Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Øving 9. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt."

Transkript

1 Institutt for fysikk, NTNU TFY4155/FY1003: Elektromgnetisme år 2009 Øving 9 eiledning: Mndg 09. og fredg 13. (evt 06.) mrs Innleveringsfrist: Fredg 13. mrs kl (Svrtbell på siste side.) Opplysninger: ersom ikke nnet er oppgitt, nts det t systemet er i elektrosttisk likevekt. ersom ikke nnet er oppgitt, er potensil underforstått elektrosttisk potensil, og tilsvrende for potensiell energi. ersom ikke nnet er oppgitt, er nullpunkt for (elektrosttisk) potensil og potensiell energi vlgt uendelig lngt borte. Noe v dette kn du få bruk for: 1/4π = Nm 2 / 2, e = , m e = kg, m p = kg, g = 9.8 m/s 2 Symboler ngis i kursiv (f.eks for potensil) mens enheter ngis uten kursiv (f.eks for volt). 1) En vilkårlig formet elektrisk leder hr netto ldning. Hv skjer i punktet P dersom ldningen på lederen økes til 2? Kun potensilet fordobles. Kun den elektriske feltstyrken fordobles. P åde potensilet og den elektriske feltstyrken fordobles. åde potensilet og den elektriske feltstyrken hlveres. 2) En kompkt metllkule hr positiv ldning. vstnden fr kuls sentrum til punktet er hlvprten så stor som til punktet. Null potensil velges uendelig lngt borte. gjelder følgende for den elektriske feltstyrken E og potensilet i de to punktene: E = 4E, = 4 E = 4E, = 2 E = 2E, = 4 E = 2E, = 2 1

2 3) Tre isolerte metllkuler 1, 2 og 3 (dvs: de påvirker ikke hverndre) hr hver en positiv ldning. Kulenes dimeter er hhv 2, 3 og 5. Hvordn forholder kulenes elektriske potensil seg til hverndre? 1 : 2 : 3 = 2 : 3 : 5 1 : 2 : 3 = 5 : 3 : 2 1 : 2 : 3 = 6 : 10 : 15 1 : 2 : 3 = 15 : 10 : ) To negtive punktldninger, hver med ldning q, er plssert på -ksen i henholdsvis = og i =. et elektriske feltet på -ksen er d E() = E() ˆ. Hvilken grf ngir riktig E()? 1 E() 2 E() E() 4 E() 5) Riktig figur ngir elektriske feltlinjer i et pln som går gjennom sentrum v en metllkule med nettoldning > 0. 2

3 6) En metllkule med ldning q og rdius R er belgt med et lg elektrisk nøytrl plst med tykkelse R og permittivitet ε = 3. Pilene i figuren ngir d feltlinjer for elektrisk forskyvning elektrisk felt E polrisering P både og E plst lg metllkule ldning q 7) Riktig figur ngir elektriske feltlinjer for en prllellpltekondenstor som er hlvveis fylt med et dielektrisk mterile (dvs det skrverte området hr ε > ). Pltenes lineære utstrekning er stor i forhold til vstnden mellom pltene. Øverste plte hr negtiv ldning, nederste plte hr positiv ldning. 8) Ei kompkt metllkule med rdius hr nettoldning q > 0. en er belgt med et lg (elektrisk nøytrl) plst med tykkelse /2. eretter følger et (elektrisk nøytrlt) metllisk kuleskll med tykkelse /2. Utenfor dette hr vi vkuum. Plsten er et dielektrikum med permittivitet ε 1 = 10. I hvilken v de 4 ngitte posisjonene,, eller er den elektriske feltstyrken størst? vstnden fr kuls sentrum er i : /2, : 5/4, : 7/4, : 5/2. metll 5/2 2 ε 1 metll 3/2 3

