FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

Størrelse: px
Begynne med side:

Download "FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG"

Transkript

1 UNIEITETET I GDE Gimsta E K M E N O P P G E : FG: M-9 Matematikk LÆE: Pe Henik Hogsta Klasse: Dato: 8.5. Eksamensti fa-til: 9.. Eksamensoppgaen bestå a følgene ntall sie: 5 inkl. fosie elegg ntall oppgae: ntall elegg: Tillatte hjelpemile e: Kalklato Hogsta: Fomle M-9 Hagan: Fomle og tabelle Glenals fomelsamling Ikke tillatt å skie i fomelsamlingene KNDIDTEN MÅ EL KONTOLLEE T OPPGEETTET E FULLTENDIG

2 M-9 Oinæ Eksamen å Oppg n Poeng a b c a b c a b c e f g h m Poengene ise ekt-foelingen fo e enkelte el-spøsmålene. e kaaktesetting ektlegges selfølgelig i tillegg en total-eing bl.a. en eing a i hilken ga kaniaten ha knnskape innenfo e like omåene gitt i oppgae-settet. LYKKE TIL!

3 . a i ha gitt følgene ke i ommet: [ t t t] [ ] t t Beegn lengen a ken. b Beegn obbeltintegalet e e ln e å btte om integasjonsekkefølgen. is e hjelp a en fig hilket omåe et integees oe. c La æe tapeset i -planet me hjøne og. Beegn obbeltintegalet e hjelp a følgene sbstitsjon: is e hjelp a en fig hilket omåe et integees oe i -planet og hilket tilhøene omåe G et integees oe i -planet.. Fig. ise en moell a en iettshall i et -kooinatsstem. I moellen e sieeggen en el a slineflaten glet e en elen a -planet som ligge innenfo slineflaten og taket e en elen a flaten som ligge innenfo slineflaten. a Beegn olmet a moellen. b Beegn aealet a taket a moellen. c Beegn aealet a sieeggen i moellen. Fig.

4 . La æe legemet begenset a følgene to flate: Ken e skjæingen mellom isse to flatene. Denne ken e oientet i etning mot klokka sett oenfa neoe langs -aksen. La æe oeflaten a legemet. La æe oeflaten a en plane flaten på toppen a legemet. La æe oeflaten a en kmme sieflaten a legemet. i ha i tillegg gitt følgene ektofelt: F [ ] a Tegn en skisse a legemet og bestem olmet a ette legemet. b Bestem iegens og cl til et gitte ektofeltet. c Bestem keintegalet F ten bk a tokes teoem. Bestem keintegalet i c e hjelp a tokes teoem. e Bentt Gass iegensteoem F n F til å bestemme flksen a et gitte ektofeltet t a oeflaten til legemet. f Bestem flksen a et gitte ektofeltet t a en kmme sieflaten til legemet. Det finnes like altenatie fome fo Gass iegensteoem. Ett a isse altenatiene e at F-ekto bttes t me en skala fnksjon ϕ og at skalamltiplikasjon bttes t me anlig mltiplikasjon: ϕn ϕ I motsetning til Gass oiginale iegensteoem så e enne altenatie fomen en ektoligning begge sie a likhetstegnet e en ekto. i skal bentte enne altenatie fomen til å ise chimees lo. chimees lo sie følgene: Nå et legeme senkes ne i en æske il oppiften på legemet kaften fa æsken på legemet æe lik tngen a fotengt æskemenge.

5 La oss tenke oss et ka me æske eks. ann. i plassee en -akse etikalt oppoe me oigo i bnnen a kaet. La p æe tkket på toppen a æsken s p e lik lfttkket oe æsken og la æe posisjonen høen til toppen a æsken s høen opp til æskeoeflaten. Tkket p i en høe i æsken e a gitt e: p p ρ g ho ρ e tettheten a æsken ρ betaktes som konstant i hele æsken og g e tngeakseleasjonen. g Bestem gaienten til en skalae fnksjonen p. La nå tkket p kaften p aeal æe tkket i høen på et legeme nesenket i en æske. Kaften på et infinitesimalt flateelement a ette nesenkee legemet il nå æe gitt e: p n ho n-ekto e enhetsnomalekto t a a legemet mins-tegnet skles at kaften fa æsken ike nomalt innoe mot legemet. Oppiften på legement netto sm a kaften fa æsken på legemet il nå æe lik integalet a ette sistnente ttkket oe hele legemets oeflate. h Bk en nente altenatie fomen a Gass iegensteoem til å ise at oppiften e lik tngen a fotengt æskemenge og at enne nettokaften e ettet etikalt oppoe.

