UNIVERSITETET I OSLO

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "UNIVERSITETET I OSLO"

Transkript

1 UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: MAT1140 Strukturer og rgumenter Eksmensdg: Fredg 8. desemer 2017 Tid for eksmen: 14:30 18:30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte hjelpemidler: Ingen Kontroller t oppgvesettet er komplett før du egynner å esvre spørsmålene. For hvert spørsmål kn du ruke resultter fr tidligere spørsmål, selv om du ikke hr esvrt dem. Terminologi: Vi nser t 0 er et nturlig tll, slik t 0 N. Oppgve 1 For hver endelige mengde A lr vi A N være krdinliteten til A (også omtlt som ntll elementer i A). Ant t A, B og C er endelige mengder. Vis t A B C er endelig og t: A B C = A + B + C A B B C C A + A B C. (1.1) Vi ruker to gnger t når A og B er endelige, så er A B endelig med: A B = A + B A B. (1.2) Vi får t A B er endelig og dermed er A B C endelig og vi kn skrive: A B C = A B + C (A B) C, (1.3) = A + B A B + C (A C) (B C), (1.4) = A + B + C A B A C B C + (A C) (B C), (1.5) = A + B + C A B C A B C + A B C. (1.6) (Fortsettes på side 2.)

2 Eksmen i MAT1140, Fredg 8. desemer 2017 Side 2 Oppgve 2 (vekt 20 poeng) L A være en ikke-tom mengde, og l f : A A være en vildning. Vi minner om t den n-te itererte v f, med hensyn på komposisjon, er en vildning A A som kn skrives f n og defineres for n N ved: f 0 = id A, (2.1) f n+1 = f f n, for hver n N. (2.2) Vis t hvis f er surjektiv, så er f n surjektiv for hver n N. Ved induksjon på n. For hver n N lr vi P (n) være utsgnet: f n er surjektiv. P (0) er snn, siden id A er surjektiv. L n N og nt t P (n) er snn. Vi hr t f n+1 = f f n er surjektiv, som komposisjon v to surjektive vildninger. Dermed er P (n + 1) snn. Dette fullfører induksjonseviset. Vis t hvis det finnes n N, med n 1, slik t f n er surjektiv, så er f surjektiv. Ant t n N er slik t n 1 og t f n er surjektiv. Vi hr f n = f f n 1. Gitt y A kn vi finne x A slik t f n (x) = y. Med z = f n 1 (x) A får vi d f(z) = y. Dette viser t f er surjektiv. PS: prinsippet er t når f og g er komponerre vildninger og f g er surjektiv, så må f være surjektiv. Oppgve 3 Vi minner om t en mengde A sies å være tellr dersom det finnes en ijeksjon N A. Vis t hvis A er en tellr mengde og x A så finnes det en ijeksjon A A \ {x}. (Fortsettes på side 3.)

3 Eksmen i MAT1140, Fredg 8. desemer 2017 Side 3 L A være tellr og nt x A. Velg en ijeksjon f : N A. Velg n N slik t f(n) = x. Definer g : N A \ {x} ved: N A { \ {x}, g : f(k) hvis k < n, k. f(k + 1) hvis k n. (3.1) Mn ser t g er åde injektiv og surjektiv, dermed ijektiv. Dermed er g f 1 : A A \ {x} en ijeksjon. PS: mn kn også rgumentere for t A\{x} er tellr, uten å innføre en eksplisitt definert ijeksjon g. Oppgve 4 (vekt 20 poeng) L A være en mengde utstyrt med en ordensrelsjon som vi skriver. Vi minner om t (A, ) sies å være velordnet dersom hver ikke-tomme delmengde v A hr et minste element. Vis t hvis det finnes en strengt vtgende følge i A så er (A, ) ikke velordnet. Ant t (u n ) n N er en strengt vtgende følge i A. Vi definerer: B = {u n : n N}. (4.1) D er B en ikke-tom delmengde v A og vi sjekker t B ikke hr noe minste element, ved motsigelse: Hvis x er minste element i B kn vi skrive x = u n for en n N. D hr vi u n+1 B og u n+1 < x, som er umulig. Vis t hvis (A, ) er totlt ordnet men ikke velordnet finnes det en strengt vtgende følge i A. Ant t (A, ) er totlt ordnet men ikke velordnet. L B være en ikke-tom delmengde v A som ikke hr noe minste element. Vi lger en strengt vtgende følge (u n ) n N i B ved induksjon. Siden B ikke er tom kn vi velge u 0 B. Ant t n N og t vi hr definert u 0,..., u n B slik t u 0 >... > u n. Siden u n ikke kn være minste element i B finnes det x B slik t (u n x). Siden A er totlt ordnet får vi d x < u n. Vi definerer d u n+1 = x. (Fortsettes på side 4.)

