FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
|
|
- Turid Enger
- 8 år siden
- Visninger:
Transkript
1 UNIEITETET I GDE Gimsta E K M E N O P P G E : FG: M-9 Matematikk LÆE: Pe Henik Hogsta Klasse: Dato: 8.5. Eksamensti fa-til: 9.. Eksamensoppgaen bestå a følgene ntall sie: 5 inkl. fosie elegg ntall oppgae: ntall elegg: Tillatte hjelpemile e: Kalklato Hogsta: Fomle M-9 Hagan: Fomle og tabelle Glenals fomelsamling Ikke tillatt å skie i fomelsamlingene KNDIDTEN MÅ EL KONTOLLEE T OPPGEETTET E FULLTENDIG
2 M-9 Oinæ Eksamen å Oppg n Poeng a b c a b c a b c e f g h m Poengene ise ekt-foelingen fo e enkelte el-spøsmålene. e kaaktesetting ektlegges selfølgelig i tillegg en total-eing bl.a. en eing a i hilken ga kaniaten ha knnskape innenfo e like omåene gitt i oppgae-settet. LYKKE TIL!
3 . a i ha gitt følgene ke i ommet: [ t t t] [ ] t t Beegn lengen a ken. b Beegn obbeltintegalet e e ln e å btte om integasjonsekkefølgen. is e hjelp a en fig hilket omåe et integees oe. c La æe tapeset i -planet me hjøne og. Beegn obbeltintegalet e hjelp a følgene sbstitsjon: is e hjelp a en fig hilket omåe et integees oe i -planet og hilket tilhøene omåe G et integees oe i -planet.. Fig. ise en moell a en iettshall i et -kooinatsstem. I moellen e sieeggen en el a slineflaten glet e en elen a -planet som ligge innenfo slineflaten og taket e en elen a flaten som ligge innenfo slineflaten. a Beegn olmet a moellen. b Beegn aealet a taket a moellen. c Beegn aealet a sieeggen i moellen. Fig.
4 . La æe legemet begenset a følgene to flate: Ken e skjæingen mellom isse to flatene. Denne ken e oientet i etning mot klokka sett oenfa neoe langs -aksen. La æe oeflaten a legemet. La æe oeflaten a en plane flaten på toppen a legemet. La æe oeflaten a en kmme sieflaten a legemet. i ha i tillegg gitt følgene ektofelt: F [ ] a Tegn en skisse a legemet og bestem olmet a ette legemet. b Bestem iegens og cl til et gitte ektofeltet. c Bestem keintegalet F ten bk a tokes teoem. Bestem keintegalet i c e hjelp a tokes teoem. e Bentt Gass iegensteoem F n F til å bestemme flksen a et gitte ektofeltet t a oeflaten til legemet. f Bestem flksen a et gitte ektofeltet t a en kmme sieflaten til legemet. Det finnes like altenatie fome fo Gass iegensteoem. Ett a isse altenatiene e at F-ekto bttes t me en skala fnksjon ϕ og at skalamltiplikasjon bttes t me anlig mltiplikasjon: ϕn ϕ I motsetning til Gass oiginale iegensteoem så e enne altenatie fomen en ektoligning begge sie a likhetstegnet e en ekto. i skal bentte enne altenatie fomen til å ise chimees lo. chimees lo sie følgene: Nå et legeme senkes ne i en æske il oppiften på legemet kaften fa æsken på legemet æe lik tngen a fotengt æskemenge.
5 La oss tenke oss et ka me æske eks. ann. i plassee en -akse etikalt oppoe me oigo i bnnen a kaet. La p æe tkket på toppen a æsken s p e lik lfttkket oe æsken og la æe posisjonen høen til toppen a æsken s høen opp til æskeoeflaten. Tkket p i en høe i æsken e a gitt e: p p ρ g ho ρ e tettheten a æsken ρ betaktes som konstant i hele æsken og g e tngeakseleasjonen. g Bestem gaienten til en skalae fnksjonen p. La nå tkket p kaften p aeal æe tkket i høen på et legeme nesenket i en æske. Kaften på et infinitesimalt flateelement a ette nesenkee legemet il nå æe gitt e: p n ho n-ekto e enhetsnomalekto t a a legemet mins-tegnet skles at kaften fa æsken ike nomalt innoe mot legemet. Oppiften på legement netto sm a kaften fa æsken på legemet il nå æe lik integalet a ette sistnente ttkket oe hele legemets oeflate. h Bk en nente altenatie fomen a Gass iegensteoem til å ise at oppiften e lik tngen a fotengt æskemenge og at enne nettokaften e ettet etikalt oppoe.