6 Løsning:. a Ken i ommet: [ t t t] [ ] t t Lengen a ken : t t t [ t t t] ' t [ tt] ' t t t t t 9 9 t 9 t 9 9 L s s t t t t t t ' t t [ t] t t b e ln e ln ln ln e ln e e e e [ e ] [ ] [ ] [ ] ln e e e ln ln ln ln e e ln ln e e ln ln e ln e ln ln e ln ln ln ln e ln e ln e ln e e ln e e e e e ln e e ln e

7 c Integasjonsomåene og G: Bestemmelse a Jacobi-eteminant i fobinelse me aiabelskifte: J J J Integalbestemmelse: 6 G G J

8 . a olm: [ ] 8 Elle: [ ] Integalleet me integan bli nll pga smmetien til og omået. b eal a taket: i bestemme føst en skalafnksjon f som ha taket a iettshallmoellen som en niåflate. e å sette f -- så il taket a iettshallmoellen æe gitt e niåflaten f. Gaienten til f il a æe en nomalekto til taket a iettshallmoellen. [ ] f f f f [ ] [ ] p f f

9 c ealet a sieeggen: i paameteisee eggen i iettshallmoellen. [ ] [ ] [ ] [ ] [ ] [ ] k j i G G Elle: i kan obbeltintegee et infinitesimale flateelementet oe hele sieeggen i iettshallmoellen. [ ] G Elle: Bette t sieeggen. Elle pga smmeti se fig oenfo:

10 . a olmet a legemet: [ ] [ ] 8 b Diegens: [ ] F if l: [ ] [ ] [ ] k j i F clf Pojeksjonen ne i -planet a ektofeltet fo.

11 c Keintegal ten tokes teoem: t t F t t [ t t] [ tt] t8 [ ] [ tt] t t 8t t 8t t t t [ t 8 t t] t t t t 8t t t 8t t t t t Keintegal me tokes teoem: F F s F Ts s F n [ ] [ ] e Flksen a ektofeltet t a oeflaten a legemet : F n F 8 6 f Flksen t a toppflaten a legemet: s F n [ ] [ ] s [ ] [ ] [ 8] [ ] s Flksen a ektofeltet t a sieflaten a legemet: s s s s F n F n s F n F n s s F n F n 6 6

12 g Gaienten til tkket p: p p ρ p g p p ρg p ρg p ρg [ ρg ] ρg[ ] ρgk h Oppiften B: i la n -ekto æe enhetsnomalekto inn mot en infinitesimal flate a legemet. Kaften fa æsken inn mot enne infinitesimale flaten il a ha støelse p og ha etning langs n -ekto. La n-ekto æe enhetsnomalektoen på en infinitesimale flaten me etning nomalt t fa flaten. n-ekto e a en ektoen som inngå i Gass teoem båe oiginal og altenati fom. Oppiften B-ekto il nå æe lik ektosmmen a alle slike infinitesimale kefte me støelse p og etning inn mot legemet s obbeltintegalet oe hele oeflaten a legemet a p mltipliset me n -ekto. Til beegning a ette obbeltintegalet bentte i nå en nente altenatie fomen a Gass teoem. B pn p n p pn ρgk ρgk ρgk ρgk ρgk mgk

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I GDER Gimstad E K M E N O P P G V E : G: M-9 Matematikk LÆRER: Pe Henik Hogstad Klasse: Dato: 8..8 Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende ntall side: 6 inkl. foside vedlegg

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

Fysikkolympiaden Norsk finale 2010

Fysikkolympiaden Norsk finale 2010 Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:

Detaljer

Kap 12 Fluid mekanikk

Kap 12 Fluid mekanikk Ka Fluid mekanikk Hdostatikk. Atmosfæetkket e å k. a Ho ø annsøle sae til dette tkket? b Ho ø kikksølsøle sae til dette tkket? Tetteten til ann o kikksøl e enoldis. k/m o.6 k/m.. Bestem tkket å metes dbde

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.