4 Eksmen i MAT1140, Fredg 8. desemer 2017 Side 4 Oppgve 5 (vekt 40 poeng) L A være en mengde utstyrt med to opersjoner klt ddisjon og multipliksjon, slik t vi hr å gjøre med en ring. Vi ntr t multipliksjonen er kommuttiv. Nøytrlt element for ddisjon skrives 0 og nøytrlt element for multipliksjon skrives 1. Vi minner om t en ekvivlensrelsjon på A sies å være komptiel med ringstrukturen dersom vi hr: og x, x, y, y A ((x x ) (y y )) = ((x + y) (x + y )), (5.1) x, x, y, y A ((x x ) (y y )) = ((xy) (x y )). (5.2) Et idel i A er definert som en ikke-tom delmengde I v A slik t: x, y I x + y I, (5.3) og x A y I xy I. (5.4) Vis t dersom I er et idel i A så hr vi for lle x I, t x I. Vis t d hr vi også 0 I. [5] For x I hr vi x = (1x) = ( 1)x I ved ndre ksiom. [5] Siden I ikke er tom kn vi velge en x I. Vi hr d 0 = x+( x) I ved første ksiom. Vis t dersom er en ekvivlensrelsjon på A som er komptiel med ringstrukturen, så er ekvivlensklssen til 0 et idel i A. L I være ekvivlensklssen til 0. [5] Ant x, y I. Vi hr ltså x 0 og y 0. Dermed x + y = 0. Altså x + y I. [5] Ant x A og y I. Vi hr d x x og y 0. Dermed xy x0 = 0. Altså xy I. c Vis t dersom I er et idel i A så er relsjonen definert ved t x y dersom y x I, en ekvivlensrelsjon på A. Vis også t den er komptiel med ringstrukturen på A. (Fortsettes på side 5.)

5 Eksmen i MAT1140, Fredg 8. desemer 2017 Side 5 Vi hr, for lle x, y, z A: [1] x x, siden 0 I. [2] hvis x y, så y x I, så x y I (ved ()), så y x. [2] hvis x y og y z, får vi y x I og z y I. D hr vi hr z x = (z y) + (y x) I, ltså x z. Dette viser t er en ekvivlensrelsjon på A. [2] Ant t x x og y y. D hr vi (x + y ) (x + y) = (x x) + (y y) I. (5.5) Altså (x + y) (x + y ). [3] Ant t x x og y y. D hr vi x y xy = x (y y) + (x x)y = x (y y) + y(x x) I. (5.6) Altså xy x y. Dette viser t er komptiel med ddisjon og multipliksjon. d Vi ser nå på tilfellet der A = Z, utstyrt med sin vnlige ringstruktur. Vis t for hvert idel I i Z finnes det én og re én n N slik t: I = nz = {nk : k Z}. (5.7) [6] Eksistens. L I være et idel i Z. Hvis I = {0} kn vi t n = 0. Hvis I {0}, ruker vi t I ikke er tom til å velge x I \ {0}. Vi hr d også x I. Siden x > 0 eller x > 0 får vi t følgende mengde ikke er tom: J = {k Z I : k > 0}. (5.8) L n være minste element i J (her ruker vi velordningsprinsippet på N). Vi viser nå t I = nz: * Siden n I får vi nz I. * For y I skriver vi den Euklidske divisjonen v y med n : y = qn+r med q Z og r [0, n 1]. D hr vi r = y qn I. D følger det t r = 0 (hvis ikke får vi r J og r < n, som er umulig). Dette viser t I nz. [4] Entydighet. L n, m N og nt t nz = mz. D hr vi t n deler m og m deler n, dermed m = ±n. Siden m, n 0 får vi m = n. PS: flere entydighetsrgumenter kn gis. SLUTT

