Beregning av massesenter.

Størrelse: px
Begynne med side:

Download "Beregning av massesenter."

Transkript

1 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Beregning av assesenter Definisjoner i ri C Figuren til venstre viser et lite utsnitt av en sk av så partikler, er i er assen til en partikkel so har posisjonsvektor r i i forhol til et fastlagt origo Selv o figuren er toiensjonal, vil partikkelsken generelt være treiensjonal, slik at posisjonsvektoren kan skrives r = ˆi+ ˆj+ zk ˆ i i i i er î, ĵ og ˆk er enhetsvektorer langs henholsvis - - og z- aksen I grunnteksten har vi efinert nå posisjonsvektoren til partikkelskens assesenter () slik: Massesenterets posisjon i forhol til origo er = i r i er en salee assen til alle partiklene er = i Vi suerer over alle partiklene I praksis får vi est å gjøre e saenhengene, utstrakte legeer Vi tenker oss at slike legeer er lit saen av bitte så biter, so hver har asse Isteenfor å suere, å vi nå integrere: = r er legeets salee asse er = og integrasjonene tas over hele legeet Men integrasjon over hele legeet efører at vi å integrere i roet Jeg forventer ikke at ere kan ette Vi skal erfor begrense oss til å se på spesielle tper legeer, so vi kan hantere e vanlig integrasjonsteknikk, vs e skiveetoen og slinerskalletoen Vi skal begrense oss til rolegeer so har konstant tetthet ρ Derso hele legeet har asse og volu V, og en liten bit av legeet har asse og volu V, så er tettheten ρ = = = V V V V Dette gir = = r r V V = V V r Vi ekoponerer nå båe r og ve hjelp av enhetsvektorene î, ĵ og ˆk, og får r = ˆi+ ˆj+ zk ˆ

2 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - og Da blir so gir koponentlikningene Vi suerer opp:,, Derso et legee har konstant tetthet ρ, er assesenterets posisjonsvektor gitt ve,,, er V er legeets volu, og alle integrasjonene tas over hele legeet Massesenter for rotasjons-setriske legeer Vi kan få et rotasjons-setrisk legee ve å la grafen til funksjonen,, rotere o -aksen Det er uielbart klart at erso tettheten til legeet er konstant å assesenteret ligge på -aksen slik at Vi trenger bare å finne, og bruker skiveetoen Alle e så volueleentene so utgjør ei tnn skive e tkkelse vinkelrett på -aksen har sae -koorinat Skiva har a volu Sien legeets volu er blir

3 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Vi kan også få et rotasjons-setrisk legee ve å rotere grafen til f = o -aksen Da å assesenteret ligge på -aksen slik at = Z = På sae åte so ovenfor blir = = Y V π = = = = π = = = = = = = = V V π = = Eksepel : Finn assesenteret til en rett kjegle e høe og grunnflateraius Løsning: = Vi plasserer kjeglen e topp-punkt i origo og - aksen so setriakse Vi kan a tenke oss at kjeglen frakoer ve at en rette linja = roterer o -aksen Da vil assesenteret ligge på -aksen, og posisjonen er gitt ve ( ) ( ) ( ) ( ) = = = = = = Eksepel : Finn assesenteret til et rotasjonslegeet so frakoer når grafen til = f = og en rette linja = roterer o -aksen Løsning: Massesenteret å ligge på -aksen Sien Y lett: Y ( ) ( ) = = = = = = = = = =, blir innsettingen i forelen for Oppgave Massesenter for plane legeer De grunnleggene forlene Vi skal nå se på plane legeer Det er est praktisk å legge plane legeer i -planet, slik at et ikke blir noen z-koponent Massesenteret er a gitt ve

4 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - r = ˆ ˆ r = i+ j ˆ = + ˆ = + Y i j i j er er =, Y = Integralene i uttrkkene for og Y har fått egne navn: kalles statisk oent o -aksen kalles statisk oent o -aksen Vi får enklere uttrkk erso vi antar at tettheten er konstant over hele flata Tettheten å nå uttrkkes i kg/ Derso flata har asse og areal A, ens et lite flate-eleent har asse og areal A, blir tettheten ρ = = = A A A A Dere blir = = A A = A A, Y = = A A = A A, er arealet av flata er A = A Dette er e grunnleggene forlene so vi skal bentte i praksis Også her har integralene fått egne navn: M M = A kalles flateoentet o -aksen, = A kalles flateoentet o -aksen Me isse efinisjonene kan koorinatene til assesenteret skrives: M =, Y A M = A Vi suerer opp: Massesenteret for ei flate so ligger i -planet er = = + Y r i j er