4 9) Fire punktldninger er plssert i y-plnet. To hr positiv ldning q og ligger i henholdsvis (, y) = (, ) og (, ), og to hr negtiv ldning q og ligger i henholdsvis (, y) = (, ) og (, ). Hv blir retningen på det elektriske feltet E på -ksen (nt > ), dvs i (, 0)? y Lngs ˆ. Lngs ˆ. Lngs ŷ. Lngs ŷ. q q q q 10) For systemet med de fire punktldningene i oppgve 9: Hv blir (, 0), dvs på -ksen? = 0 = q/4π = q/4π ( ) 2 2 = q/4π ( ) ) Ei metllkule med rdius R hr netto ldning. Hv er kuls potensielle energi U? (i velger U = 0 når lle infinitesimle bidrg til er uendelig lngt fr hverndre.) metllkule U = 2 /π R U = 2 /2π R U = 2 /4π R U = 2 /8π R R 12) To prllellpltekondenstorer er koblet i prllell, som vist i figuren. e øverste metllpltene er koblet smmen med en elektrisk leder (f.eks. kobberledning) slik t disse to pltene hr smme elektriske potensil. et smme gjelder for de to nederste metllpltene. erfor er potensilforskjellen (eller spenningsfllet) den smme for begge kondenstorene. Hv blir totl kpsitns for en slik prllellkobling v to kondenstorer, hver med kpsitns henholdsvis 1 og 2? ( 1 2 )/2 (1/ 1 1/ 2 ) 1 2(1/ 1 1/ 2 )

5 13) To prllellpltekondenstorer er koblet i serie, som vist i figuren. Nederste metllplte på kondenstor 1 er koblet smmen med øverste metllplte på kondenstor 2 vi en elektrisk leder (f.eks. kobberledning) slik t disse to pltene hr smme elektriske potensil. Totl potensilforskjell (eller spenningsfll) over de to kondenstorene er lik summen v spenningsfllene 1 og 2 over hver v de to. Netto ldning på de ulike metllpltene er som vist i figuren. Hv blir totl kpsitns for en slik seriekobling v to kondenstorer, hver med kpsitns henholdsvis 1 og 2? 1 2 ( 1 2 )/2 (1/ 1 1/ 2 ) 1 2(1/ 1 1/ 2 ) ) En prllellpltekondenstor består v to prllelle metllplter i innbyrdes vstnd d. e to metllpltene hr ldning henholdsvis og. En metllskive med tykkelse h = 2d/3 settes inn midt mellom pltene. blir potensilforskjellen mellom kondenstorpltene ni gnger større. tre gnger større. tre gnger mindre. h d ni gnger mindre. 15) Potensilet på et uendelig stort positivt ldet pln er 20. Plnet hr en uniform ldningstetthet 4 n/m 2. I hvilken vstnd fr plnet er d = 0? 9 m 9 cm 9 mm Potensilet er her negtivt overlt. 5

6 16) To tilnærmet uendelig store metllplter hr ldning ±σ pr flteenhet og er plssert i yz plnet, dvs i = 0 (den positive), og i = 5 (den negtive), som vist i figuren nedenfor til venstre. Rommet mellom pltene er delvis fylt med to (elektrisk nøytrle) dielektriske lg, som vist i figuren til venstre. et dielektriske lget i rommet 0 < < 2 hr permittivitet ε 1 = 4. et dielektriske lget i rommet 3 < < 5 hr permittivitet ε 2 = 2. Hvilken v de fire grfene i figuren nedenfor til høyre illustrerer d potensilet som funksjon v vstnden fr den positivt ldete metllplt? ε 1 vkuum ε ) En prllellpltekondenstor består v to prllelle metllplter i innbyrdes vstnd d. e to metllpltene hr ldning henholdsvis og. Et dielektrikum med permittivitet ε > fyller den venstre hlvdelen v rommet mellom kondenstorpltene, som vist i figuren. I den høyre hlvdelen hr vi vkuum. Pilene i figuren ngir d feltlinjer for elektrisk forskyvning elektrisk felt E polrisering P både og E ε d 18) En prllellpltekondenstor består v to prllelle metllplter i innbyrdes vstnd d. e to metllpltene hr rel og ldning henholdsvis og. Et dielektrikum med permittivitet ε = ε r > fyller den venstre hlvdelen v rommet mellom kondenstorpltene, som vist i figuren. I den høyre hlvdelen hr vi vkuum. Hv blir kondenstorens kpsitns, uttrykt ved 0 = /d, som ville h vært kpsitnsen uten dielektrikumet til stede? (Tips: ette er en prllellkobling v to kondenstorer.) = [2ε r /(ε r 1)] 0 = [ε r /(ε r 1)] 0 = (ε r 1) 0 = [(ε r 1)/2] 0 d ε= ε r,, 6