Detaljer

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)

Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater) Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :

Detaljer

Løsning, eksamen 3FY juni 1999

Løsning, eksamen 3FY juni 1999 Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1

Detaljer

Fysikkolympiaden Norsk finale 2016

Fysikkolympiaden Norsk finale 2016 Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel

Detaljer

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland

FAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

Oppgave 1 Svar KORT på disse oppgavene:

Oppgave 1 Svar KORT på disse oppgavene: Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1

Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1 Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d

Detaljer

Midtsemesterprøve fredag 10. mars kl

Midtsemesterprøve fredag 10. mars kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsad E S A M E N S O P P G A V E : AG: MA-9 Maemaikk LÆE: Pe Henik Hogsad lasse: Dao: 6.5. Eksamensid a-il: 9.. Eksamensoppgaven beså av ølgende Anall side: 5 inkl. oside vedlegg

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS5 Fikk/Kjei LÆRER: Fikk : Pe Henik Hogad Kjei : Gehe Lehann Klae: Dao:.5. Ekaenid, fa-il: 9.. Ekaenoppgaen beå a følgende Anall ide: inkl.

Detaljer

15.1 Linje integraler

15.1 Linje integraler Kapittel 5 Integasjon i etofelt I dette apitlet sal i tide teoien om integasjon til e og oeflate i ommet. Denne teoien gi stee matematise etø fo itensap og ingeniøe. Linjeintegale bli bt til å finne abeid

Detaljer

Kap. 4+5 Rotasjon av stive legemer

Kap. 4+5 Rotasjon av stive legemer Kap. 4+5 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010

FYSIKK-OLYMPIADEN Andre runde: 4/2 2010 Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell

Detaljer

Forelesning 9/ ved Karsten Trulsen

Forelesning 9/ ved Karsten Trulsen Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å

Detaljer

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)

( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y) TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.

Detaljer

ρ = = = m / s m / s Ok! 0.1

ρ = = = m / s m / s Ok! 0.1 Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6

Detaljer

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002

Matematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn

Detaljer

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.

Klikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal. Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I AGDER Gid E K S A M E N S O P P G A V E : AG: YS ikk LÆRER: ikk : Pe Henik Hogd Kle: Do: 5.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 5 inkl. foide Anll oppge: Anll edlegg: ille

Detaljer

n_angle_min.htm

n_angle_min.htm Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsta E K S A M E N S O P P G A V E : FAG: MA-9 Matmatikk LÆE: P Hnik Hogsta Klass: Dato:..7 Eksamnsti a-til: 9.. Eksamnsoppgavn bstå av ølgn Antall si: 6 inkl. osi vlgg Antall oppgav:

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fysi - Løsningsfoslag Oppgae 1 a) B b) B Vi se på eftene på lossen so ie i y-etning (noalt på såplanet). y N G y N G N G cos y N g cos Vi se på eftene på lossen so ie i -etning (langs planet). G R Gsin

Detaljer

Eksamen 3FY mai Løsningsforslag

Eksamen 3FY mai Løsningsforslag Eksaen 3FY ai. Løsningsfoslag Oppgae a Fekensen og enegien til fotone ed bølgelengden λ,43 e in f aks c 3 λ in,,3,43 Hz E aks hf aks hc λ in 6 4 4 34,63 s 3,,5,43,9 b De sale linjene i øntgenspekteet e

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNISITTT I AGD Gid K S A M N S O P P G A : FAG: FYS Fyikk/Kjei LÆ: Fyikk : Pe Henik Hogd Gehe Lehnn Kle: Do:.. kenid, f-il: 9.. kenoppgen eå følgende Anll ide: 6 inkl. foide / edlegg Anll oppge: 5 Anll

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl

Midtsemesterprøve onsdag 7. mars 2007 kl Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fysikk - Løsningsfoslag Ogae a) B Siden t, il enheten fo fluks kunne skies so t enheten til esen ultiliset ed enheten til tida, altså Vs. b) D Minial lengde a klasseoet: 0,990 0 9,90 Maksial lengde a klasseoet:,04

Detaljer

EKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl

EKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl Sie 1av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Institutt fo fysikk, Realfagbygget Pofesso Cathaina Davies Tel: 73593688 Bokmål EKSAMEN I EMNE

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.