5 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5-5 =, Y = Derso tettheten er konstant over hele flata, blir M = A A = er M = A A er flateoentet o -aksen, M Y = A A = er M A = A er flateoentet o -aksen A = A Alle integralene tas over hele flata Når vi skal integrere over ei flate, får vi vanligvis obbeltintegral so vi ikke skal ta opp her Vi skal erfor begrense oss til to situasjoner so vi kan hantere: Flata eles opp i striper parallelt e -aksen Flata eles opp i striper parallelt e -aksen Vi skal se på e to situasjonene etter tur Striper parallelt e -aksen Vi antar at flata er avgrenset av grafene til funksjonene = f () = f og = f, sat av e to rette linjene = a og = b - Se figuren til venstre = f () Vi legger striper e bree parallelt e -aksen vis > når a b, får hver stripe et areal A = ( ) a b slik at = b A = ( ) Alle flate-eleentene innenfor ei stripe har nå sae -veri Da blir assesenterets -veri = b A = b = ( ) A = = a A = a Det er ikke fullt så enkelt å finne Y, fori eleentene innenfor ei stripe har ulike -verier Vi kan erfor ikke bruke forelen for Y irekte Dette probleet løser vi ve å erstatte i forelen for Y C e avstanen til itpunktet på stripa, so har -koorinat + M = Da blir = b = b + = b YC = M A ( ) ( ) A = = a A = = a A = a = a

6 Striper parallelt e -aksen Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5-6 = g () = g () Vi skal nå anta at flata er avgrenset av grafene til g = g sat e to rette linjene = og = og = Da legger vi stripene parallelt e -aksen Se figuren til venstre - = = = Y A, = = ( ) A = Vi finner assesenteret e sae resonneent so når stripene ligger lorett Derso > når, blir og = = A = Eksepel : Beste assesenteret til flata so avgrenses av grafen til -aksen på to åter: a) ve å legge stripene parallelt e -aksen b) ve å legge stripene parallelt e -aksen =, linja = og Løsning: Situasjonene er illustrert neenfor til venstre a) En lorett stripe i avstan fra -aksen har areal A = = slik at arealet blir A = = = = Da blir assesenterets -koorinat = = A = = ( ) = = = Massesenterets -koorinat blir Y = = = = = = ( ) ( ) A = b) Når vi skal bruke striper parallelle e -aksen, å vi først finne uttrkt ve : = = Vi kan selvsagt bruke et arealet so vi fant ovenfor Men vi kan også beregne arealet også e utgangspunkt i vannrette striper Av figuren ser vi at arealet av en slik vannrett stripe i avstan fra -aksen blir

7 ( ) ( ) A = = slik at arealet blir Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5-7 ( ) ( ) ( ) A = = = = = Da blir = = = ( ) ( ) = 6 A= 6 6 = = = Y ( ) ( ) = = A = = = = = 5 ( 5 ) = ( 6 5 ) = = 5 5 Oppgave Massesenter for krue linjer En kru linje er gitt ve = f eller ve f = Anta at tettheten ρ (so er gitt i kg/) er konstant slik at ρ = = = s L s L er er assen til linja, L er lengen til linja, ens og s er henholsvis asse og lenge til et lite eleent på linja Koorinatene til assesenteret er a gitt ve = = s s = L L og Y = = s s = L L er vi integrerer langs hele linja Vi kan finne lengen L av et krut linjestkke på flere åter, feks slik: Derso f Derso f =, er s = + =, er s = + Ett av isse uttrkkene setter vi inn i integralene for assesenteret Eksepel : Beregn koorinatene til assesenteret til grafen til =,

8 Løsning: Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - = = slik at Da blir ( ) s = + = + = + = ln = L = s = + = + + = L = L L = s = + = = Y = L s = + = L ( 6 6 ) = 7 ln 7 + L På grafen er assesenteret tegnet inn e en liten ring Merk at assesenteret ikke ligger på selve linja Du kan visualisere assesenteret slik: Tenk eg at linja spenner ut en asseløs ebran Denne ebranen kan nå balansere på en spiss so plasseres i assesenteret Oppgave 5 Oppeling i el-legeer I grunnteksten har jeg vist hvoran vi kan ele opp et saensatt legee i kjente ellegeer, og eretter finne assesenteret til et saensatte legeet ve å oppfatte hver el so o et var en partikkel Vi kan føre et tilsvarene resonneent erso vi fjerner en bit fra et legee Anta at er assen og er assesenteret til et legee so frakoer når vi fjerner et stkke e asse og assesenter r fra et legee e asse og assesenter r Da får vi at = ( r r ) I neste eksepel skal vi illustrere bruken av enne forelen Eksepel 5: Ei skive består av et rektangel e siekanter og, er et kvaratisk hjørne e siekant er fjernet Se figuren til venstre Finn assesenteret til skiva Løsning: Jeg skal løse oppgaven på to åter Først eler jeg skiva inn i to eler slik en stiplee linja på figuren viser ele skiva har areal A = = Derso hele skiva har asse, blir tettheten (so oppgis i kg/ )