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i INF2080 Logikk og eregninger Eksmensdg: 6. juni 2016 Tid for eksmen: 14.30 18.30 Oppgvesettet er på 5 sider. Vedlegg: Ingen Tilltte

Detaljer

MED SVARFORSLAG UNIVERSITETET I OSLO

MED SVARFORSLAG UNIVERSITETET I OSLO Eksmen i : MED SVARFORSLAG UNIVERSITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet INF5110 - Kompiltorteknikk Eksmensdg : Onsdg 6. juni 2012 Tid for eksmen : 14.30-18.30 Oppgvesettet er på : Vedlegg

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVESITETET I OSLO Det mtemtisk-nturvitenskpelige fkultet Eksmen i: FYS1120 Elektromgnetisme Eksmensdg: 5. oktober 2015 Tid for eksmen: 10.00 13.00 Oppgvesettet er på 8 sider. Vedlegg: Tilltte hjelpemidler:

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

TFE4101 Krets- og Digitalteknikk Vår 2016

TFE4101 Krets- og Digitalteknikk Vår 2016 Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

Eneboerspillet. Håvard Johnsbråten

Eneboerspillet. Håvard Johnsbråten Håvrd Johnsråten Eneoerspillet Når vi tenker på nvendelser i mtemtikken, ser vi gjerne for oss Pytgors læresetning eller ndre formler som vi kn ruke til å eregne lengder, reler, kostnder osv. Men mer strkte

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1

1 k 2 + 1, k= 5. i=1. i = k + 6 eller k = i 6. m+6. (i 6) i=1 TMA4 Høst 6 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Løsningsforslg Øving 5 5..6 Vi er gitt summen og ønsker å skrive den på formen m k=5 k +, f(i). i= Strtpunktene er henholdsvis

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen

Praktiske opplysninger til rektor. Fag: MATEMATIKK 1TY for yrkesfag Fagkode: MAT1006 Eksamensdato: Antall forberedelsesdager: Ingen Loklt gitt eksmen 2013 Prktiske opplysninger til rektor Fg: MATEMATIKK 1TY for yrkesfg Fgkode: MAT1006 Eksmensdto: 30.5.2013 Antll foreredelsesdger: Ingen Forhold som skolen må være oppmerksom på: Eksmenen

Detaljer

Løsningsforslag til obligatorisk oppgave i ECON 2130

Løsningsforslag til obligatorisk oppgave i ECON 2130 Andres Mhre April 13 Løsningsforslg til obligtorisk oppgve i ECON 13 Oppgve 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) X og Z er uvhengige v hverndre, så Cov(X, Z) =.

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret.

addisjon av 2 og 3. Vi skriver da i alt: 2+3= og etter at likhetstegnet er skrevet så gir matcad oss svaret. ddisjon v og. Vi skriver d i lt: += og etter t likhetstegnet er skrevet så gir mtcd oss svret. + + + = 5 ddisjon med + først. Skriv inn et +tegn, så og bruk TAB + + + + = 5 minus 5 5 5 = Å bruke gngetegn

Detaljer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer

OPPLÆRINGSREGION NORD. Skriftlig eksamen. MAT1001 Matematikk 1P-Y HØSTEN 2011. Privatister. Yrkesfag. Alle yrkesfaglige utdanningsprogrammer OPPLÆRINGSREGION NORD LK06 Finnmrk fylkeskommune Troms fylkeskommune Nordlnd fylkeskommune Nord-Trøndelg fylkeskommune Sør-Trøndelg fylkeskommune Møre og Romsdl fylke Skriftlig eksmen MAT1001 Mtemtikk

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksmen : ECON00 Mtemtkk /Mkro (MM) Eksmensdg: 7.05.05 Sensur kunngjøres: 7.06.05 Td for eksmen: kl. 09:00 5:00 Oppgvesettet er på 4 sder Tlltte hjelpemdler: Det

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Alger Aritmetiske opersjoner ( + c) = + c + c Potensregler Polynom = + c + c d + c = d c c d = d c = d c x y = x+y x = x / x y = x y n x = x /n 0 = x n = x n ( x ) y = xy () x =

Detaljer

Institutt for elektroteknikk og databehandling

Institutt for elektroteknikk og databehandling Institutt for elektroteknikk og dtbehndling Stvnger, 7. mi 997 Løsningsforslg til eksmen i TE 9 Signler og Systemer, 6. mi 997 Oppgve ) Et system er lineært dersom superposisjonsprinsippet gjelder, d.v.s.