Detaljer

Kap 21 Elektrisk ladning / Elektrisk felt

Kap 21 Elektrisk ladning / Elektrisk felt Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt

Detaljer

Høst 95 Ordinær eksamen

Høst 95 Ordinær eksamen Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

KONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid:

KONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid: Sie 1 av 9 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Navn: Ragnval Mathiesen Tlf. 93584 KONTINUASJONSEKSAMEN I FAG SIF48 FYSIKK MED ELEKTROMAGNETISME

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNVEEE GE Gid E E N O G V E : FG: FY Fikk LÆE: Fikk : e enik ogd le: o: 9.5.7 Ekenid, f-il: 9.. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: nll edlegg: ille hjelpeidle e: lkulo Foelling:

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fsikk - Løsningsfoslag Oppgae a) D Det elektiske feltet gå adielt ut fa en positit ladd patikkel og adielt inn ot en negatit ladd patikkel. Den elektiske feltstken e gitt ed Q E ke, de Q e ladningen og

Detaljer

Eksamen TFY 4240: Elektromagnetisk teori

Eksamen TFY 4240: Elektromagnetisk teori NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

KONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll

Detaljer

FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland

FAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: F Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Han Gelland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide

Detaljer

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y

b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,

Detaljer

Fysikkonkurranse 1. runde november 2001

Fysikkonkurranse 1. runde november 2001 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for underisning Fysikkonkurranse. runde 5. - 6. noember 00 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 00 minutter

Detaljer

Eksamensoppgave i TEP4105 FLUIDMEKANIKK

Eksamensoppgave i TEP4105 FLUIDMEKANIKK Institutt fo enegi- og posessteknikk Eksamensoppgave i TEP45 FLUIDMEKANIKK Faglig kontakt unde eksamen: Ive Bevik Tlf.: 7359 3555 Eksamensdato: 7. august 23 Eksamenstid : 9. 3. Hjelpemiddelkode/Tillatte

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Vektorer.

Forkunnskaper i matematikk for fysikkstudenter. Vektorer. I dette lille notatet skal jeg gi en kortfattet oersikt oer grnnleggende ektorregning Me a dette er forhåpentlig kjent fra før, men det skader sikkert ikke med en kort repetisjon Definisjoner Mange a de

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad

FAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Fysikk-OL Norsk finale 2005

Fysikk-OL Norsk finale 2005 Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på

Detaljer

1 Virtuelt arbeid for stive legemer

1 Virtuelt arbeid for stive legemer 1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk

Detaljer

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll

Detaljer

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE

Laboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle

Detaljer

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS5 Fikk LÆE: Pe Henik Hoad Klae: Dao:.9.9 Ekaenid, fa-il: 9. 4. Ekaenoppaven beå av følende nall ide: 4 inkl. foide nall oppave: nall vedle: Tillae

Detaljer

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi

Løsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius

Detaljer

Løsningsforslag til eksempeloppgave 1 i fysikk 2, 2008

Løsningsforslag til eksempeloppgave 1 i fysikk 2, 2008 Fysikk Eksempeloppgae Løsningsfoslag til eksempeloppgae 1 i fysikk, 008 Del 1 Oppgae 1 Riktige sa på flealgsoppgaene a j e: a) B b) D c) D d) D e) B f) D g) B h) B i) C j) B Sa på kotsasoppgaene k n: k)

Detaljer

Fysikk 2 Eksamen høsten Løsningsforslag

Fysikk 2 Eksamen høsten Løsningsforslag Fysikk - Løsninsfosla Oae a) C De elektiske keftene e tiltekkende fodi atiklene ha ulike ladnine. q q F ke k q e b) B Abeidet e lik intealet oe kaften som må bukes fo å flytte leemet mellom ensene o. Kaften

Detaljer

Løsning til utvalgte oppgaver fra kapittel 14 (12).

Løsning til utvalgte oppgaver fra kapittel 14 (12). Løsning til talgte oppgaer fra kapittel () For å gi et inntrkk a integrasjonsrekkefølgens betdning er oppgaene fra asnitt løst på begge måtene Vi får forskjellige ttrkk ahengig a integrasjonsrekkefølgen

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERITETET I AGDER Giad E K A M E N O P P G A V E : FAG: FY Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 5 inkl. foide Anall oppgae: 4

Detaljer

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.

Magnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall. FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske

Detaljer

Fysikk 2 Eksamen våren Løsningsforslag

Fysikk 2 Eksamen våren Løsningsforslag Fysikk - Løsningsfoslag Ogae a) B Q Den elektiske feltstyken fa en unktladning e gitt ed E ke. Feltet E gå adielt ut fa en ositi ladning. Siden ladning og e like langt fa unktet P, il E æe like sto fa

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen UNVERTETET AGDER Giad E K A M E N O P P G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : Pe Henik Hogad Kjei : Tuid Knuen Klae: Dao:..3 Ekaenid, a-il: 9. 4. Ekaenoppgaen beå a ølgende Anall ide: 5 inkl. oide

Detaljer

Eksamen 3FY mai Løsningsforslag

Eksamen 3FY mai Løsningsforslag Eksamen 3FY mai 001. Løsningsfoslag Oppgae 1 a) A U E = finne i spenningen U. d U = E d 4 6 V/m 3 m = 14 kv b) I en blekkskie bli en dåpe påiket a tyngdekaften mg nedoe og en elektisk kaft qe oppoe. (Den

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004

Fugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004 Fugletetaeeet Øistein Gjøvik Høgskolen i Sø-Tønelag, 004 Innlening Nå skal vi lage et omlegeme u kanskje ikke ha sett fø. Det e ikke noe mystisk ve selve figuen, men en høe ikke til lant e mest ukte i

Detaljer

Eksamen R1, Våren 2015

Eksamen R1, Våren 2015 Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h

Detaljer

Betinget bevegelse

Betinget bevegelse Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett

Detaljer

Eksamen 16. des Løsningsforslag

Eksamen 16. des Løsningsforslag Institutt fo fysikk TFY44/FY Mekanisk fysikk Eksamen 6. des.. Løsningsfoslag Dette løsningsfoslaget e spesielt fyldig med flee altenative løsninge, som ukt av flee studente i eksamensesvaelsen. Det e også

Detaljer

Avdeling for ingeniørutdanning

Avdeling for ingeniørutdanning Adeling for ingeniørutdanning Emne: Elektro & Reguleringsteknikk Gruppe(r): 2M Emnekode: LO521 M Dato: 16.12.2003 Faglig eiledere: Bjørn Engebretsen Eksamenstid: 09.00-12.00 Eksamensoppgaen består a: Tillatte

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall

Detaljer

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.

Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt. Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:

Detaljer

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /

Oppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' / Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen

Detaljer

Eksamen R2, Høst 2012

Eksamen R2, Høst 2012 Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):

Detaljer

R1 eksamen høsten 2015

R1 eksamen høsten 2015 R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)

Detaljer

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål

EKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL

Detaljer

Beregning av massesenter.

Beregning av massesenter. Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Beregning av assesenter Definisjoner i ri C Figuren til venstre viser et lite utsnitt av en sk av så partikler, er i er assen til en partikkel

Detaljer

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.

EKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator. Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi

Detaljer

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning

Obj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning Obj104 RENDALEN KOMMUNE Fagetun skole Åsplan i matematikk fo 6. tinn 2014/15 Ukentlige lekse med oppgave knyttet til de fie egneatene, tid, omgjøing mellom ulike enhete, bøk, algeba poblemløsning TID TEMA

Detaljer