9 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5-9 ρ = = A Nere el får assen = ρ ( ) = 6 = 7 og øvre el får assen = ρ ( 6 ) = = 7 ver av elene har assesenter it i Av figuren ser vi at r = i+ j og r = i+ j Da blir assesenteret gitt ve = ( r + r ) = ( i+ j) + ( i+ j) = ( 6 i+ j+ 9 i+ 9 j) = i+ j Så skal jeg løse probleet ve å ta utgangspunkt i rektangelet, og fjerne biraget fra et lille kvaratet vis vi kaller rektangelets asse og assesenter for og r, og kvaratets asse og assesenter for K og r K, kan vi sette opp (se figuren, og kontroller assesentrene til rektangelet og til kvaratet): = r KrK = ( ) ( i+ j) ( ) ( 7 i+ j) 5 = ( i+ j) ( 7 i+ j) = i+ j Og ette er sae resultat so før Oppgave 6 Oppgaver e løsninger 6 Oppgaver Oppgave a) Vi har gitt funksjonen = f =, Beregn assesenteret til et oreiningslegeet so frakoer når: ) Flata so avgrenses av grafen til f og en rette linja = roterer en gang o -aksen ) Flata so avgrenses av grafen til f og en rette linja = roterer en gang o -aksen b) Ei flate avgrenses av -aksen og grafen til funksjonen

10 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - når < = f = når Beregn assesenteret til et oreiningslegeet so frakoer når enne flata roterer en gang o -aksen Oppgave a) Grafen til funksjonen = f =+, blir en halvsirkel e raius Finn assesenteret til en flata so avgrenses av halvsirkelen og -aksen ) Ei flate avgrenses av -aksen, en rette linja = og grafen til funksjonen = f = e Finn assesenteret til enne flata Oppgave Grafen til funksjonen = f =+, blir en halvsirkel e raius Finn assesenteret til enne grafen Oppgave Ei jantkk, hoogen skive har raius Vi klipper ut et sirkelforet hull e raius r = slik at sentru i hullet ligger en avstan fra skivas sentru Se figuren til venstre vor er assesenteret til skiva etter at hullet ble klipt ut? 6 Løsninger Oppgave a) 6 Grafen til = f = er tegnet til venstre Ve rotasjon o - aksen blir åpenbart Y =, ens ( ) ( ) = π = = = = = π = = = = = 5

11 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Ve rotasjon o -aksen å vi integrere i -retningen Litt forarbei å til: = = Viere ser vi at, og at = = = = = Det er åpenbart at =, ens Y 7 ( ) = 7 π = = = = = = 7 π = 7 7 = = = = = = = b) Grafen til funksjonen når < = f = når er illustrert til venstre Det er åpenbart at ve rotasjon o -aksen blir Y = Viere blir ( ) = = π = + = = = π ( ) = + = ( 6 ) = = = = = ( ) + ( + ) ( ) ( ) + ( 6 + ) ( 6 + ) = = 5 Oppgave a) Til venstre ser u halvsirkelen tegnet e = Massesenteret er også tegnet inn so en liten sirkel Det er åpenbart at = For å finne Y, legger jeg stripene vertikalt på vanlig åte, og bentter at arealet av en halvsirkel er A= π Da blir

12 Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Y = ( ) = =+ A = π = ( ) π = π = (( ) ( ( ) ( ) )) = = π π π b) Grafen til funksjonen = f = e er illustrert til venstre saen e linja = Grafene skjærer hveranre når e = = ln Beregner først arealet: ln ln ln A = e = ln e = e + e = ln + = ln er er et enklest å beregne ve å legge stripene vertikalt på vanlig åte Da blir ln ln = ( e ) ( ) e A = ln ln = (( ( ln ) ( ln ) e ) ( ( ) e )) ln ( ) ln ln + = ln ln + = 5 ln ln Uner veis har jeg benttet at u v' u' e = e e = e e + C = ( ) e + C For å finne Y, er et kanskje lettest å legge stripene horisontalt Da får vi at = e = ln, slik at Y = = ( ) ln ln A = = = ln ln = ( ) ln ln ln 5 ln = ( ln + ) = ln ln Uner veis har jeg benttet at u' v u v u v ' v ln = ln = ln = ln + C På figuren er assesenteret tegnet inn so en liten ring