7 19) En prllellpltekondenstor består v to prllelle metllplter i innbyrdes vstnd d. e to metllpltene hr rel og ldning henholdsvis og. Et dielektrikum med permittivitet ε = ε r > fyller den nederste hlvdelen v rommet mellom kondenstorpltene, som vist i figuren. I den øverste hlvdelen hr vi vkuum. Hv blir kondenstorens kpsitns, uttrykt ved 0 = /d, som ville h vært kpsitnsen uten dielektrikumet til stede? (Tips: ette er en seriekobling v to kondenstorer.), = [2ε r /(ε r 1)] 0 ε = [ε r /(ε r 1)] 0 0 d = (ε r 1) 0 ε = ε r = [(ε r 1)/2] 0, 20) En sylinderkondenstor består v to (tynne) prllelle konsentriske metllsylindre, den innerste med rdius og den ytterste med rdius b. e to sylindrene hr lengde L og ldning pr lengdeenhet henholdsvis λ (innerst) og λ (ytterst). (nt L, b.) Et dielektrikum med permittivitet ε fyller rommet mellom indre og ytre metllsylinder. et elektriske feltet i området < r < b er E(r) = (λ/2πεr)ˆr, der r ngir vstnden fr sylindrenes senterkse, og ˆr er enhetsvektor i retning normlt på sylindrenes kse. Hv blir sylinderkondenstorens kpsitns? [Tips: estem først potensilforskjellen mellom indre og ytre sylinder.] L = πεl 2 /b = πεl 2 / = 2πεL/ ln(/b) = 2πεL/ ln(b/) ε r λ E λ b 7

8 Øving 9 i Elektromgnetisme / Elektrisitet og mgnetisme våren 2009 Innleveringsfrist: Fredg 13. mrs kl Nvn: Øvingsgruppe: Oppgve et er tilstrekkelig å levere inn utfylt svrtbell innen fristen for å få godkjent denne øvingen. 8

Midtsemesterprøve torsdag 6. mars 2008 kl

Midtsemesterprøve torsdag 6. mars 2008 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Oppgver på side 3 10. Svrtbell på side 11. Sett tydelige

Detaljer

Midtsemesterprøve fredag 23. mars 2007 kl

Midtsemesterprøve fredag 23. mars 2007 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme Vår 2007 Midtsemesterprøve fredg 23. mrs 2007 kl 1415 1615. Løsningsforslg 1) I et område er det elektriske feltet

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Midtsemesterprøve fredag 23. mars kl

Midtsemesterprøve fredag 23. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme I TFY4155 Elektromgnetisme år 2007 Midtsemesterprøve fredg 23. mrs kl 1415 1615. Svrtbellen står på et eget rk. Sett tydelige kryss. Husk å skrive

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 10. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. TFY0 Fysikk. Institutt fo fysikk, NTNU. Høsten 06. Øving 0. Opplysninge: esom ikke nnet e oppgitt, nts det t systemet e i elektosttisk likevekt. esom ikke nnet e oppgitt, e potensil undefostått elektosttisk

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?

Detaljer

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003

Løsningsforslag SIE4010 Elektromagnetisme 5. mai 2003 Oppgve 1 Løsningsforslg SIE4010 Elektromgnetisme 5. mi 2003 ) Av symmetrigrunner må det elektriske feltet være rdielt rettet og uvhengig v φ, E = E(r)u r.vilrs være overflten til en sylinder med rdius

Detaljer

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er.

1b) Beregn den elektriske ladningstettheten inni kjernen og finn hvor stor den totale ladningen er. FYS112 H-211: Løsningsforslg for vsluttende eksmen Oppgve 1 I en modell for en kuleformet tomkjerne med rdius R vrierer det elektriske feltet inne i kjernen som E(r) = Cr(xe x + ye y + ze z ). Her er C

Detaljer

Inst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser.

Inst. for fysikk 2015 TFY4155/FY1003 Elektr. & magnetisme. Øving 13. Induksjon. Forskyvningsstrøm. Vekselstrømskretser. Inst for fysikk 2015 TFY4155/FY1003 Elektr & mgnetisme Øving 13 Induksjon Forskyvningsstrøm Vekselstrømskretser Veiledning: Fredg 10 pril ifølge nettsider Innlevering: Mndg 13 pril kl 14:00 SISTE ØVING!

Detaljer

Frivillig test 5. april Flervalgsoppgaver.