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER:

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken n x n n= konvergerer i ( R, R), R >, med summen s(x). D gjelder: og s (x) = n n x n for hver x med x < R, s(t) dt = n= (Dette er

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

Kapittel 5 Statistikk og sannsynlighet Mer øving

Kapittel 5 Statistikk og sannsynlighet Mer øving Kpittel 5 Sttistikk og snnsynlighet Mer øving Oppgve 1 Digrmmet nefor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4? Hvor mnge elever er et i klssen?

Detaljer

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME

NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME NORGES LANDBRUKSHØGSKOLE nstitutt for mtemtiske relfg og teknologi EKSAMEN FYS135 - ELEKTROMAGNETSME Eksmensdg: 12. desember 2003 Tid for eksmen: Kl. 14:00-17:00 (3 timer) Tilltte hjelpemidler: B2 - Enkel

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

Løsninger til oppgaver i boka

Løsninger til oppgaver i boka Løsninger til oppgver i ok Kpittel 1 Alger Løsninger til oppgver i ok 1.9 d På ildet ser vi t den lengste siden i tkåpningen er omtrent så lng som den korteste. Om vi kller den korteste siden for x, hr

Detaljer

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12).

MAT 100a - LAB 4. Før vi gjør dette, skal vi for ordens skyld gjennomgå Maple-kommandoene for integrasjon (cf. GswM kap. 12). MAT 00 - LAB 4 Denne øvelsen er i hovedsk viet til integrsjon. For mnge er integrsjon i prksis det smme som ntiderivsjon, og noe som kn rukes til å eregne relet v enkelte områder i plnet som lr seg egrense

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Løsningsforslag Kollokvium 1

Løsningsforslag Kollokvium 1 Løsningsforslg Kollokvium 1 30. jnur 015 Her finner dere et løsningsforslg for oppgvene som ble diskutert på Kollokvium 1. Oppgve 1 Regning med enheter ) Energienheten 1 ev (elektronvolt) er definert som

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10

FY2045/TFY4250 Kvantemekanikk I, løsning øving 10 1 LØSNING ØVING 10 FY45/TFY45 Kvntemeknikk I, løsning øving LØSNING ØVING Løsning oppgve Spinn. D åde χ + og χ i likhet med lle ndre spinorer er egentilstnder til enhetsmtrisen med egenverdi lik, hr vi Videre finner vi t

Detaljer

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1

Juleprøve trinn Del 1. Navn: Del 1 Aschehoug JULEPRØVE trinn. Informasjon for del 1 Juleprøve 2015 10. Del 1 Nvn: Informsjon for del 1 Prøvetid Hjelpemidler i del 1 Andre opplysninger Frmgngsmåte og forklring 5 timer totlt Del 1 og del 2 lir delt ut smtidig. Del 1 skl leveres inn seinest

Detaljer

S2 kapittel 6 Sannsynlighet

S2 kapittel 6 Sannsynlighet S kpittel 6 Snnsynlighet Løsninger til oppgvene i bok Oppgve 6. Ett v de 36 mulige utfllene er gunstig for hendelsen S. Alle de 36 mulige utfllene er like snnsynlige. Altså er PS ( ) 36 b Det er utfll

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag

75045 Dynamiske systemer 3. juni 1997 Løsningsforslag 75045 Dynmiske systemer 3. juni 1997 Løsningsforslg Oppgve 1 ẋ = 0 gir y = ±x, og dette innstt i ẏ = 0 gir 1 ± x = 0. Vi må velge minustegnet, og får x = y = ±1/. Vi deriverer: [ ] x y ( 1 Df(x, y) = ;

