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest

Detaljer

Lokalt gitt eksamen 2010

Lokalt gitt eksamen 2010 Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 28. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 9 Del 3: oppgve 12 13

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1. Del 1 skal du levere innen 2 timer.ere innen 2 timer. Del 2 leverer du innen 5 timer.

Årsprøve trinn Del 1. Navn: Informasjon for del 1. Del 1 skal du levere innen 2 timer.ere innen 2 timer. Del 2 leverer du innen 5 timer. Årsprøve 2015 10. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 skl du levere innen 2 timer.ere innen 2 timer.

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Eksamensdato: 25. mai. I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1-5 Del 2: oppgve 6-11 Del 3: oppgve 12-13 I del 3 skl du gjøre oppgvene

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

Fag: Matematikk 1P for yrkesfag for elever og privatister

Fag: Matematikk 1P for yrkesfag for elever og privatister Lokl gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august

Lokalt gitt eksamen 2010. Fag: Matematikk 1P for yrkesfag. Eksamensdato: 18. august Loklt gitt eksmen 2010 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: 18. ugust Del 1: oppgve 1 4 Del 2: oppgve 5 10 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve 11

Detaljer

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen

Fag: Matematikk 1P for yrkesfag. Eksamensdato: sommerskolen Loklt gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg Fgkode: MAT1001 Eksmensdto: sommerskolen Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside: 10 Del 3: oppgve

Detaljer

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram.

Lokal gitt eksamen 2012. Del 1: oppgave 1-5 Del 2: oppgave 6-10 Del 3: oppgave 11-12 I del 3 skal du gjøre oppgavene for ditt utdanningsprogram. Lokl gitt eksmen 2012 Eksmen Fg: Mtemtikk 1P-Y for elever og privtister Fgkode: MAT1001 Eksmensdto: 15. jnur 2013 Del 1: oppgve 1-5 Del 2: oppgve 6-10 Del 3: oppgve 11-12 I del 3 skl du gjøre oppgvene

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015

RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 2015 RAMMER FOR SKRIFTLIG EKSAMEN I MATEMATIKK 1P-Y OG 1T-Y ELEVER 015 Utdnningsrogrm: Yrkesfg Fgkoder: MAT1, MAT6 Årstrinn: Vg1 Ogveroduksjon: En lokl ogvenemnd lger ogver til ordinær eleveksmen og sommerskolen.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Fag: Matematikk 1P-Y for yrkesfag for elever og privatister. Eksamensdato: 16. januar 2012

Fag: Matematikk 1P-Y for yrkesfag for elever og privatister. Eksamensdato: 16. januar 2012 Loklt gitt eksmen Eksmen Fg: Mtemtikk 1P-Y for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 16. jnur 2012 Del 1: oppgve 1 6 Del 2: oppgve 7 12 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Vurderingsrettleiing Vurderingsveiledning Desember 2007

Vurderingsrettleiing Vurderingsveiledning Desember 2007 Vurderingsrettleiing Vurderingsveiledning Desember 007 Mtemtikk sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Vurderingsveiledning til sentrlt gitt eksmen i Kunnsksløftet

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du?

Oppgave 5 Et rektangel har en omkrets på 24 cm 2. Hva blir arealet? Dersom lengdene på sidene skal ha heltallige svar, hvor mange løsninger får du? KAPITTEL 3 GEOMETRI Mer øving kpittel 3 I e første oppgvene skl u gjøre om enheter på en lgeriske måten. Det vil si t når u skl gjøre om mellom relenheter skl u gå veien om å gjøre om mellom lengeenheter.

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler.

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler. Læringsmål for 9. trinn: : rosent Regne med prosent og promille, med og uten digitle hjelpemidler Tolke og regne med prosentpoeng 1, 2, 7, 15 b, 17b, 18 17 otenser og kvdrtrot Regne med potenser 1b, 1d,

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

YF kapittel 7 Flate Løsninger til oppgavene i læreboka

YF kapittel 7 Flate Løsninger til oppgavene i læreboka YF kpittel 7 Flte Løsninger til oppgvene i læreok Oppgve 701 Vinkel C er en rett vinkel. Altså er C = 90. c AB er motstående side til den rette vinkelen i treknten. Derfor er AB ypotenus. AC er osliggende