6 Løsning:. a Ken i ommet: [ t t t] [ ] t t Lengen a ken : t t t [ t t t] ' t [ tt] ' t t t t t 9 9 t 9 t 9 9 L s s t t t t t t ' t t [ t] t t b e ln e ln ln ln e ln e e e e [ e ] [ ] [ ] [ ] ln e e e ln ln ln ln e e ln ln e e ln ln e ln e ln ln e ln ln ln ln e ln e ln e ln e e ln e e e e e ln e e ln e
7 c Integasjonsomåene og G: Bestemmelse a Jacobi-eteminant i fobinelse me aiabelskifte: J J J Integalbestemmelse: 6 G G J
8 . a olm: [ ] 8 Elle: [ ] Integalleet me integan bli nll pga smmetien til og omået. b eal a taket: i bestemme føst en skalafnksjon f som ha taket a iettshallmoellen som en niåflate. e å sette f -- så il taket a iettshallmoellen æe gitt e niåflaten f. Gaienten til f il a æe en nomalekto til taket a iettshallmoellen. [ ] f f f f [ ] [ ] p f f
9 c ealet a sieeggen: i paameteisee eggen i iettshallmoellen. [ ] [ ] [ ] [ ] [ ] [ ] k j i G G Elle: i kan obbeltintegee et infinitesimale flateelementet oe hele sieeggen i iettshallmoellen. [ ] G Elle: Bette t sieeggen. Elle pga smmeti se fig oenfo:
10 . a olmet a legemet: [ ] [ ] 8 b Diegens: [ ] F if l: [ ] [ ] [ ] k j i F clf Pojeksjonen ne i -planet a ektofeltet fo.
11 c Keintegal ten tokes teoem: t t F t t [ t t] [ tt] t8 [ ] [ tt] t t 8t t 8t t t t [ t 8 t t] t t t t 8t t t 8t t t t t Keintegal me tokes teoem: F F s F Ts s F n [ ] [ ] e Flksen a ektofeltet t a oeflaten a legemet : F n F 8 6 f Flksen t a toppflaten a legemet: s F n [ ] [ ] s [ ] [ ] [ 8] [ ] s Flksen a ektofeltet t a sieflaten a legemet: s s s s F n F n s F n F n s s F n F n 6 6
12 g Gaienten til tkket p: p p ρ p g p p ρg p ρg p ρg [ ρg ] ρg[ ] ρgk h Oppiften B: i la n -ekto æe enhetsnomalekto inn mot en infinitesimal flate a legemet. Kaften fa æsken inn mot enne infinitesimale flaten il a ha støelse p og ha etning langs n -ekto. La n-ekto æe enhetsnomalektoen på en infinitesimale flaten me etning nomalt t fa flaten. n-ekto e a en ektoen som inngå i Gass teoem båe oiginal og altenati fom. Oppiften B-ekto il nå æe lik ektosmmen a alle slike infinitesimale kefte me støelse p og etning inn mot legemet s obbeltintegalet oe hele oeflaten a legemet a p mltipliset me n -ekto. Til beegning a ette obbeltintegalet bentte i nå en nente altenatie fomen a Gass teoem. B pn p n p pn ρgk ρgk ρgk ρgk ρgk mgk
FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I GDER Gimstad E K M E N O P P G V E : G: M-9 Matematikk LÆRER: Pe Henik Hogstad Klasse: Dato: 8..8 Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende ntall side: 6 inkl. foside vedlegg
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae
DetaljerFysikkolympiaden Norsk finale 2010
Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:
DetaljerKap 12 Fluid mekanikk
Ka Fluid mekanikk Hdostatikk. Atmosfæetkket e å k. a Ho ø annsøle sae til dette tkket? b Ho ø kikksølsøle sae til dette tkket? Tetteten til ann o kikksøl e enoldis. k/m o.6 k/m.. Bestem tkket å metes dbde
Detaljer14.1 Doble og itererte integraler over rektangler
Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektoniske systeme ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME August 2017 Alle anlige deloppgae telle 4 poeng.
DetaljerMandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :
DetaljerLøsning, eksamen 3FY juni 1999
Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuitenskapelige uniesitet Institutt fo elektonikk og telekommunikasjon ide 1 a 7 Faglæe: Johannes kaa KONTINUAJONEKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Tosdag 15. august 2013 Oppgae 1
DetaljerFysikkolympiaden Norsk finale 2016
Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel
DetaljerFAG: FYS118 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS8 Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide nall
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
DetaljerOppgave 1 Svar KORT på disse oppgavene:
Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle
DetaljerLøsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
DetaljerMidtsemesterprøve fredag 10. mars kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 006 Midtsemestepøve fedag 10. mas kl 0830 1130. Svatabellen stå på et eget ak. Sett tydelige kyss. Husk å skive på
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I AGDE Gimsad E S A M E N S O P P G A V E : AG: MA-9 Maemaikk LÆE: Pe Henik Hogsad lasse: Dao: 6.5. Eksamensid a-il: 9.. Eksamensoppgaven beså av ølgende Anall side: 5 inkl. oside vedlegg
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: FYS5 Fikk/Kjei LÆRER: Fikk : Pe Henik Hogad Kjei : Gehe Lehann Klae: Dao:.5. Ekaenid, fa-il: 9.. Ekaenoppgaen beå a følgende Anall ide: inkl.
Detaljer15.1 Linje integraler
Kapittel 5 Integasjon i etofelt I dette apitlet sal i tide teoien om integasjon til e og oeflate i ommet. Denne teoien gi stee matematise etø fo itensap og ingeniøe. Linjeintegale bli bt til å finne abeid
DetaljerKap. 4+5 Rotasjon av stive legemer
Kap. 4+5 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
DetaljerFYSIKK-OLYMPIADEN Andre runde: 4/2 2010
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell
DetaljerForelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
Detaljer( 6z + 3z 2 ) dz = = 4. (xi + zj) 3 i + 2 ) 3 x x 4 9 y. 3 (6 2y) (6 2y)2 4 y(6 2y)
TMA415 Matematikk 2 Vå 215 Noges teknisk natuvitenskapelige univesitet Institutt fo matematiske fag Løsningsfoslag Øving 11 Alle oppgavenumme efeee til 8. utgave av Adams & Essex Calculus: A Complete Couse.
Detaljerρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
DetaljerMatematikk 3MX AA6524 / AA6526 Elever / privatister Oktober 2002
E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 / AA6526 Eleve / pivatiste Bokmål Eksempeloppgave ette læeplan godkjent juli 2000 Videegående kus II Studieetning fo allmenne, økonomiske og administative
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
DetaljerKlikk (ctrl + klikk for nytt vindu) for å starte simuleringen i SimReal.
Kp 9 Rotjon 9. En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik. -. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til D. Fjen
DetaljerFAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSIEE I AGDER Gid E K S A M E N S O P P G A V E : AG: YS ikk LÆRER: ikk : Pe Henik Hogd Kle: Do: 5.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 5 inkl. foide Anll oppge: Anll edlegg: ille
Detaljern_angle_min.htm
Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I AGDE Gimsta E K S A M E N S O P P G A V E : FAG: MA-9 Matmatikk LÆE: P Hnik Hogsta Klass: Dato:..7 Eksamnsti a-til: 9.. Eksamnsoppgavn bstå av ølgn Antall si: 6 inkl. osi vlgg Antall oppgav:
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysi - Løsningsfoslag Oppgae 1 a) B b) B Vi se på eftene på lossen so ie i y-etning (noalt på såplanet). y N G y N G N G cos y N g cos Vi se på eftene på lossen so ie i -etning (langs planet). G R Gsin
DetaljerEksamen 3FY mai Løsningsforslag
Eksaen 3FY ai. Løsningsfoslag Oppgae a Fekensen og enegien til fotone ed bølgelengden λ,43 e in f aks c 3 λ in,,3,43 Hz E aks hf aks hc λ in 6 4 4 34,63 s 3,,5,43,9 b De sale linjene i øntgenspekteet e
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann
UNISITTT I AGD Gid K S A M N S O P P G A : FAG: FYS Fyikk/Kjei LÆ: Fyikk : Pe Henik Hogd Gehe Lehnn Kle: Do:.. kenid, f-il: 9.. kenoppgen eå følgende Anll ide: 6 inkl. foide / edlegg Anll oppge: 5 Anll
DetaljerMidtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Ogae a) B Siden t, il enheten fo fluks kunne skies so t enheten til esen ultiliset ed enheten til tida, altså Vs. b) D Minial lengde a klasseoet: 0,990 0 9,90 Maksial lengde a klasseoet:,04
DetaljerEKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 11. desember 2002 kl
Sie 1av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Institutt fo fysikk, Realfagbygget Pofesso Cathaina Davies Tel: 73593688 Bokmål EKSAMEN I EMNE
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.
DetaljerKap 21 Elektrisk ladning / Elektrisk felt
Kp lektisk lning / lektisk felt. To like elektiske lninge e plsset i vstn.. Kften so hve v lningene vike på en ne e e.5. Beste støelsen på hve v lningene. b Se so i, en enne gng e en ene lningen obbelt
DetaljerHøst 95 Ordinær eksamen
Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften
DetaljerLøsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6
Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet
DetaljerKONTINUASJONSEKSAMEN I FAG SIF4028 FYSIKK MED ELEKTROMAGNETISME Mandag 7. august 2000 Tid:
Sie 1 av 9 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt une eksamen: Navn: Ragnval Mathiesen Tlf. 93584 KONTINUASJONSEKSAMEN I FAG SIF48 FYSIKK MED ELEKTROMAGNETISME
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVEEE GE Gid E E N O G V E : FG: FY Fikk LÆE: Fikk : e enik ogd le: o: 9.5.7 Ekenid, f-il: 9.. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: nll edlegg: ille hjelpeidle e: lkulo Foelling:
DetaljerEKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00
EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:
DetaljerFAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fsikk - Løsningsfoslag Oppgae a) D Det elektiske feltet gå adielt ut fa en positit ladd patikkel og adielt inn ot en negatit ladd patikkel. Den elektiske feltstken e gitt ed Q E ke, de Q e ladningen og
DetaljerEksamen TFY 4240: Elektromagnetisk teori
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt unde eksamen: Ola Hundei, tlf. 93411 (mobil: 95143671) Eksamen TFY 4240: Elektomagnetisk teoi 8 desembe 2007 kl. 09.00-13.00
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Noges teknisk natuvitenskapelige univesitet Institutt fo elektonikk og telekommunikasjon ide 1 av 8 Bokmål/Nynosk Faglig/fagleg kontakt unde eksamen: Jon Olav Gepstad 41044764) Hjelpemidle: C - pesifisete
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll
DetaljerFAG: F121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Thomas Gjesteland Hans Grelland
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: F Fikk LÆE: Fikk : Pe Henik Hogad Thoa Gjeeland Han Gelland Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende nall ide: 6 inkl. foide
Detaljerb) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
DetaljerFysikkonkurranse 1. runde november 2001
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for underisning Fysikkonkurranse. runde 5. - 6. noember 00 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 00 minutter
DetaljerEksamensoppgave i TEP4105 FLUIDMEKANIKK
Institutt fo enegi- og posessteknikk Eksamensoppgave i TEP45 FLUIDMEKANIKK Faglig kontakt unde eksamen: Ive Bevik Tlf.: 7359 3555 Eksamensdato: 7. august 23 Eksamenstid : 9. 3. Hjelpemiddelkode/Tillatte
DetaljerForkunnskaper i matematikk for fysikkstudenter. Vektorer.
I dette lille notatet skal jeg gi en kortfattet oersikt oer grnnleggende ektorregning Me a dette er forhåpentlig kjent fra før, men det skader sikkert ikke med en kort repetisjon Definisjoner Mange a de
DetaljerBASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.
BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme
DetaljerFAG: Fysikk fellesdel LÆRER: Fysikk : Per Henrik Hogstad
UNIVERSITETET I AGDER Giad E K S A M E N S O P P G A V E : FAG: Fikk felledel LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.8 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: Anall oppgae: Anall
DetaljerE K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside
DetaljerFysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
Detaljer1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY7 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll
DetaljerFAG: FYS114 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann
UNIVEITETET I AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenoppgen beå følgende Anll ide: 6 inkl. foide og edlegg Anll
DetaljerLaboratorieøvelse i MNFFY1303-Elektromagnetisme Institutt for Fysikk, NTNU MAGNETISK HYSTERESE
Laboatoieøvelse i MNFFY33-Elektomagnetisme Institutt fo Fysikk, NTNU Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske felte og målinge av slike. Det innebæe måling av magnetfelt fa enkle
DetaljerFAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I GDE Giad E K S M E N S O P P G V E : FG: FYS5 Fikk LÆE: Pe Henik Hoad Klae: Dao:.9.9 Ekaenid, fa-il: 9. 4. Ekaenoppaven beå av følende nall ide: 4 inkl. foide nall oppave: nall vedle: Tillae
DetaljerLøsningsforslag eksamen 2. august 2003 SIF 4005 Fysikk for kjemi og materialteknologi
Løsningsfslag eksamen. august SF 5 Fysikk f kjemi g mateialteknlgi Oppgave lektstatikk a) Sylineens ttale laning pe lengeenhet finnes ve å integee laningsfelingen ( ) ve aealelementet A= e sylineens aius
DetaljerLøsningsforslag til eksempeloppgave 1 i fysikk 2, 2008
Fysikk Eksempeloppgae Løsningsfoslag til eksempeloppgae 1 i fysikk, 008 Del 1 Oppgae 1 Riktige sa på flealgsoppgaene a j e: a) B b) D c) D d) D e) B f) D g) B h) B i) C j) B Sa på kotsasoppgaene k n: k)
DetaljerFysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsninsfosla Oae a) C De elektiske keftene e tiltekkende fodi atiklene ha ulike ladnine. q q F ke k q e b) B Abeidet e lik intealet oe kaften som må bukes fo å flytte leemet mellom ensene o. Kaften
DetaljerLøsning til utvalgte oppgaver fra kapittel 14 (12).
Løsning til talgte oppgaer fra kapittel () For å gi et inntrkk a integrasjonsrekkefølgens betdning er oppgaene fra asnitt løst på begge måtene Vi får forskjellige ttrkk ahengig a integrasjonsrekkefølgen
DetaljerFAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVERITETET I AGDER Giad E K A M E N O P P G A V E : FAG: FY Fikk LÆRER: Fikk : Pe Henik Hogad Klae: Dao:.5.4 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 5 inkl. foide Anall oppgae: 4
DetaljerMagnetisk hysterese. 1. Beregn magnetfeltet fra en strømførende spole med kjent vindingstall.
FY33 Elektisitet og magnetisme II Institutt fo fysikk, TU FY33 Elektisitet og magnetisme II, høst 7 Laboatoieøvelse Magnetisk hysteese Hensikt Hensikten med oppgave å gjøe seg kjent med opphavet til magnetiske
DetaljerFysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Ogae a) B Q Den elektiske feltstyken fa en unktladning e gitt ed E ke. Feltet E gå adielt ut fa en ositi ladning. Siden ladning og e like langt fa unktet P, il E æe like sto fa
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte
DetaljerStivt legemers dynamikk
Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)
DetaljerFAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNVERTETET AGDER Giad E K A M E N O P P G A V E : FAG: FY3 Fikk/Kjei ÆRER: Fikk : Pe Henik Hogad Kjei : Tuid Knuen Klae: Dao:..3 Ekaenid, a-il: 9. 4. Ekaenoppgaen beå a ølgende Anall ide: 5 inkl. oide
DetaljerEksamen 3FY mai Løsningsforslag
Eksamen 3FY mai 001. Løsningsfoslag Oppgae 1 a) A U E = finne i spenningen U. d U = E d 4 6 V/m 3 m = 14 kv b) I en blekkskie bli en dåpe påiket a tyngdekaften mg nedoe og en elektisk kaft qe oppoe. (Den
DetaljerFAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013
FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng
DetaljerFugletetraederet. 1 Innledning. 2 Navnsetting. 3 Geometriske begreper. Øistein Gjøvik Høgskolen i Sør-Trøndelag, 2004
Fugletetaeeet Øistein Gjøvik Høgskolen i Sø-Tønelag, 004 Innlening Nå skal vi lage et omlegeme u kanskje ikke ha sett fø. Det e ikke noe mystisk ve selve figuen, men en høe ikke til lant e mest ukte i
DetaljerEksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
DetaljerBetinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
DetaljerEksamen 16. des Løsningsforslag
Institutt fo fysikk TFY44/FY Mekanisk fysikk Eksamen 6. des.. Løsningsfoslag Dette løsningsfoslaget e spesielt fyldig med flee altenative løsninge, som ukt av flee studente i eksamensesvaelsen. Det e også
DetaljerAvdeling for ingeniørutdanning
Adeling for ingeniørutdanning Emne: Elektro & Reguleringsteknikk Gruppe(r): 2M Emnekode: LO521 M Dato: 16.12.2003 Faglig eiledere: Bjørn Engebretsen Eksamenstid: 09.00-12.00 Eksamensoppgaen består a: Tillatte
DetaljerFAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus
UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall
DetaljerØving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
DetaljerOppgave 8.12 Gitt en potensialhvirvel med styrke K i origo. Bestem sirkulasjonen ' langs kurven C. Sirkulasjonen er definert som: ' /
Løsning øving 3 Oppgve 8. Gitt en potensilhvivel med styke i oigo. Bestem sikulsjonen ' lngs kuven C. C y (I oppgven stå det t vi skl gå med klokk, men he h vi gått mot klokk i oveensstemmelse med definisjonen
DetaljerEksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
DetaljerØving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
DetaljerDEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):
DetaljerR1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
DetaljerEKSAMEN FAG TFY4160 BØLGEFYSIKK OG FAG FY1002/MNFFY101 GENERELL FYSIKK II Lørdag 6. desember 2003 kl Bokmål
ide av 0 NORGE TEKNIK- NATURVITENKAPELIGE UNIVERITET INTITUTT FOR FYIKK Faglig kontakt unde eksamen: Føsteamanuensis Knut Ane tand Telefon: 73 59 34 6 EKAMEN FAG TFY460 ØLGEFYIKK OG FAG FY00/MNFFY0 GENERELL
DetaljerBeregning av massesenter.
Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Beregning av assesenter Definisjoner i ri C Figuren til venstre viser et lite utsnitt av en sk av så partikler, er i er assen til en partikkel
DetaljerEKSAMEN i. MA-132 Geometri. Torsdag 3. desember 2009 kl Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler. Kalkulator.
Institutt fo matematiske fag EKSAMEN i MA-1 Geometi Tosdag. desembe 009 kl. 9.00-14.00 Tillatte hjelpemidle: Alle tykte og skevne hjelpemidle. Kalkulato. Bokmål Oppgave 1 I oppgaven nedenfo skal du oppgi
DetaljerObj104. Ukentlige lekser med oppgaver knyttet til de fire regneartene, tid, omgjøring mellom ulike enheter, brøk, algebra og problemløsning
Obj104 RENDALEN KOMMUNE Fagetun skole Åsplan i matematikk fo 6. tinn 2014/15 Ukentlige lekse med oppgave knyttet til de fie egneatene, tid, omgjøing mellom ulike enhete, bøk, algeba poblemløsning TID TEMA
Detaljer