13 Oppgave slik at Fsikk for ingeniører 5 Bevegelsesenge og assesenter Sie 5 - Til venstre ser u halvsirkelen tegnet e = Massesenteret er også tegnet inn so en liten sirkel Det er åpenbart at = For å finne Y, bentter jeg at når = = u = u er u =, blir ' = u ( ) = =, u s = + ( ') = + = + + = = Viere bentter jeg at lengen av halvsirkel-grafen blir L = π = π Da blir =+ Y = s = = = ( ( ) ) = L = π π π π Oppgave Plasserer skiva i et koorinatsste slik figuren viser Det er åpenbart at assesenteret å ligge på -aksen slik at Y = Lar skiva ha tetthet ρ Da har en store skiva asse M = ρ π og assesenter i (, ) Den bortklipte skiva har asse = = = og assesenter i ( r, ) (,) ρ πr ρ π ρπ = Da blir M ρπ ρπ = ( ) = = = 6 M ρπ ρπ ρπ

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1 Funksjonene f og g er efinert ve f( )= 1 og g ( ) = ( +3). M1_01 g( f( )) er a lik a ( 1)( + 3) b ( + 3) 1 c ( ) ( + ) e + 8 MA13001 M1 Sie 1 En funksjon f er efinert ve: M1_0 f( )= 1 hvis < 1 f( )= +1

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 sforslag forkunnskapstest Faktoriser, hvis mulig, uttrkket +. (A) ( + 5)( ) (B) ( 5)( + ) (C) ( + )( )

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for unervisning FYSIKK-KONKURRANSE 00 00 Anre rune: 7/ 00 Skriv øverst: Navn, føselsato, hjeearesse og eventuell e-postaresse, skolens navn og

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legeers dynakk 9.4. FYS-EK 9.4. Repetsjon Newtons andre lov for flerpartkkelsysteer: F ext hvor: r R d R (assesenter) dt separasjon: bevegelse tl assesenter bevegelse relatv tl assesenter K V N v

Detaljer

Høst 97 Utsatt eksamen

Høst 97 Utsatt eksamen Høt 97 Utatt ekaen. Vi tenker o at en partikkel beveger eg lang en rett linje (lang x-aken). Partikkelen tarter i ro i origo ve tien t =. ekuner. Partikkelen hatighet v o funkjon av tien t er gitt ve:

Detaljer

Litt mer om kjeglesnitt og Keplers lover om planetbanene

Litt mer om kjeglesnitt og Keplers lover om planetbanene Litt mer om kjeglesnitt og Keplers lover om planetbanene Det er ikke meningen at enne teksten skal stå for seg selv. Den er ment som en hjelp mens u leser 11.6 og eler av kapittel 8 i læreboka. Hvis u

Detaljer

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.

x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger

Detaljer

Løsningsforslag til øving 14

Løsningsforslag til øving 14 Institutt for fysikk, NTNU TFY4155/FY13 Elektromagnetisme Vår 29 Løsningsforslag til øving 14 Oppgave 1 Den påtrykte strømmen I genererer et H-felt H ni på langs overalt inne i spolen (pga Amperes lov

Detaljer

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel.

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel. Løsningsforslag FYS / FY / FYS Elektromagnetisme, torsag 8. esember Ve sensurering vil alle elspørsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenummer), men vi forbeholer oss retten til

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Jon Anreas Støvneng Telefon: 7 59 6 6 / 41 4 9 0 LØSNINGSFORSLAG TIL EKSAMEN I FY100 ELEKTRISITET OG MAGNETISME

Detaljer

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008

Løsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008 Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene

Detaljer

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer: Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren.

EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren. EKSAMEN TMA400 HØST 04 ØSNINGSFORSAG Oppgave. Uner rottegnet står et + e x, og en eriverte til ette uttrykket er e x, som står utenfor rottegnet. Sett erfor u +e x. Da får vi og vi kan løse intergralet:

Detaljer

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009

Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009 Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stvt legeers dnakk 7.04.05 Resultater fra veseksaen på seestersden. Eneste krav for å ta slutteksaen: 7 av 0 oblger. Gruppete dag: Gruppe 5 (Ø394) slås saen ed gruppe 7 på Ø443 FYS-MEK 0 7.04.05 kraftoent:

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

Bjørn Davidsen MATEMATIKK FOR INGENIØRER. Integrasjon med anvendelser

Bjørn Davidsen MATEMATIKK FOR INGENIØRER. Integrasjon med anvendelser Bjørn Davidsen MATEMATIKK FOR INGENIØRER Integrasjon med anvendelser Integrasjon med anvendelser Side Innhold: FORORD INTEGRASJON DE GRUNNLEGGENDE DEFINISJONENE GRUNNLEGGENDE INTEGRASJONSREGLER 6 Generelle

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Dette er fra e to første forelesningene i MA02 våren 2008. Noe er skrevet mer ut, men mange etaljer er utelatt. De er utelatt me vilje, for at u skal fylle em ut selv!