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Løsningsforslag til eksamen i INF2270

Løsningsforslag til eksamen i INF2270 Løsningsforslg til eksmen i INF2270 Omi Mirmothri (oppgve 1 4) Dg Lngmyhr (oppgve 5 6) 13. juni 2014 Eksmen 2270 V2013 - Fsit 1) Konverter følgene tll til inært. Vis utregning (5%). (43)es 43 / 2 = 21

Detaljer

Notater: INF2080. Veronika Heimsbakk veronahe@student.matnat.uio.no. 14. oktober 2014. 1 Intro 3

Notater: INF2080. Veronika Heimsbakk veronahe@student.matnat.uio.no. 14. oktober 2014. 1 Intro 3 Notter: INF2080 Veronik Heimskk veronhe@student.mtnt.uio.no 14. oktoer 2014 Innhold 1 Intro 3 2 Terminologi 3 2.1 Mengder.............................. 3 2.2 Boolsk logikk........................... 3

Detaljer

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse

Løsningsforslag til Eksamen i fag MA1103 Flerdimensjonal analyse Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Side 1 v 5 Løsningsforslg til Eksmen i fg MA113 Flerdimensjonl nlyse 2.5.6 Oppgve 1 Vi hr f(x, y) = (4 x 2 y 2 )e x+y. ) Kritiske

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

9.6 Tilnærminger til deriverte og integraler

9.6 Tilnærminger til deriverte og integraler 96 TILNÆRMINGER TIL DERIVERTE OG INTEGRALER 169 Figur 915 Bezier-kurve med kontrollpolygon som representerer bokstven S i Postscript-fonten Times-Romn De ulike Bezier-segmentene ser du mellom kontrollpunktene

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R.

LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: a n x n. R > 0, med summen s(x). Da gjelder: a n n + 1 xn+1 for hver x < R. LEDDVIS INTEGRASJON OG DERIVASJON AV POTENSREKKER: Vi ntr t potensrekken konvergerer i ] R, R[, n x n R >, med summen s(x). D gjelder: s (x) = n n x n 1 for hver x < R, og s(t)dt = n n + 1 xn+1 for hver

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har:

Dette krever ikke noe nytt aksiom. Hvorfor? Og hvorfor må vi anta at A ikke er tom? Merk at vi har: Notat 4 for MAT1140 4 Mer om mengder 4.1 Familier av mengder Union og snitt. Aksiom 4.1. Dersom A er en mengde bestående av mengder, kan de sistnevnte føyes sammen til en stor mengde, kalt unionen til

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 Flere utfordringer til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Forklr forskjellen på rsjonle og irrsjonle tll. Hv kjennetegner dem? Hvordn kn vi se t et tll er rsjonlt eller irrsjonlt? Skriv

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Fysikk 2 Torsdag 2. desember 2004 NTNU Side 1 v 7 Institutt for fysikk Fkultet for nturvitenskp og teknologi Dette løsningsforslget er på 7 sider. Løsningsforslg til eksmen i TFY417 Fysikk Fysikk Torsdg. desember 4 Oppgve 1. Kvntemeknikk

Detaljer

Problemløsning eller matematiske idéer i undervisningen?

Problemløsning eller matematiske idéer i undervisningen? Prolemløsning eller mtemtiske idéer i undervisningen? n Lksov Något som oft förekommer i diskussionen om skolns mtemtikundervisning är vvägningen melln prolemlösning och teori. I denn rtikel poängterr

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter.

t-r t_t T 4 Hvorfor arbeider vi? I-l II l- l=i 2 Vokabular 1 Hva er viktig med jobb? Je V Sett kryss og diskuter. Hvorfor reider vi? 1 Hv er viktig med jo? Sett kryss og diskuter. For meg er det viktig à treffe mennesker! Ti 3 Er Det er lnn som er viktisstl Jeg symes det er viktig á fà ruke evnene mine. Det er viktig

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer

Relasjonsmodellen, del II

Relasjonsmodellen, del II LC238D http://www.itel.hist.no/fg/_dmd/ Relsjonsmodellen, del II Eksempelse side 2 Relsjonslger side 3 SQL-opertorer side 4 Seleksjon og side 5 Produkt side 6 Forening (join) side 7-10 Settopersjonene