Frivillig test 5. april Flervalgsoppgaver. Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november. TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven

Detaljer

Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME

Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Institutt for fysikk Eksmensoppgve i TFY455 ELEKTISITET OG MAGNETISME FY003 ELEKTISITET OG MAGNETISME Fglig kontkt under eksmen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 Eksmensdto: Onsdg

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. TFY455/FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 5 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Vår 2004 Ordinær eksamen

Vår 2004 Ordinær eksamen år Ordinær eksmen. En bil kjører med en hstighet på 9 km/h lngs en rett strekning. Sjåføren tråkker plutselig på bremsene, men gjør dette med økende krft slik t (den negtive) kselersjonen (retrdsjonen)

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk 15 august 2000 Tid:

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk 15 august 2000 Tid: Side v 6 Nrges teknisk-nturvitenskpelige universitet Institutt fr fysikk Fglig kntkt under eksmen: Nvn: Ol Hunderi Tlf.: 94 EKSMEN I FG 7445 - FSTE STOFFERS FYSIKK Fkultet fr fysikk, infrmtikk g mtemtikk

Detaljer

Kap. 23 Elektrisk potensial

Kap. 23 Elektrisk potensial Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 Oppgve 1 FY1005/TFY4165 Termisk fysikk Institutt for fysikk, NTNU åren 2015 Løsningsforslg til øving 4 For entomig gss hr vi c pm = 5R/2 og c m = 3R/2, slik t γ = C p /C = 5/3 Lngs dibten er det (pr

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

1 Mandag 1. mars 2010

1 Mandag 1. mars 2010 Mndg. mrs Fundmentlteoremet sier t integrsjon og derivsjon er motstte opersjoner. Vi hr de siste ukene sett hvordn vi på ulike måter kn derivere funksjoner i flere vrible. Nå er turen kommet til den motstte

Detaljer

Øving 13, løsningsskisse.

Øving 13, løsningsskisse. FY3 Elektr & mgnetisme Øving 3, løsningsskisse nduksjon Forskyvningsstrøm Vekselstrømskretser nst for fysikk 7 Oppgve nduktns for koksilkbel ) Med strømmen jmt fordelt over tverrsnittet på lederne blir

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME

Detaljer

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar. Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en

Detaljer

Midtsemesterprøve torsdag 7. mai 2009 kl

Midtsemesterprøve torsdag 7. mai 2009 kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Multippel integrasjon. Geir Ellingsrud

Multippel integrasjon. Geir Ellingsrud Multippel integrsjon. Geir Ellingsrud 2. pril 24 2 NB: Dette er en midlertidig versjon dtert 2. pril 24. Den kommer til å bli utvidet og korrigert fortløpende!!. Dobbelt integrlet over rektngler og iterert

Detaljer

1 Mandag 8. mars 2010

1 Mandag 8. mars 2010 1 Mndg 8. mrs 21 Vi hr tidligere integrert funksjoner lngs x-ksen, og vi hr integrert funksjoner i flere vrible over begrensede områder i xy-plnet. I denne forelesningen skl vi integrere funksjoner lngs

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk nturitenskpelige uniersitet Institutt for elektronikk og telekommuniksjon ide 1 7 Fglærer: Johnnes kr EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Torsdg 21. mi 2015 Oppge 1 I hele denne oppgen

Detaljer

Tirsdag r r

Tirsdag r r Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME

Detaljer

TFE4120 Elektromagnetisme

TFE4120 Elektromagnetisme NTNU IET, IME-fkultetet, Noge teknisk-ntuvitenskpelige univesitet TFE4120 Elektomgnetisme Løsningsfoslg øving 5 Oppgve 1 ) Pg. symmeti h vi E = E()ˆ gjennom hele oppgven. i) Vi l Gussflten S væe oveflten

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06

MAT 1110: Løsningsforslag til obligatorisk oppgave 2, V-06 MAT : Løsningsforslg til obligtorisk oppgve, V-6 Oppgve : ) Hvis = (,,...) og = (,,...) er to vektorer, vil kommndoen >> plot(,) tegne rette forbindelseslinjer mellom punktene (, ), (, ) osv. For å plotte

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004 NTNU Side 1 v 7 Institutt for fysikk Fkultet for nturvitenskp og teknologi Dette løsningsforslget er på 7 sider. Løsningsforslg til eksmen i TFY417 Fysikk Fysikk Torsdg. desember 4 Oppgve 1. Kvntemeknikk

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4

Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002

Øving 1. Institutt for fysikk, NTNU Fag SIF 4012 Elektromagnetisme og MNFFY 103 Elektrisitet og magnetisme Høst 2002 Institutt fo fysikk, NTNU Fg SIF 4 Elektomgnetisme og MNFFY Elektisitet og mgnetisme Høst Øving Veiledning: Tosdg 9. ugust Innleveingsfist: Tisdg. septembe kl. Oppgve En ldning q e plsset i (,y)(,) og

Detaljer

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π

2x 3 4/x dx. 2 5 x 3 + LF: Vi utfører polynomdivisjon. 2x + 1 dx = + C = 5x8/ ln 2x C 4. πx 2 e 3x3 dx = π Innlevering ELFE KJFE MAFE Mtemtikk HIOA Obligtorisk innlevering 5 Innleveringsfrist Mndg 6. oktober 5 før forelesningen : Antll oppgver: Løsningsforslg Finn de ubestemte integrlene ) x 4/x dx LF: x 4/x

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.