Detaljer

Fugletetraederet. Øistein Gjøvik

Fugletetraederet. Øistein Gjøvik Øistein Gjøvik Fugletetraeeret Nå skal vi lage et romlegeme u kanskje ikke har sett før. Det er ikke noe mystisk ve selve figuren, men en hører ikke til lant e mest rukte i unervisningen. Lag figuren før

Detaljer

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad

Spinn og Impulsbalanse HIA Avd. teknologi Morten Ottestad Ipuls og spinn balanse 4.0.005 Side av Spinn og Ipulsbalanse HIA Avd. teknologi Morten Ottestad. ynaikk rettlinjede bevegelser. Ipuls balansen Newtons I lov). Eleenter i ekaniske syste.. jær 3.. eper 4..3

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 014 Løsningsforslag Øving 03.7. Økningen i uksen, F, kan approksimeres som se sie 131 i boka F F =

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x.

(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x. NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 3 Avsnitt 3. 49 a) Fra tabell 3.4 på sie 222 i boka: (coshu) = sinhuu. Her har vi at u = w H, og u = w y H. Det følger

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME

Detaljer

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ =

SIF5005 MATEMATIKK 2 VÅR r5 drdθ = 1 m. zrdzdrdθ = 1 m. zrdzdrdθ = SIF55 MAEMAIKK Å 3 Løsningsforslag Hjemmeøving 5 Oppgave. Ser at massen fordeler seg symetrisk om z-aksen, derfor vil tyngdepunktet ligge på z-aksen. Det eneste vi da trenger å regne ut er z. zδd = m π

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 8 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 8 Derivasjon I agens forelesning skal vi se på følgene: 1 Kjerneregelen 2 Deriverte til trigonometriske

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist

1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist Eksamen i klassisk feltteori, fag 74 50, 8. esember 1998 Lsninger 1a) Vi antar at x +, x x =0; (1) og at c = g x x. Sa gjr vi en koorinattransformasjon x 7 ex,ogskal vise at ex + e, ex ex =0; () er c =

Detaljer

EKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 13. desember 2000 kl

EKSAMEN I EMNE SIF4005 FYSIKK For kjemi og materialteknologi Onsdag 13. desember 2000 kl Sie 1 av 7 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt uner eksamen: Inst. for fsikk, Gløshaugen Professor Bjørn Torger Stokke 735 93434 BOKMÅL EKSAMEN I EMNE SIF45

Detaljer

Løsningsforslag. FY-ME 100 eksamen 2. september 2003

Løsningsforslag. FY-ME 100 eksamen 2. september 2003 Løsningsforslag FY-ME 00 eksaen. septeber 003 Oppgave Her følger først noen begrepsoppgaver / kvalitative oppgaver. Svarene å begrunnes (en gjør dette kort). a) En stein ed asse kg er festet til enden

Detaljer

1. Matteoppgaver til Kapittel 2. x i x yi y. (a + bxi ),

1. Matteoppgaver til Kapittel 2. x i x yi y. (a + bxi ), FRIVILLIGE MATTEOPPGAVER FOR STK1000 KAPITTEL 2 STEFFEN GRØNNEBERG Sammenrag. Følgene oppgaver er til glee for matteinteresserte STK1000- stuenter som ønsker å gå litt ypere inn i e matematiske aspektene

Detaljer

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsdag 8. august 2002

Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsdag 8. august 2002 NTNU Sie 1 av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsag 8. august 2002 Eksamen gitt av Kåre Olaussen Dette løsningsforslaget

Detaljer

brukes mest for større deler som blir utsatt for kraftig og støtvis påkjenning, tannhjul, kulelager etc. på en aksel

brukes mest for større deler som blir utsatt for kraftig og støtvis påkjenning, tannhjul, kulelager etc. på en aksel PRESS- OG KRYMPERFORBINDELSER kan brukes for å feste en hylse / ring eller et nav på en aksel gir sterke forbinelser brukes mest for større eler som blir utsatt for kraftig og støtvis påkjenning, tannhjul,

Detaljer

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100

arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 arbeid - massesenter - Delvis integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. oktober 2011 Kapittel 6.6. Arbeid 3 Arbeid definisjon Definisjon (Arbeid

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for ata- og elektroteknikk Eksamen i ELE620, Systemientikasjon (10 sp) Dato: Manag 15 esember 2014 Lenge på eksamen: 4 timer Tillatte hjelpemiler: Kun

Detaljer

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A

Løsningsforslag, Øving 10 MA0001 Brukerkurs i Matematikk A Løsningsforslag, Øving MA Brukerkurs i Matematikk A Læreboka s. 9-95 8. Anta at en endring i biomasse B(t) vei, t [, ], følger ligningen for t. d B(t) = cos ( ) πt 6 (a) Tegn grafen til d B(t) som funksjon

Detaljer

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl

Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

x=1 V = x=0 1 x x 4 dx 2 x5

x=1 V = x=0 1 x x 4 dx 2 x5 TMA Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 7.. Lat oss først skissera området R som skal roterast om -aksen for å danna S.,) R Me startar med å bruka skivemetoden

Detaljer

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4.

Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Geometri i skolen Geometri etter 4. Geometri Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI 15-Apr-07 Geometri i skolen dreier seg blant annet om å analysere egenskaper ved to- og tredimensjonale

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12. TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.

Detaljer

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1

cappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1 7. Funksjoner av to variable Df FIGUR 7. FIGUR 7. FIGUR 7. Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 FIGUR 7. FIGUR 7.5 FIGUR 7.6 Matematikk for økonomi og samfunnsfag 9. utgave kapittel

Detaljer

INNHOLD SAMMENDRAG GEOMETRI

INNHOLD SAMMENDRAG GEOMETRI INNHOLD GEOMETRI... 3 LINJE, STRÅLE OG LINJESTYKKE... 3 VINKEL... 3 STUMP, SPISS OG RETT VINKEL... 3 TOPPVINKLER... 4 NABOVINKLER... 4 SAMSVARENDE VINKLER... 4 OPPREISE EN NORMAL FRA ET PUNKT PÅ EN LINJE...

Detaljer

Elektriske svingekretser - FYS2130

Elektriske svingekretser - FYS2130 Elektriske svingekretser - FYS3 Koplekse ipedanser Vekselsstrøskretser blir ofte enklere å behandle når ipedansene skrives på kopleks for. De koplekse ipedanser er Z ˆ i for kondensator ed kapasitans i

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005 Kraftelektronikk (Elkraft høst), Løsningsforslag til øvingssett 3, høst 005 Ole-Morten Mitgår HiA 005 Oppgave Dioelikeretter: a) Dioene er snu, strømmen går i motsatt retning. (Husk at strømmen kan bare

Detaljer

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 1 Vekstrater og eksponensiell vekst 1.1 Vekstrater i iskret ti Vekstraten til en størrelse Y angir hvor stor

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Forelesning 2: Førsteordens lineære differensiallikninger

Forelesning 2: Førsteordens lineære differensiallikninger Forelesning 2: Førsteorens lineære ifferensiallikninger Tron Stølen Gustavsen 16. januar, 2009 Innhol Lesning 1 2.1. Likninger me konstante koeffisienter 1 2.2. Generelle koeffisienter 4 Referanser 5 Lesning.

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

OPPGAVE 2 MMI Affordance (100 poeng)

OPPGAVE 2 MMI Affordance (100 poeng) Sie av 6 NTNU Norges teknisk-naturvitenskaelige universitet Fakultet for informasjonsteknologi, matematikk og elektroteknikk Institutt for atateknikk og informasjonsvitenska EKSAMEN I FAG SIF839 GRAFIKK,

Detaljer

A. positiv x-retning B. negativ z-retning C. positiv y-retning D. negativ y-retning E. krafta er null

A. positiv x-retning B. negativ z-retning C. positiv y-retning D. negativ y-retning E. krafta er null Flervalgsoppgaver En lang, rett ledning langs x-aksen fører en strøm i positiv x-retning. En positiv punktladning beveger seg langs z-aksen i positiv z- 1. retning (opp av papirplanet). Den magnetiske

Detaljer

Sivilingeniørutdanningen i Narvik Integrert Bygningsteknologi Høsten 1998. Løsningsforslag. Kontinuasjonseksamen 4. august 1998

Sivilingeniørutdanningen i Narvik Integrert Bygningsteknologi Høsten 1998. Løsningsforslag. Kontinuasjonseksamen 4. august 1998 Sivilingeniørutanningen i Narvik Integrert Bygningsteknologi Høsten 998 Fag STE 67 VVS-teknikk Sivilingeniørutanningen i Narvik Integrert Bygningsteknologi Høgskolen i Narvik øsningsforslag Kontinuasjonseksamen.

Detaljer

Elektrisk potensial/potensiell energi

Elektrisk potensial/potensiell energi Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle

Detaljer

Løsningsforslag til eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Torsdag 8. august 2013

Løsningsforslag til eksamen i FY3452 GRAVITASJON OG KOSMOLOGI Torsdag 8. august 2013 NTNU Sie 1 av 6 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i FY345 GRAVITASJON OG KOSMOLOGI Torsag 8. august 013 Dette løsningsforslaget er på 6 sier.

Detaljer

Fiktive krefter

Fiktive krefter Fiktie krefter 8.04.014 FYS-MEK 1110 8.04.014 1 Fiktie krefter proble: Newtons loer gjelder bare i inertialsysteer hordan analyserer i en beegelse i et akselerert syste? z z x y transforasjon transforasjon

Detaljer

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009

Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:

Detaljer

Kap 5 Anvendelser av Newtons lover

Kap 5 Anvendelser av Newtons lover Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Ma Flerdimensjonal Analyse Øving 2

Ma Flerdimensjonal Analyse Øving 2 Ma1 - Flerdimensjonal Analyse Øving Øistein Søvik Brukernavn: Oistes.1.1 Oppgaver 11. In Exercises 1 4, find the required parametrization of the first quadrant part of the circular arc x + y 1 1. In terms

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

Kapittel 23 KURSREGNING, FORHOLD OG PROPORSJONER

Kapittel 23 KURSREGNING, FORHOLD OG PROPORSJONER Valuta Kjøp Antall AUD Australske ollar 4,1050 1 CAD Canaiske ollar 4,6630 1 CHF Sveitsiske franc 493,5000 100 CYP Kypriotiske pun 1,3950 1 DKK Danske kroner 97,8700 100 EUR Euro 7,785 1 GBP Pun sterling

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØKONOMI, FINANS OG REGNSKA EINAR BELSOM HØS 2017 FORELESNINGSNOA 6 rouksjonsteknologi og kostnaer* Fokuset i ette notatet er på beriftenes atfer uner ulike markesformer, fra tilfellet er beriften

Detaljer

For en tid siden ble jeg konfrontert med følgende problemstilling:

For en tid siden ble jeg konfrontert med følgende problemstilling: Normat 55:, 3 7 (7) 3 Bøker på bøker En bokorms øvelse i stabling Ivar Farup Høgskolen i Gjøvik Postboks 9 N 8 Gjøvik ivar.farup@hig.no Innledning For en tid siden ble jeg konfrontert med følgende problemstilling:

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Stivt legemers dynamikk. Spinn

Stivt legemers dynamikk. Spinn Stvt legees nakk Spnn 9.4.14 ngen ata-vekste enne uke FYS-MEK 111 9.4.14 1 Eksepel R Et legee av asse M, aus R, og teghetsoent ulle ne et skåplan. koonatsste e aksen langs planet ogo assesenteet otasjon

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Torsdag 11 desember 2008. Tid for eksamen: 14:30 17:30. Oppgavesettet er på

Detaljer

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka

S1 kapittel 1 Algebra Løsninger til oppgavene i læreboka Løsninger til oppgvene i ok S kpittel Alger Løsninger til oppgvene i læreok. 8 ( ) 5 9. e = = 9 = = 8 5 = = 0 = 0 0 0 = 000 =. e Ashehoug www.lokus.no Sie v Løsninger til oppgvene i ok..5..7 = = + 5 =

Detaljer

Løsning til utvalgte oppgaver fra kapittel 12 (15).

Løsning til utvalgte oppgaver fra kapittel 12 (15). Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet

Detaljer

Flervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme

Flervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E

Detaljer

Flervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E.

Flervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E. Flervalgsoppgaver 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. N s C m B. N C s m C. N m s 2 D. C A s E. Wb m 2 Løsning: F = q v B gir [B] = N Cm/s = N s C m. 2. Et elektron

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 6. aug. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksaen: Jon Andreas Støvneng, telefon: 45 45 55 33 EKSAMEN I FY1001 og TFY4145

Detaljer

R1 Eksamen høsten 2009

R1 Eksamen høsten 2009 R1 Eksamen høsten 2009 Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x b) Deriver funksjonen gx x 3 ln2 x 3 2 c) Likningen 2x 10x 2x 10 0 har tre løsninger. Vis at x1 1 er en løsning og finn de to andre.

Detaljer

Løsningsforslag til øving 3

Løsningsforslag til øving 3 Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet

Detaljer

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar).

Fasit for eksamen i MEK1100 torsdag 13. desember 2007 Hvert delspørsmål honoreres med poengsum fra 0 til 10 (10 for perfekt svar). Fasit for eksamen i MEK torsdag 3. desember 27 Hvert delspørsmål honoreres med poengsum fra til ( for perfekt svar). Oppgave Vi har gitt to vektorfelt i kartesiske koordinater (x,y,z) A = yi+coszj +xy

Detaljer

Løsningsforslag Eksamen 6. august 2007 TFY4215 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Eksamen 6. august 2007 TFY4215 Kjemisk fysikk og kvantemekanikk Eksamen TFY4215 6. august 2007 - løsningsforslag 1 Oppgave 1 Løsningsforslag Eksamen 6. august 2007 TFY4215 Kjemisk fysikk og kvantemekanikk a. For x > b, hvor V (x) =, må alle energiegenfunksjonene være

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 11 Feltteori og vektoranalyse. Eksamensdag: Torsdag 1 desember 29. Tid for eksamen: 14:3 17:3. Oppgavesettet er på 7 sider.

Detaljer

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller

NORSK TEKST Side 1 av 4. Faglig kontakt under eksamen: Ingjald Øverbø, tlf , eller NORSK TEKST Sie 1 av 4 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Institutt for fysikk Faglig kontakt uner eksamen: Ingjal Øverbø, tlf 73 59 18 67, eller 9701355 EKSAMEN I FY045/TFY450 KVANTEMEKANIKK

Detaljer

Grensesjikts approksimasjon. P.-Å. Krogstad

Grensesjikts approksimasjon. P.-Å. Krogstad Norges teknisk- naturvitenskapelige universitet (NTNU) Fakultetet for ingeniørvitenskap og teknologi Institutt for Energi og Prosessteknikk N-749 Tronheim - NTNU Grensesjikts approksimasjon P.-Å. Krogsta

Detaljer

til eksamen i SIF5036 Matematisk modellering 14. desember 2002.

til eksamen i SIF5036 Matematisk modellering 14. desember 2002. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Sie av 8 Løsningsforslag til eksamen i SIF5036 Matematisk moellering 4. esember 2002. Oppgave (a) Hvilke aksiomer om naturen

Detaljer

Løsningsforslag til eksamen i FYS1000, 19/8 2016

Løsningsforslag til eksamen i FYS1000, 19/8 2016 Løsningsforslag til eksamen i FY1000, 19/8 016 Oppgave 1 a) C D A B b) I inusert A + B I ien strømmen går mot høyre vil magnetfeltet peke ut av planet inne i strømsløyfa. Hvis vi velger positiv retning

Detaljer

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger Eksamen i Ikkelineær ynamikk, fag TFY 4305 Onsag 30. november 2005 Løsninger 1) Den generelle løsningen av ligningen u t + cu x =0eru(x, t) =f(x ct), er f er en vilkårlig funksjon av en variabel. Hvoran

Detaljer

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.

Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt

Detaljer

Repetisjonsoppgaver kapittel 4 løsningsforslag

Repetisjonsoppgaver kapittel 4 løsningsforslag epetisjonsoppgaver kapittel 4 løsningsforslag nergi Oppgave a) Arbeidet gjort av kraften har forelen: s cos Her er s strekningen kraften virker over, og vinkelen ello kraftverktoren og strekningen. b)

Detaljer

Fasit, Anvendelser av integrasjon.

Fasit, Anvendelser av integrasjon. Ukeoppgaver, uke, i Matematikk, Anvendelser av integrasjon. 5 Fasit, Anvendelser av integrasjon. Oppgave F er en rettvinklet trekant, med begge kateter av lengde, så horisontal avgrensning er x. a) V πy

Detaljer

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016

Integrasjon. et supplement til Kalkulus. Harald Hanche-Olsen 14. november 2016 Integrsjon et supplement til Klkulus Hrl Hnhe-Olsen 14. novemer 2016 Dette nottet er ment som et supplement og elvis lterntiv til eler v kpittel 8 i Tom Linstrøm: Klkulus (åe 3. og 4. utgve). Foruten et

Detaljer

Løsningsforslag, eksamen MA1101/MA

Løsningsforslag, eksamen MA1101/MA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen

Detaljer

Løsningsforslag: Gamle eksamner i GEO1030

Løsningsforslag: Gamle eksamner i GEO1030 Løsningsforslag: Gamle eksamner i GEO1030 Sara Blihner Deemer 8, 2016 Eksamen 2003 Oppgave 1 a Termoynamikkens første hovesetning: H: varme tilført/tatt ut av systemet. p: trykket. H = p α + v T (1) α:

Detaljer

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t

2 1 -- 1 = = = 2. 2 2 --mv2 1. Energi. k,t 1 Kortfattet løsningsforslag / fasit Eksaen i: FYS-MEK 1110 - Mekanikk / FYS-MEF 1110 - Mekanikk for MEF Konteeksaen: Fredag 18. august 2006 Det tas forbehold o at løsningsforslaget kan inneholde feil!

Detaljer

Flerpartikkelsystemer Rotasjonsbevegelser

Flerpartikkelsystemer Rotasjonsbevegelser lerpartkkelsystemer otasjonsbevegelser 8.03.05 YS-EK 0 8.03.05 Program vere reag 0.3.: ngen ata-verkste este uke: ngen unervsnng ngen forelesnng ngen gruppetme ngen ata-verkste Torsag 6.3: veseksamen este

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt.

Del ) Bestem x-verdien til eventuelle punkter der funksjonen ikke er kontinuerlig. Begrunn svaret ditt. Del1 Oppgave 1 a) Deriver funksjonen f ( ) 5e b) Deriver funksjonen g ( ) ln(2 ) 2 c) Likningen 2 10 2 10 0 hartreløsninger.visat1 1erenløsningogfinn detoandre. d) Skrivsåenkeltsommulig lg ab 2 lg 1 ab

Detaljer