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mer øving til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Finn svret ve hoeregning. Velg to v oppgvene og forklr hvilken strtegi u hr rukt. 27 + 38 e 160 70 i 130 4 35 + 75 f 19 5 j 6 7,5 58 + 42

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

2P kapittel 2 Funksjoner

2P kapittel 2 Funksjoner Løsninger til oppgvene i ok P kpittel Funksjoner Løsninger til oppgvene i ok.1 D f = [ 1, 6,5] V = [ 1,4] f V f. D f Vnnstnden kl. 16 er gitt i punktet A på figuren. Vnnstnden vr c. 190 cm. Aschehoug www.lokus.no

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka

R1 kapittel 6 Vektorer. Løsninger til oppgavene i boka Løsninger til oppgavene i boka R1 kpittel 6 Vektorer Løsninger til oppgvene i ok Løsninger til oppgvene i ok 6.1 Tilfellene, e og f er vektorstørrelser fordi de hr retning. Tilfellene, og d er sklrer fordi de ikke hr retning. 6. d e

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Vurderingsveiledning 2010

Vurderingsveiledning 2010 Vurderingsveiledning 00 Mtemtikk, sentrlt gitt eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Vurderingsveiledning til sentrlt gitt skriftlig eksmen 00 Denne veiledningen

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor MATEMATIKK 1TY for yrkesfag 9.1.2015 MAT1006 8 sider inkludert forside og opplysningsside Forhold som skolen må være oppmerksom på: Elevene

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Matematikk Oppgavesamling

Matematikk Oppgavesamling Mtemtikk Oppgvesmling Odd T Heir Gunnr Erstd John Engeseth Ørnulf Borgn Per Inge Pedersen BOKMÅL Mtemtikk T Oppgvesmling er en del v læreverket Mtemtikk T. Verket dekker målene i læreplnen v 00 for Mtemtikk

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen

Kalkulus 2. Volum av et omdreiningslegeme. Rotasjon rundt x-aksen Klkulus Klkulus Volum v et omdreiningslegeme Rotsjon rundt x-ksen På figuren nedenfor hr vi skrvert området vgrenset v grfen til den kontinuerlige funksjonen y = f( x) og x-ksen fr x= til x=. Når vi roterer

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

1P kapittel 4 Lengder og vinkler

1P kapittel 4 Lengder og vinkler Løsninger til oppgvene i ok 1P kpittel 4 Lengder og vinkler Løsninger til oppgvene i ok Oppgve 4.1 6 MW 6 1 000 000 W 6 000 000 W 7,5 MW 7,5 1 000 000 W 7 500 000 W c 8 000 000 W 8 1 000 000 W 8 MW d 14

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på

Detaljer

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Lokalt gitt eksamen 2013. Praktiske opplysninger til rektor

Lokalt gitt eksamen 2013. Praktiske opplysninger til rektor Lokalt gitt eksamen 2013 Praktiske opplysninger til rektor Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: 15.1.2014 Antall forberedelsesdager: Ingen Forhold som skolen må være oppmerksom

Detaljer

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x.

dy ycos 2 y = dx. Ved å integrere på begge sider av likhetstegnet får man ved å substituere u = y,du = dy dy ycos 2 y = 2du cos 2 u = x. NTNU Institutt for mtemtiske fg TMA Mtemtikk høsten 2 Løsningsforslg - Øving 7 Avsnitt 6.5 ) En hr t y = e, så 2y +y = 2e +e = e. b) En hr t y = e 2 e (/2), så 2y +y = 2e e (/2) +e +e (/2) = e. c) En hr

Detaljer

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1

Forkurs i matematikk. Kompendium av Amir Hashemi, UiB. Notater, eksempler og oppgaver med fasit/løsningsforslag 1 Forkurs i mtemtikk Kompendium v Amir Hshemi, UiB. Notter, eksempler og oppgver med fsit/løsningsforslg Mtemtisk Institutt UiB Innhold Sist oppdtert 07. juni 0 i Forord... Kpittel 0 Test deg selv... Oppgver

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

om vurdering av eksamensbesvarelser 2014

om vurdering av eksamensbesvarelser 2014 Eksmensveiledning om vurdering v eksmensbesvrelser 014 Mtemtikk. Sentrlt gitt skriftlig eksmen Studieforberedende og yrkesfglige utdnningsrogrm Kunnsksløftet LK06 Bokmål Innhold 1 Vurdering eksmensmodell

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer