Fasit. Grunnbok. Kapittel 2. Bokmål

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Fasit. Grunnbok. Kapittel 2. Bokmål"

Transkript

1 Fsit 9 Grunnbok Kpittel Bokmål

2 Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) = 0 ƒ(6) = d ƒ(x) = x ƒ() = 4 ƒ(4) = 6 ƒ(6) = 36. Gnger tllet med 5 og trekker fr 0 b Deler tllet med 3 Legger 3 til tllet med motstt fortegn.3 A, B og C kn h rett..4 Gnger tllet med 5 og trekker fr 3 b Gnger tllet med og legger til 5.5 ƒ(x) = x + b p (x) =,5x + 70 Gnger tllet med 0 og legger til 75 : Rett linje b: Ikke rett linje.7 A i B 3 iii (NB! I. opplg skl det stå i stedet for - i setning 3.) C ii.8 Stigningstll Konstntledd Vribelledd 4-4x b 4 3 4x 3 x d - - -x e 0 x f - 0 -x.9 Antll kopper gnges med 5 og 50 dderes til svret. y = 5x + 50 Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

3 .0 T w (0) = 7,8 T w (0) = -4,38 T w (-0) = -6,58.3 h (x) = 3x + 0 b b Den 7. dgen d En solsikke er målt til 43 m. Det går 38 dger.. y = 50x + 0 b Når x = 3 : y = 70 Når x = 5 : y = For eksempel: Mi strter 5 minutter før Pi. Pi løper fortere, og hun tr igjen Mi når Mi hr løpt 5 minutter og Pi 0 minutter. Etter 30 minutter hr Mi løpt 4 km. D hr Pi løpt i 5 minutter, og hun hr løpt 5 km. Begge løper med jevn frt. Mis frt er 8 km/h. Pis frt er km/h. d For eksempel x 0 (hvis hun overntter) D tjener Stine mellom 50 kr og 500 kr.5 Den. dgen psserer den 50 m b Etter 0 dger er den 50 m Ingrids d Shobis e Etter 0 dger. b 86 m 38 d Vurder e x [7, 48], h [06, ] Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

4 .6, b.8, b Kris: 470 kr Klles: 480 kr Hun bør velge Kris kttepensjont. d 3 dger eller mindre. e Velg Klles hvis du skl være borte mindre enn 4 dger, ellers velger du Kris..7 x-verdier b d e f y = y = y = y = y = y = bestemmer stigningen til linj, hvor brtt den er d Alle krysser y-ksen i (0, ).9 Vurder b Vurder b bestemmer hvor linj krysser y-ksen d Alle linjene er prllelle e b = 0.0 Vurder krysser y-ksen (0, -) (0, 3) (0, 3) (0, 3) (0, 0) (0, 0). Svrt: = Blå: = - b = b = -3. Skjæringspunkt Stigningstll (0, -4) 3 b (0, 4) -3 (0, -3) 3 d (0, ) e (0, ) - f (0, -) g (0, -) -3 h (0, 3 ) 3 i (0, -) j (0, -3) k (0, 3) - 3 l (0, ) Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

5 .3 e y = -x f y = x g y = -3x h y = 3x + 3 i y = x j y = x 3 k y = - 3 x + 3 l y = x + y 0 og x - (kn ikke h 0 i nevner på opprinnelig formel).9 ) y = -x + 5 b ) y = -3x + 3 b) y = - x + b) y = - 3 x + 3 ) y = -x 3 ) y = - d) y = x e) y = x 6.30 y = x.4, b,, e og f.5,, d og h hr stigningstll -3 b, e og f hr stigningstll 3 j Vurde b y = -x +.6,, d, g og h hr konstntledd j Vurder.7 b,, e og f er prllelle g Vurder y = x +.8 Røde - Svrte 4 Blå - 3 Grønne - -4 Ornge 0 - d y = x + 3 b Den svrte linj Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

6 .3, d, e, f.38.3 b, e, f.33 d, e, f (y = 3 x = ).34 Vurder b De ligger ikke på smme rette linje..35 J (y = x + ) b J (y = 3 x) y = 5x + 5 (bre spørsmål om grf) b Nei. (8,4) ligger ikke på smme linje..39 y = 30x b.36 Nei b J (y = -5x ) J (y = -6).37 J.40 t (timer) 4 6 s (kilometer) b y = -7 x = 68 s b er konstnt t s(t) = 60t d Hn kommer dobbelt så lngt. Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

7 .4 6 blå b 0 gule b = 3 g d g = 3 b e Begge går gjennom origo. De er symmetriske om linj y = x.4 Nei p (x) = 9x p (5) = kr = = 3 b 60 kr.45 egg b 5 egg dl sukker dl sukker ts bkepulver ts bkepulver ts vniljesukker ts vniljesukker 4 ts krdemomme ts krdemomme 4,5 dl kulturmelk 7,5 dl kulturmelk,5 dl helmelk 7,5 dl helmelk 4 dl hvregryn dl hvregryn 4,5 dl hvetemel,5 dl hvetemel 50 g smeltet smør 50 g smeltet smør y = 4 x d A Glt B Glt C Noen gnger (i vokselder) D Noen gnger E Noen gnger.47 A, hvis det gjelder for lle x-verdier. C og D er rett b 5,60 kr Deler på Gnger med 3 d Vurder Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

8 .49 y = 8,07x b Empiriske og ikke lineære funksjoner.54 er ikke en funksjon, mens b, og d er funksjoner.55 og beskriver funksjoner Vurder d Rett linje gjennom origo.50 y = 3x b y = x.56 Vurder.57 Tips: Du kn bruke GeoGebr RegSin for å lge en periodisk grf., b y = 3 4 x.5 Snt Usnt 3 Snt 4 Usnt 5 Snt.5 y = x y = 4 3 x.53 Proporsjonle b Proporsjonle Ikke lltid proporsjonle Mximumstemperturen er i overgngen juli ugust. Minimustemperturen er i begynnelsen v februr. d Punktene M og N viser hvor temperturen er 0º C. Det er omtrent 0. pril og 0. november. e Vurder.58 Vurder Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

9 Melk Pris, kr b Se tbellen b Fr 0 til,5 m/s Ved omtrent m/s d Ved vindstyrke på 3,5 m/s.60 Toppunkter på. 4 ved tiden 3, 8, 3, 8 og 3 minutter. b En intervlløkt med intensive perioder på 3 minutter og minutter rolig..6 t [0,0] s [0,66].6 t [0,3] h [0,6].63 p(x) =,50x b For eksempel: x [0,00] p(x) [0,50].65 4, 3,, n der n kn være lle nturlige tll fr 7 til 48. b Vurder Vurder d Vurder.66 Rød grf: Hnn Blå grf: Benjmin b 9 uker Hnn: 7500 kr Benjmin: 9300 kr.67 Blå grf: Bllkst fr vernd Svrt grf: Bllkst fr bkken b 0,75 s, 7 m 8,5 m, mksimumspunkt Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

10 Bli bedre.68 ƒ(x) = x + 4 b ƒ(x) = 5x 8 ƒ(x) = (x 8) 5 d ƒ(x) = x 4.69 Funksjonen gnger tllet med 3 og legger til b Funksjonen opphøyer tllet i ndre Funksjonen trekker tllet fr 0 og gnger svret med 3 d Funksjonen gnger tllet med - og legger til 7.7 y = 450 0x b Stigningstll - 0: Antll medlemmer vtr med 0 per år. 90 d 0 år (9,5) fr i dg.73 y = x b 8 uker y = 0 + x d.70 K(x) = 50x b Stigningstll 50. Tilleggskostnd for produksjon v ett ekstr pr ski. Konstntledd = hv fbrikken hr v utgifter uvhengig v hvor mnge pr ski de produserer. e 9,5 uker d kr e 950 kr.74 De hr jevn frt A(t) = 500 +,5x b,.7 b y [5,6] 5 kr d 7 år d, e De kommer likt i mål, og det tr 000 s = min 40 sek Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

11 .75,, f og g er prllelle b, d og i er prllelle.76 ) y = -4x + 4 ) y = x 3) y = x 4 4) y =.77 y = x b y = -3x + 8 y = x d y = -x e y = 4 3 x Nei. De siste to verdiene psser ikke..80 Svrt, rød, grønn, lill.8.8 Vurder.83 f y = - 3 x + 3 g y = x 58 h y = -5 i Ingen funksjon. x =. Vertikl linje.78 y x = b b 80 kr 9 timer d t <0,4] p {60, 0, 80, 0, 40, 80, 95}.84 m, m b 6 år,5 m d m,,5 m e Mellom 8 og år.85 x <0,4> y <0000, 58000] b , etter dger Antll bkterier øker rskt. Når det blir for mnge bkterier, begynner de å dø. 8,33 kg.86 Vurder b 500 pr Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

12 Tren tnken.87 y = 3 x 3 og y = 3x 6.88 mm b b = mm b p =,6q.90 Vurder Mximum 9. Fsit. Grunnbok. Kpittel Gyldendl Norsk Forlg AS

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka

S1 kapittel 6 Derivasjon Løsninger til oppgavene i boka S kpittel 6 Derivsjon Løsninger til oppgvene i ok 6. c y x y x = = = = y x 4 5 9 4 y 5 6 x 4 = = = = y x y x = = = = 7 ( 5) 6 ( ) 8 6. f( x ) f( x ) 5 7 x x ( ) 4 = = = = 6. T( x) = 0,x +,0 T T = + = (0)

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

Fasit. Grunnbok. Kapittel 1. Bokmål

Fasit. Grunnbok. Kapittel 1. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Prosent. = 0,5 = 50 % 2 b 0,333 = 33,3 % 3 c = 0,25 = 25 % 4 d = 0,2 = 20 % 5 e = 0,25 = 2,5 % 8.2 4 b 20 c 20 d 4 = 25 % e 20 = 5 % f 20 = 5 %.3 2 5 b 37,5% 3 c

Detaljer

M2, vår 2008 Funksjonslære Integrasjon

M2, vår 2008 Funksjonslære Integrasjon M, vår 008 Funksjonslære Integrsjon Avdeling for lærerutdnning, Høgskolen i Vestfold. pril 009 1 Arelet under en grf Vi begynner vår diskusjon v integrsjon, på smme måte som vi begynte med derivsjon, ved

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Fasit. Oppgavebok. Kapittel 3. Bokmål

Fasit. Oppgavebok. Kapittel 3. Bokmål Fsit Oppgveok Kpittel Bokmål KAPITTEL Brøk. og d og. c og c og e og f 0 og 0.. c d c e. d f 0. = c d e f. > c < e < > d > f < g h. kg. c 00 e d f. teskjeer.,,, 0,. = og = =.. c d 0. c c d.0 c d e f 0.

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

2 Symboler i matematikken

2 Symboler i matematikken 2 Symoler i mtemtikken 2.1 Symoler som står for tll og størrelser Nvn i geometri Nvn i mtemtikken enyttes på lignende måte som nvn på yer og personer, de refererer eller representerer et tll eller en størrelse,

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET

E K S A M E N. Matematikk 3MX. Elevar/Elever Privatistar/Privatister. AA6524/AA6526 8. desember 2004 UTDANNINGSDIREKTORATET E K S A M E N UTDANNINGSDIREKTORATET Mtemtikk 3MX Elevr/Elever Privtistr/Privtister AA654/AA656 8. desember 004 Vidregånde kurs II / Videregående kurs II Studieretning for llmenne, økonomiske og dministrtive

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon

Matematikk 1000. Øvingsoppgaver i numerikk leksjon 8 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 8 Numerisk integrsjon Som kjent kn vi regne ut (bestemte) integrler ved nti-derivsjon. Dette resulttet er et v de viktikgste innen klkulus; det heter tross

Detaljer

Fasit. Oppgavebok. Kapittel 6. Bokmål

Fasit. Oppgavebok. Kapittel 6. Bokmål Fsit Oppgveok Kpittel 6 Bokmål Kpittel 6 Oppgver uten ruk v hjelpemidler 6.1 965 d 178 848 76 e 47 c 10,6 f 45 6. 1, km d 40 d 100 cm e 1 000 000 mg c 155 min f 0 dm 6. 5 4 5 c 8 e 1 8 d 11 10 f 6 6.4

Detaljer

Integrasjon Skoleprosjekt MAT4010

Integrasjon Skoleprosjekt MAT4010 Integrsjon Skoleprosjekt MAT4010 Tiin K. Kristinslund, Julin F. Rossnes og Torstein Hermnsen 19. mrs 2014 1 Innhold 1 Innledning 3 2 Integrsjon 3 3 Anlysens fundmentlteorem 7 4 Refernser 10 2 1 Innledning

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler.

Læringsmål for 9. trinn: Oppgave: Prosent. 1a, 2a, 7, 15a b, 17b, 18. Regne med prosent og promille, med og uten digitale hjelpemidler. Læringsmål for 9. trinn: : rosent Regne med prosent og promille, med og uten digitle hjelpemidler Tolke og regne med prosentpoeng 1, 2, 7, 15 b, 17b, 18 17 otenser og kvdrtrot Regne med potenser 1b, 1d,

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fsit Grunnbok Kpittel Bokmål Kpittel Enkle snnsynligheter. For eksempel: Hvordn blir været? Kommer vi til å vinne kmpen? Får jeg lt rett på prøven? osv... b Meteorolog, ksjemegler, geolog, politiker osv...

Detaljer

Påbygging kapittel 2 Funksjoner 1 Løsninger til oppgavene i boka

Påbygging kapittel 2 Funksjoner 1 Løsninger til oppgavene i boka Påygging kpittel 2 Funksjoner 1 Løsninger til oppgvene i ok 2.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A = (125,10) B = (0, 12,5)

Detaljer

Integrasjon av trigonometriske funksjoner

Integrasjon av trigonometriske funksjoner Integrsjon v trigonometriske funksjoner øistein Søvik 3. november 15 I dette dokumentet skl jeg vise litt ulike integrsjonsteknikker og metoder for å utforske integrlene v (cos x) og (sin x). De bestemte

Detaljer

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka

R1 kapittel 7 Sannsynlighet. Kapitteltest. Oppgave 1. Oppgave 2. Oppgave 3. Del 1 Uten hjelpemidler. Løsninger til oppgavene i boka Løsninger til oppgvene i ok R1 kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Kpitteltest Del 1 Uten hjelpemidler Oppgve 1 De fem lppene kn ordnes i rekkefølge på 5! = 15 = forskjellige måter. Vi kn

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

Oppgave N2.1. Kontantstrømmer

Oppgave N2.1. Kontantstrømmer 1 Orientering: Oppgvenummereringen leses slik: N står for nettsiden, første siffer står for kpittelnummer og ndre for oppgvenummer. Oppgve N2.1. Kontntstrømmer En edrift vurderer å investere 38 millioner

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11.

Faktorisering. 1 Hva er faktorisering? 2 Hvorfor skal vi faktorisere? Per G. Østerlie Senter for IKT i utdanningen 11. Fktorisering Per G. Østerlie Senter for IKT i utdnningen per@osterlie.no 11. mi 013 1 Hv er fktorisering? Vi må se på veret å fktorisere. Hv er det vi skl gjøre når vi fktoriserer? Svret er: å lge fktorer.

Detaljer

Fasit. Grunnbok. Kapittel 5. Bokmål

Fasit. Grunnbok. Kapittel 5. Bokmål Fsit Grunnok 8 Kpittel 5 Bokmål Kpittel 5 5.1 Figurtll: 8, 13, 18, 23, 28 19 etsjer 5.2 Figurtll: 1, 7, 10, 13, 16, 19 3 c Figurtllet er 3 gnger figurnummeret pluss 1. d Figurtllet er 5 gnger figurnummeret

Detaljer

1 c 6. 1 c 2. b Olav får 1500 kr. Trine får 3000 kr. c 4 Oppgave 39 165,50 kr 6 Oppgave 40 a 0 b 28 c 9 d F.eks. 15 8 e

1 c 6. 1 c 2. b Olav får 1500 kr. Trine får 3000 kr. c 4 Oppgave 39 165,50 kr 6 Oppgave 40 a 0 b 28 c 9 d F.eks. 15 8 e Fsit Fsit I gng igjen Oppgve 0 Oppgve > < > < Oppgve 9 Oppgve 6 6 Oppgve = < < < Oppgve 6 0 0 0 0 Oppgve 7 6 6 6 Oppgve 0,7 000 Oppgve 9 0,09 700 0,79 7 Oppgve 0 0, 0, 0, 0, Oppgve 0,07 0,7,,7 Oppgve Oppgve

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler Eksmen høsten 013 Løsninger Eksmen høsten 013 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 150 sider Vi finner først hvor mnge

Detaljer

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj.

Kapittel 5 Verb. 5.4 For å få tak i en engelsk avis. For å finne utenlandske varer. For å treffe venninna si. For å invitere henne med til lunsj. Kpittel 5 Ver 5.1 For eksempel: Hver dg pleier jeg å sove middg Liker du ikke å dnse? I dg kn jeg ikke hndle mt. Jeg orker ikke å lge slt. Nå må jeg lese norsk. Jeg hr ikke tid til å t ferie. Kn du synge?

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget,

Tom Lindstrøm. Tilleggskapitler til. Kalkulus. 3. utgave. Universitetsforlaget, Tom Lindstrøm Tilleggskpitler til Klkulus 3. utgve Universitetsforlget, Oslo 3. utgve Universitetsforlget AS 2006 1. utgve 1995 2. utgve 1996 ISBN-13: 978-82-15-00977-3 ISBN-10: 82-15-00977-8 Mterilet

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9

Fasit til utvalgte oppgaver MAT1100, uka 20-24/9 Fsit til utvlgte oppgver MAT00, uk 20-24/9 Øyvind Ryn oyvindry@ifi.uio.no September 24, 200 Oppgve 5..5 år vi viser t f er kontinuerlig i ved et ɛ δ-bevis, er det lurt å strte med uttrykket fx f, og finne

Detaljer

S2 kapittel 6 Sannsynlighet

S2 kapittel 6 Sannsynlighet S kpittel 6 Snnsynlighet Løsninger til oppgvene i bok Oppgve 6. Ett v de 36 mulige utfllene er gunstig for hendelsen S. Alle de 36 mulige utfllene er like snnsynlige. Altså er PS ( ) 36 b Det er utfll

Detaljer

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302

LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg Sie 1 v 6 LØSNINGSFORSLAG(Sensor) I TMA4140 og MA0302 12. esemer 2006 Oppgve 1 ) Skriv ne efinisjonen på en tutologi. Svr: En tutologi

Detaljer

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk

Løsningsforslag Eksamen 19. august 2005 TFY4250 Atom- og molekylfysikk Eksmen TFY450 19. ugust 005 - løsningsforslg 1 Oppgve 1 Løsningsforslg Eksmen 19. ugust 005 TFY450 Atom- og molekylfysikk. For det oppgitte, symmetriske brønnpotensilet er bundne energiegentilstnder enten

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

1 Mandag 18. januar 2010

1 Mandag 18. januar 2010 Mndg 8. jnur 2 I denne første forelesningen skl vi friske opp litt rundt funksjoner i en vribel, se på hvordn de vokser/vtr, studere kritiske punkter og beskrive krumning og vendepunkter. Vi får ikke direkte

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse

Løsningsforslag, Midtsemesterprøve torsdag 6. mars 2008 kl Oppgavene med kort løsningsskisse Institutt for fysikk, NTNU FY1003 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2008 Løsningsforslg, Midtsemesterprøve torsdg 6. mrs 2008 kl 1000 1200. Fsit side 12. Oppgvene med kort løsningsskisse

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

Matematikk Oppgavesamling

Matematikk Oppgavesamling Mtemtikk Oppgvesmling Odd T Heir Gunnr Erstd John Engeseth Ørnulf Borgn Per Inge Pedersen BOKMÅL Mtemtikk T Oppgvesmling er en del v læreverket Mtemtikk T. Verket dekker målene i læreplnen v 00 for Mtemtikk

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

R1 kapittel 8 Eksamenstrening

R1 kapittel 8 Eksamenstrening Løsninger til oppgvene i ok R kpittel 8 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler Oppgve E Hvis er et nullpunkt for De mulige nullpunktene for P, er konstntleddet 8 delelig med. P er

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

Numerisk derivasjon og integrasjon utledning av feilestimater

Numerisk derivasjon og integrasjon utledning av feilestimater Numerisk derivsjon og integrsjon utledning v feilestimter Knut Mørken 6 oktober 007 1 Innledning På forelesningen /10 brukte vi litt tid på å repetere inhomogene differensligninger og rkk dermed ikke gjennomgå

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

2P kapittel 2 Funksjoner

2P kapittel 2 Funksjoner Løsninger til oppgvene i ok P kpittel Funksjoner Løsninger til oppgvene i ok.1 D f = [ 1, 6,5] V = [ 1,4] f V f. D f Vnnstnden kl. 16 er gitt i punktet A på figuren. Vnnstnden vr c. 190 cm. Aschehoug www.lokus.no

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 Flere utfordringer til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Forklr forskjellen på rsjonle og irrsjonle tll. Hv kjennetegner dem? Hvordn kn vi se t et tll er rsjonlt eller irrsjonlt? Skriv

Detaljer

Tillegg til kapittel 2 Grunntall 10

Tillegg til kapittel 2 Grunntall 10 8.09.0 Kvrtsetningene Tillegg til kpittel Grunntll 0 Ne læringsmål i reviert lærepln 0 Mål for et u skl lære: kunne ruke kvrtsetningene til å multiplisere to prentesuttrkk kunne fktorisere ve å ruke kvrtsetningene

Detaljer

Årsprøve 2014 10. trinn Del 2

Årsprøve 2014 10. trinn Del 2 2 Årsprøve 2014 10. trinn Del 2 Informsjon for del 2 Prøvetid: Hjelpemidler på del 2: Vedlegg: Andre opplysninger: Fremgngsmåte og forklring: Veiledning om vurderingen: 5 timer totlt Del 2 skl du levere

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka

1T kapittel 1 Algebra Løsninger til oppgavene i læreboka T kpittel Alger Løsninger til oppgvene i læreok Oppgve. 0 8 ( 0) + 0 + ( 0) 0 8 Oppgve. 7 ( ) + + ( ) 7 Oppgve. ( ) + Oppgve. 0 ( ) 0 ( 0) ( ) 0 ( 0) : ( ) 0 : ( ) Oppgve. ( ) ( ) ( ) (,) ( ) (,) 9 Oppgve.

Detaljer

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011)

Sensorveiledning Oppgaveverksted 4, høst 2013 (basert på eksamen vår 2011) Sensorveiledning Oppgveverksted 4, høst 203 (bsert på eksmen vår 20) Ved sensuren tillegges oppgve vekt 0,2, oppgve 2 vekt 0,4, og oppgve 3 vekt 0,4. For å bestå eksmen, må besvrelsen i hvert fll: gi minst

Detaljer

TFE4101 Krets- og Digitalteknikk Vår 2016

TFE4101 Krets- og Digitalteknikk Vår 2016 Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekomuniksjon TFE4101 Krets- og Digitlteknikk Vår 2016 Løsningsforslg Øving 4 1 Oppgve 1 R 1 = 10 R 2 = 8 V = 600 V R 3 = 40

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID:

E K S A M E N. Algoritmiske metoder I. EKSAMENSDATO: 13. desember HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: Høgskolen i Gjøvik Avdeling for Teknologi E K S A M E N FAGNAVN: FAGNUMMER: Algoritmiske metoder I L 189 A EKSAMENSDATO: 13. desember 1999 KLASSE: 98HINDA / 98HINDB / 98HINEA ( 2DA / 2DB / 2EA ) TID: 09.00-14.00

Detaljer

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg!

Kom i gang med Perspektiver Smartbok! Vi veileder deg steg for steg! Kom i gng med Perspektiver Smrtbok! Vi veileder deg steg for steg! MARKÉR, LYTT og NOTÉR Smrtbok hr en rekke funksjoner for god studieteknikk. Du kn blnt nnet mrkere nøkkelord og lge notter mens du lytter

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Norsk ysikklærerforening Norsk ysisk Selskps fggruppe for underisning YSIKK-KONKURRANSE 00 003 Andre runde: 6/ 003 Skri øerst: Nn, fødselsdto, hjemmedresse og eentuell e-postdresse, skolens nn og dresse.

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s)

Integral Kokeboken. sin(πx 2 ) sinh 2 (πx) dx = 2. 1 log x. + log(log x) dx = x log(log x) + C. cos(x 2 ) + sin(x 2 ) dx = 2π. x s 1 e x 1 dx = Γ(s) Integrl Kokeboken 4 3 4 6 8 log sinπ sinh π 4 + loglog loglog + C cos + sin π s e Γs n n s Γsζs π + sin +cos log + cos i Del I. Brøk................................... Trigonometriske funksjoner.....................

Detaljer

Årsprøve trinn Del 1. Navn: Informasjon for del 1

Årsprøve trinn Del 1. Navn: Informasjon for del 1 Årsprøve 2015 9. trinn Del 1 Nvn: Informsjon for del 1 Prøvetid: Hjelpemidler på del 1: Andre opplysninger: Fremgngsmåte og forklring: 5 timer totlt. Del 1 og Del 2 skl deles ut smtidig Del 1 skl du levere

Detaljer