Detaljer

Midtsemesterprøve fredag 11. mars kl

Midtsemesterprøve fredag 11. mars kl Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc.

Mandag Ledere: Metaller. Atomenes ytterste elektron(er) er fri til å bevege seg gjennom lederen. Eksempler: Cu, Al, Ag etc. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 7 Mandag 12.02.07 Materialer og elektriske egenskaper Hovedinndeling av materialer med hensyn på deres elektriske egenskaper:

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE SIE 4010 ELEKTROMAGNETISME NTNU Norges teknisk-naturvitenskapelige universitet Side 1 av 6 Fakultet for informatikk, matematikk og elektroteknikk Institutt for fysikalsk elektronikk Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen:

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8

Fasthetslære. HIN Teknologisk avd. RA Side 1 av 8 HIN Teknologisk vd. R 04.0.13 Side 1 v 8 sthetslære Irgens: utdrg fr kp. 11. Hieler: Kp 8+9. Konstruksjonsmteriler Konstruksjonsmteriler er fste stoffer og skl i tillegg skl h god evne til å henge smmen.

Detaljer

Oppfriskningskurs i matematikk 2007

Oppfriskningskurs i matematikk 2007 Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner

Detaljer

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215

Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Enheter for lengde og areal 2.2 Målenøyaktighet 200, 201, 202, 206, 208 209, 211, 212, 213, 215 2 Geometri Kompetnsemål: Mål for opplæringen er t eleven skl kunne ruke formlikhet og Pytgors setning til eregninger og i prktisk reid løse prktiske prolemer knyttet til lengde, vinkel, rel og volum ruke

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Fglæe: Johnnes k EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Lødg 25. mi 2013 Oppge 1 En koksilkbel bestå en innelede

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155

Detaljer

Norsk Fysikklærerforening NORSK FYSISK SELSKAPS FAGGRUPPE FOR UNDERVISNING

Norsk Fysikklærerforening NORSK FYSISK SELSKAPS FAGGRUPPE FOR UNDERVISNING Norsk Fsikklærerforenin NORSK FYSISK SELSKAPS FAGGRUPPE FOR UNDERVISNING FYSIKK-KONKURRANSE 999 Andre runde: 9/ Skriv øverst: Nvn, fødselsdto, hjemmedresse o ev. telefonnummer, skolens nvn o dresse. Vrihet:

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.

To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet. Forside Midtveiseksamen i FYS 1120 Elektromagnetisme Torsdag 12. oktober kl. 09:00-12:00 (3 timer) Alle 18 oppgaver skal besvares. Lik vekt på alle oppgavene. Ikke minuspoeng for galt svar. Maksimum poengsum

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10

FY2045/TFY4250 Kvantemekanikk I, øving 10 1 ØVING 10 FY45/TFY45 Kvntemeknikk I, - øving ØVING Mesteprten v denne øvingen går ut på å gjøre seg kjent med spinn, men øvingen inneholder også en oppgve om koherente tilstnder. Denne er en fortsettelse v oppgve

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n

Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1P kapittel 4 Lengder og vinkler

1P kapittel 4 Lengder og vinkler Løsninger til oppgvene i ok 1P kpittel 4 Lengder og vinkler Løsninger til oppgvene i ok Oppgve 4.1 6 MW 6 1 000 000 W 6 000 000 W 7,5 MW 7,5 1 000 000 W 7 500 000 W c 8 000 000 W 8 1 000 000 W 8 MW d 14

Detaljer

R2 kapittel 4 Tredimensjonale vektorer

R2 kapittel 4 Tredimensjonale vektorer Løsninger v oppgvene i ok R kpittel 4 Tredimensjonle vektorer Løsninger v oppgvene i ok 4. Vi tegner punket A i xy-plnet. Vi mrkerer plsseringen v A med linjestykker ut fr punktene (4,0,0) på x-ksen og

Detaljer