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

Effektivitet og fordeling

Effektivitet og fordeling Effektivitet og fordeling Vi skl svre på spørsmål som dette: Hv etyr det t noe er smfunnsøkonomisk effektivt? Er det forskjell på smfunnsøkonomisk og edriftsøkonomisk effektivitet? Er det en motsetning

Detaljer

Tillegg til kapittel 2 Grunntall 10

Tillegg til kapittel 2 Grunntall 10 8.09.0 Kvrtsetningene Tillegg til kpittel Grunntll 0 Ne læringsmål i reviert lærepln 0 Mål for et u skl lære: kunne ruke kvrtsetningene til å multiplisere to prentesuttrkk kunne fktorisere ve å ruke kvrtsetningene

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

Injektive og surjektive funksjoner

Injektive og surjektive funksjoner Injektive og surjektive funksjoner Christian F. Heide 5. september 07 Dette notatet forklarer begrepene injektive og surjektive funksjoner, og er tenkt brukt som et supplement til avsnitt.5 i boken «Mathem»

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

LO118D Forelesning 3 (DM)

LO118D Forelesning 3 (DM) LO118D Forelesning 3 (DM) Mengder og funksjoner 27.08.2007 1 Mengder 2 Funksjoner Symboler x y Logisk AND, både x og y må være sanne x y Logisk OR, x eller y må være sann x Negasjon, ikke x x For alle

Detaljer

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

Løsningsforslag til ukeoppgaver i INF3110/4110

Løsningsforslag til ukeoppgaver i INF3110/4110 Løsningsforslg til ukeoppgver i INF3/4 Uke 42 (5-723) Oppgve Jernbnedigrm: FlotingPointLiterl Digits Digits xponentprt xponentprt Digits Digits Digit xponentprt Digit xponentprt Digits + - 2 Omskriving

Detaljer

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007

Fakultet for realfag Ho/gskolen i Agder - Va ren 2007 Msteroppgve i mtemtikkdidktikk Fkultet for relfg Ho/gskolen i Agder - V ren 2007 Integrl og integrsjon Roger Mrkussen Roger Mrkussen Integrl og integrsjon Msteroppgve i mtemtikkdidktikk Høgskolen i Agder

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk 15 august 2000 Tid:

EKSAMEN I FAG FASTE STOFFERS FYSIKK 2 Fakultet for fysikk, informatikk og matematikk 15 august 2000 Tid: Side v 6 Nrges teknisk-nturvitenskpelige universitet Institutt fr fysikk Fglig kntkt under eksmen: Nvn: Ol Hunderi Tlf.: 94 EKSMEN I FG 7445 - FSTE STOFFERS FYSIKK Fkultet fr fysikk, infrmtikk g mtemtikk

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Bioberegninger - notat 3: Anvendelser av Newton s metode

Bioberegninger - notat 3: Anvendelser av Newton s metode Bioberegninger - nott 3: Anvendelser v Newton s metode 20. februr 2004 1 Euler-Lotk ligningen L oss tenke oss en populsjon bestående v individer v ulik lder. L n være mksiml lder. L m i være ntll vkom

Detaljer

Fag: Matematikk 1P for yrkesfag for elever og privatister

Fag: Matematikk 1P for yrkesfag for elever og privatister Lokl gitt eksmen 2011 Eksmen Fg: Mtemtikk 1P for yrkesfg for elever og privtister Fgkode: MAT1001 Eksmensdto: 25. mi Del 1: oppgve 1 6 Del 2: oppgve 7 11 Antll sider til smmen i del 1 og 2 inkl. forside:

Detaljer

Formelsamling i matematikk

Formelsamling i matematikk Formelsmling i mtemtikk Algebr Aritmetiske opersjoner (b + c) b + c + c b Potensregler Polynom b + c b b + c d + bc d bc b c d b d c d bc x y x+y x x / x y x y n x x /n 0 x n x n ( x ) y xy (b) x x y (

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og Flexing. ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 EKSAMENSDATO:. desember 9 KLASSE:. klssene, ingenørutdnning og Flexing. TID: kl. 9. 3.. FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer