(coshu) = sinhudu. dx. Her har vi at u = w Hx, og du dx = w dy. dx = H w w. H sinh w H x = sinh w H x.
|
|
- Ruben Jenssen
- 9 år siden
- Visninger:
Transkript
1 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 3 Avsnitt a) Fra tabell 3.4 på sie 222 i boka: (coshu) = sinhuu. Her har vi at u = w H, og u = w y H. Det følger at tanφ = = H w w H sinh w H = sinh w H. b) Vi får oppgitt at H = T cosφ. Det følger at Avsnitt 4.3 T = H cosφ = Hsecφ = H +tan 2 φ (sien sec 2 φ = +tan 2 φ) = H +sinh 2 w (fra a)) H = H cosh 2 w H (sien cosh2 w H sinh2 w H = ) = Hcosh w H = Hwy H = wy. 8 Vi ser på funksjonen g() = a) Vi skal finne intervallene hvor g() er økene og minkene. Vi eriverer og får g () = = 4( )( 2). Løser vi ligningen g () = 0, får vi løsningene = 0, = og = 2. Ve å sette inn har vi g ( ) = 24, g (0.5) =.5, g (.5) =.5 og g (3) = 24. Derme har vi at g() er synkene på intervallene (,0) og (,2), mens en er økene på intervallene (0,) og (2, ). b) Sien g() er eriverbar for alle, kan vi bruke førsteeriverttesten. De kritiske punktene til g() er gitt av ligningen g () = 0, som har løsningene = 0, = og = 2. Sien g() er synkene på intervallene (,0) og (,2) og økene på intervallene (0,) og (2, ), oppnår g() ekstremverier i = 0, = og = 2, hvor g(0) og g(2) er lokale minima og g() er et lokalt maksimum. c) Vi har at g() når ±. Derme har ikke funksjonen noen absolutt maksimalveri. Funksjonens absolutte minimumsveri inntreffer i punktet = 2, hvor funksjonsverien er f(2) = Vi har at 0 h(θ) 5 for θ [0,π] sien 0 sin θ 2 for θ [0,π], og at h(0) = 0 og h(π) = 5. Det følger at θ = 0 er et globalt (og lokalt) minimum av h og at θ = π er et globalt (og lokalt) maksimum av h. For θ (0,π) har vi at h (θ) = 5 2 cos θ 2 > 0, så h har ikke flere lokale ekstremverier. 58 a) Vi ser på funksjonen f() = e. Vi skal vise at f() 0 for 0. Vi eriverer f og får at f () = e 0 for 0. Funksjonen f er altså stigene for 0. Sien vi har at f(0) = 0, følger et at f() 0 for alle 0. b) Vi ser på funksjonen g() = e 2 2. Vi skal vise at g() 0 for 0. Vi eriverer g og får at g () = e 0 for 0 (fra a)). Funksjonen g er altså stigene for 0. Sien vi har at g(0) = 0, følger et at g() 0 for alle 0. lfov september 20 Sie
2 TMA400 Matematikk høsten 20 Avsnitt Vi skal skissere funksjonen y = ve å bruke proseyren gitt på sie 264 i læreboken.. Områet til y er (, ) og et er ingen symmetri runt noen av aksene. 2. Vi finner y () = 2 2, y () = Sien y() er eriverbar for alle, er e kritiske punktene gitt ve y () = 0, vs at kritisk punkt er =. Sieny ( ) = 2 < 0, har funksjonen et relativt maksimum i (,y( )) = (,7). 4. Sien y ( 2) > 0, øker funksjonen i intervallet (, ), og sien y (0) < 0 minker funskjonen i intervallet (, ). 5. Sien y () = 2 0, har funksjonen ingen venepunkt. Kurven er konkav ne. 6. Funksjonen har ingen asymptoter. 7. Kurven skjærer -aksen i punktene gitt ve y() = = 0, = 0, = 2 2 ± 2 Kurven skjærer y aksen i punktet y(0) = 6. (2) 2 4 ( 6) = ± 2 28 = ± y Figur : Oppgave Skisse av grafen y = Vi skal skissere funksjonen y = sin på intervallet 0 2π ve å bruke proseyren gitt på sie 264 i læreboken.. Områet til y er 0 2π, og vi får erfor ikke ratt nytte av at y er en oe funksjon. 2. Vi finner y () = cos, y () = sin. lfov september 20 Sie 2
3 TMA400 Matematikk høsten Sien y() er eriverbar for alle, er e kritiske punktene gitt ve y () = 0, vs at kritisk punkt er = arccos(). Vi finner at e kritiske punktene = 0 og = 2π, som samsvarer me enepunktene. Derme er (0, 0) et globalt minimum og (2π, 2π) et globalt maksimum. 4. Sien y (π) = π > 0, øker funksjonen i intervallet (0,2π). 5. Venepunktene er gitt ve y () = sin = 0, og vi finner at = arcsin0 = π er et venepunkt. 6. Funksjonen har ingen asymptoter. 7. Kurven starter i punktet (0,0) og øker til punktet (2π,2π) y Figur 2: Oppgave Skisse av grafen y = sin. 26 Vi skal skissere funksjonen y = 2/3( 5 2 ) = 5 2 2/3 5/3 ve å bruke proseyren gitt på sie 264 i læreboken.. Områet til y er (, ) og et er ingen symmetri runt noen av aksene. 2. Vi finner y () = 5 3 / /3 = 5 3 /3 ( ), y () = 5 9 4/3 0 9 /3 = 5 9 4/3 (+2). 3. De kritiske punktene til y() er gitt ve punktene hvor y () = 0 eller hvor y () ikke er efinert, vs at = er kritisk punkt sien y () = 0, og = 0 er kritisk punkt sien y ikke er efinert for = 0. Sien y () = 5 3 < 0, har funksjonen et lokalt maksimum i (,y()) = (, 3 2 ) ve anreeriverttesten. Funksjonen har et lokalt minimum i (0,y(0)) = (0,0). 4. Sien y ( ) = 0 3 < 0, y (0.5) =.05 > 0 og y (.5) = < 0, øker funksjonen i intervallet (0,) og synker i intervallene (,0) og (, ). 5. Venepunktene er gitt ve y () = 0, og vi finner at = 2 er et venepunkt. 6. Funksjonen har ingen asymptoter. 7. Kurven skjærer -aksen i punktene gitt ve y() = 0, vs. i = 0 og = 5 2. Kurven skjærer y-aksen i punktet y(0) = 0. lfov september 20 Sie 3
4 TMA400 Matematikk høsten 20 3 y Figur 3: Oppgave Skisse av grafen y = 2/3 ( 5 2 ). 30 Vi skal skissere funksjonen y = 3 /(3 2 + ) ve å bruke proseyren gitt på sie 264 i læreboken.. Områet til y er (, ), og kurven er symmetrisk runt origo. 2. Vi finner 3 y () = = 32 (3 2 +) 3 6 (3 2 +) 2 = 32 ( 2 +) (3 2 +) 2, y () = (3 2 +) 2 = (23 +6) (3 2 +) ( 2 +) 2(3 2 +) 6 (3 2 +) 4 = 6(22 +) (3 2 +) 36 3 ( 2 +) (3 2 +) 3 = (3 2 +) 3 = (3 2 +) 3 = 6( 2 +) (3 2 +) Sien y() er eriverbar for alle, er e kritiske punktene gitt ve y () = 0, vs at kritisk punkt er = 0. Sien f (0) = 0, kan vi ikke bruke 2. eriverte-testen til å klassifisere ette punktet. Vi legger merke til at y når og y når. Derme er punktet (0, y(0)) = (0, 0) et saelpunkt. 4. Sien y (0) > 0 for alle 0, øker funksjonen i intervallene (,0) og (0, ). 5. Venepunktene er gitt ve y () = 0. Sien nevneren er positiv for alle verier av, løser vi 6( 2 +) = 0. Vi finner at et er venepunkt i =, = 0 og =. 6. Funksjonenen har ingen horisontale eller vertikale asymptoter. Sien teller og nevner er polynomer, og polynomet i telleren er av en gra høyere enn nevneren, har funksjonen en skeiv asymptote. Vi finner enne ve polynomivisjon, = , og y = /3 er en skrå asymptote for grafen Kurven skjærer aksene i punktet (0,0). lfov september 20 Sie 4
5 TMA400 Matematikk høsten y Figur 4: Oppgave Skisse av grafen y = 3 /(3 2 +). Avsnitt Vi skal finne en vinkelen θ som maksimerer volumet av rennen vist i oppgaveteksten i læreboken. Volumet er gitt ve V = (Areal av eneflate) lenge. Arealet av eneflaten består av arealet av et kvarat me sier på in og arealet av to trekanter. La g være grunnlinjen og h høyen til trekantene. Arealet av en trekant er gitt ve A = 2 (g h). Fra figuren får vi at for trekanten er sinθ = g/ og cosθ = h/. Derme kan vi sette opp et uttrykk for volumet, V(θ) = (2 sinθcosθ+ cosθ) 20 = 20sinθcosθ+20cosθ. 2 For å finne makimalt volum ser vi på en eriverte, V (θ) = 20(cosθ cosθ+sinθ ( sinθ) cosθ) = 20(cos 2 θ sin 2 θ cosθ) = 20( sin 2 θ sin 2 θ sinθ) = 20( 2sin 2 θ sinθ). V (θ) = 0 gir sin 2 θ+ 2 sinθ 2 = 0, ( sinθ = 2 2 ± ) 2 4 ( ) = ± = 4 ± 3 4. Sien vinkelen vi leter etter må ligge i intervallet (0,π/2), må sinθ være positiv. Derme har vi at θ = arcsin(/2) = π/6. Vi har at og θ = π/6 gir maksimalt volum. V (θ) = 80cosθsinθ 20cosθ, V ( π 6 ) < 0, 40 Fermats prinsipp i optikk sier at lys allti beveger seg fra et punkt til et annet langs en banen som minimerer reisetien. Stuer figuren i oppgaveteksten. Vi skal vise at ersom lyset alyer Fermats prinsipp, så må vinklene θ og θ 2 være like. Merk at sien hastigheten er konstant så er minimal reiseti ekvivalent me minimal strekning. Punktene A og B er gitt. Vi lar -aksen ligge på speilet, og lar y-aksen gå gjennom A. Viere sier vi at punktet A har koorinater (0,a) og punktet B har koorinater (,b). Vi lfov september 20 Sie 5
6 TMA400 Matematikk høsten 20 lar lyset treffe speilet i punktet. Ve Pytagoras får vi a et avstanen lyset tilbakelegger er gitt ve f() = a b 2 +( ) 2. Den verien for som gir kortest strekning er gitt ve ligningen f () = 0, f () = a 2 + ( ) 2 b 2 +( ) = 0. 2 Sien sinθ = a og sinθ 2 = ( ) b 2 +( ) 2, gir ligningen over at sinθ = sinθ 2. Dette mefører at θ = θ 2 fori θ og θ 2 tilhører intervallet (0,π/2). Vi har vist at vinklene må være like. 48 Vi får oppgitt at et koster c() = å prousere gjenstaner. Vi skal minimere en gjennomsnittlige prouksjonskostnaen c() = Vi eriverer og får at ( ) c() = 2 20 ( ) c() = 2 ( ) Vi har at c() = 0 = 0. Sien = 0 er et lokalt minimum for c() gjennomsnittskostnaen. Avsnitt 4.6 ( ) c() = 2 > 0, gir 2. eriverte-testen at, vs. at = 0 er et prouksjonsnivå som minimerer sin5 2 Uttrykket 0 er på en ubestemte formen 0 0. Ve hjelp av l Hopital-regelen får vi sin5 5cos5 at 0 = 0 = (3+ sin ) = 0 +((3+)sin ), sin og ette er på en ubestemte formen (0/0), så vi bruker L Hopitals regel: 0 +((3+)sin ) = sin 0 +(3sin+(3+)cos ), sin+cos og ette er fortsatt på ineterminate form (0/0), så vi fortsetter: 0 +(3sin+(3+)cos ) = sin+cos 0 +(3cos+2cos (3+)sin ) = cos+cos sin = = 6 2 = 3. lfov september 20 Sie 6
7 TMA400 Matematikk høsten Merk at 0 + = sin 0 + sin = sin. 0 + Uttrykket 0 + sin er på ineterminate form 0/0, så vi bruker L Hopitals regel: sin 0 + = cos =. 0 + Viere får vi 70 a) Vi har at 0 + = sin =. / = e ln/ = e ln Vi eriverer ette uttrykket to ganger: (/ ) = ( 2 ln+ 2)e ln 2 2(/ ) = ( 2 3 ln 3 2 3)e ln +( 2 ln+ 2)2 e ln For > 0 har vi at (/ ) = 0 ln + = 0 ln = 2 2 = e. Sien 2 ( / ) = e /e < 0 for = e får vi ve 2. eriverte-testen at e /e er 2 e 3 maksimumsverien til /. b) Vi har at Vi eriverer ette uttrykket to ganger: /2 = e ln/2 = e 2 ln (/2 ) = ( 2 3 ln+ 3)e 2 ln 2 ) = ( 6 2(/2 4 ln )e 2 ln +( 2 3 ln+ 3)2 e 2 ln For > 0 har vi at (/2 ) = ln+ 3 = 0 ln = 2 = e/2. Sien 2 2 ( /2 ) = 2 e 2 e /2e < 0 for = e /2 får vi ve 2. eriverte-testen at e /2e er maksimumsverien til /2. c) Vi har at Vi eriverer ette uttrykket to ganger: (/n ) = ( n ln+ n+ 2 ) = ( n(n+) 2(/n n+2 /n = e ln/n = e n ln n+)e n ln ln n n+ n+2 n+2 )e n ln +( n ln+ n+ n+)2 e n ln lfov september 20 Sie 7
8 TMA400 Matematikk høsten 20 For > 0 har vi at (/n ) = 0 n ln+ = 0 ln = n+ n+ n = e /n. Sien 2 ( 2 /n ) = n e /ne < 0 for = e /n får vi ve 2. eriverte-testen at e /ne e n+2 n er maksimumsverien til /n. ) /n = eln/ n = e n ln Vi ser på ln, som er på en ubestemte formen n. Vi bruker l Hopital-regelen: ln = n Det følger at /n = e 0 =. / = nn n n = 0 lfov september 20 Sie 8
x, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger
TMA4100 Matematikk1 Høst 2008
TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],
Anbefalte oppgaver uke 36
Anbefalte oppgaver uke 36 Høsten 2017 Løsningsforslag 1 Vi begynner me å skrive om ligningen litt, først til x y x + y = x2 + y, (1) y og så eller Nå eriverer vi, og får slik at xy y 2 = x 3 + xy + x 2
. Følgelig er csc 1 ( 2) = π 4. sin θ = 3
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving Avsnitt 3.7 99 Vi deriverer to ganger: = A cos (ln ) B sin (ln ) = A cos (ln ) A sin (ln ) + B sin (ln ) B cos (ln
Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011
Derivasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 30. august 2011 Kapittel 3.3. Enringsrate 3 Enrings rate hastighet og akselersjon Definisjon Hvis s(t) er
Løsningsforslag til underveisvurdering i MAT111 vår 2005
Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x
EKSAMEN Løsningsforslag
7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator
Eksamen 1T høsten 2015, løsningsforslag
Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =
TMA4100 Matematikk 1 Høst 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 014 Løsningsforslag Øving 03.7. Økningen i uksen, F, kan approksimeres som se sie 131 i boka F F =
TMA4100 Matematikk 1 Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 24 Løsningsforslag Øving 9 4.3.4 Vi bruker Taylor-polynom til å løse denne oppgaven. Taylor-polynomet (Maclaurinpolynomet)
Finn volum og overateareal til følgende gurer. Tegn gjerne gurene.
Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag oktober 01 kl 1:00 Antall oppgaver: 16 Løsningsforslag 1 Finn volum og overateareal til følgende gurer Tegn
. Følgelig er csc 1 ( 2) = π 4. sinθ = 3
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving Avsnitt.7 99 Vi deriverer to ganger: = A 1 cos(ln) B1 sin(ln) = A 1 cos(ln) A 1 sin(ln)+b 1 sin(ln) B 1 cos(ln)
lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.
Løsningsforslag til underveiseksamen i MAT 1100
Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 8 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 8 Derivasjon I agens forelesning skal vi se på følgene: 1 Kjerneregelen 2 Deriverte til trigonometriske
Forkurs, Avdeling for Ingeniørutdanning
Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen
MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag
MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)
TMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k
Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.
Løsningsforslag. 3 x + 1 + e. g(x) = 1 + x4 x 2
Prøve i FO929A - Matematikk Dato: 1. juni 2012 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 2 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
dg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag 15. desember 2014 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 11 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I - LØSNING Mandag. desember 214 Tid: 9: 14:
M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1
Funksjonene f og g er efinert ve f( )= 1 og g ( ) = ( +3). M1_01 g( f( )) er a lik a ( 1)( + 3) b ( + 3) 1 c ( ) ( + ) e + 8 MA13001 M1 Sie 1 En funksjon f er efinert ve: M1_0 f( )= 1 hvis < 1 f( )= +1
Løsningsforslag eksamen MAT111 Grunnkurs i Matematikk I høsten 2009
Løsningsforslag eksamen MAT Grunnkurs i Matematikk I høsten 9 OPPGAVE (a) Vi har w = + ( ) =. I et komplekse plan ligger w i 4. kvarant og vinkelen θ mellom tallet og en relle aksen har tan θ =, vs. at
. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.
MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f
TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag
TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt
Løsningsforslag til obligatorisk oppgave i MAT 1100, H-04
Løsningsforslag til obligatorisk oppgave i MAT 00, H-04 Oppgave : a) Vi har zw ( + i )( + i) + i + i + i i og + i + i ( ) + i( + ) z w + i + i ( + i )( i) ( + i)( i) i + i i i ( i ) ( + ) + i( + ) + +
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005. eksamensoppgaver.org
Løsningsforslag AA6526 Matematikk 3MX Privatister 3. mai 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet
Fasit, Implisitt derivasjon.
Ukeoppgaver, uke 8, i Matematikk, Implisitt derivasjon. 5 Fasit, Implisitt derivasjon. Oppgave Vi kaller den deriverte av y for y, og dette blir første ledd. Andre ledd må deriveres med kjerneregelen,
1+2 x, dvs. løse ligningen mhp. x. y = x y(1 + 2 x ) = = 100 y y x ln 2 = ln 100 y y x = 1. 2 x = 1. f 1 (x) =
NTNU Institutt for matematiske fag TMA4 Matematikk høsten 2 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere f() +2, dvs. løse ligningen mhp.. + 2 ( + 2 ) 2 ln 2 ln ln 2 ln Vi btter om på og :
TMA4100 Matematikk 1 Høst 2014
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 sforslag forkunnskapstest Faktoriser, hvis mulig, uttrkket +. (A) ( + 5)( ) (B) ( 5)( + ) (C) ( + )( )
Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister 6. desember 2006. eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister 6. desember 6 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det
a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik.
Løsningsforslag utsatt eksamen Matematikk 2, 4MX25-10 (GLU2 5-10) 5.desember 2013 Oppgave 1 a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Ved å bruke tangentlinja i punktet
Deleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag
Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe
Løsningsforslag til eksamen i MAT111 Vår 2013
BOKMÅL MAT - Vår Løsningsforslag til eksamen i MAT Vår Oppgave Finn polarrepresentasjonen til i. i Skriv på formen x + iy. i Løsning Finner først modulus og argument til i: i = ( ) + ( ) = 4 = arg( ( )
Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.
Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller
Høgskolen i Oslo og Akershus. sin 2 x cos 2 x = 0, x [0, 2π) 1 cos 2 x cos 2 x = 0 2 cos 2 x = 1 cos 2 x = 1 2 1 2
Innlevering i DAFE/ELFE 1000 Oppgavesett 1 Innleveringsfrist: 31. januar klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 Løs disse likningene ved regning, og oppgi svarene eksakt: a) Vi kan for
Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
1 dx cos 1 x =, 1 x 2 sammen med kjerneregelen for derivasjon. For å forenkle utregningen lar vi u = Vi regner først ut den deriverte til u,
TMA0 Høst 205 Norges teknisk nturvitenskpelige universitet Institutt for mtemtiske fg 3.5.30: Vi bruker erivsjonsregelen for cos x, x cos x =, x 2 smmen me kjerneregelen for erivsjon. For å forenkle utregningen
Integrasjon Forelesning i Matematikk 1 TMA4100
Integrasjon Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 21. oktober 2011 Kapittel 7.4. Delbrøksoppspalting og Integrasjon av rasjonale funksjoner 3 Integrasjon av
NTNU MA0003. Ole Jacob Broch. Norwegian University of Science and Technology. MA0003 p.1/29
MA0003 Ole Jacob Broch Norwegian University of Science and Technology MA0003 p.1/29 Oversikt, torsdag 13/1 Avsnitt 1.3: intervaller og intervallnotasjon definisjons- og verdimengden til en funksjon Avsnitt
Derivasjon ekstremverdier Forelesning i Matematikk 1 TMA4100
Derivasjon ekstremverdier Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 6. september 20 Kapittel 3.. Hyperbolske funksjoner 3 Hyperbolske funksjoner Definisjon (Grunndefinisjoner)
TMA4140 Diskret matematikk Høst 2011 Løsningsforslag Øving 7
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av?? TMA4140 Diskret matematikk Høst 011 Løsningsforslag Øving 7 7-1-10 a) Beløpet etter n 1 år ganges med 1.09 for å
EKSAMEN TMA4100 HØST 2014 LØSNINGSFORSLAG. du/dx = e x du = e x dx, Her har vi brukt analysens fundamentalteorem til å derivere telleren.
EKSAMEN TMA400 HØST 04 ØSNINGSFORSAG Oppgave. Uner rottegnet står et + e x, og en eriverte til ette uttrykket er e x, som står utenfor rottegnet. Sett erfor u +e x. Da får vi og vi kan løse intergralet:
EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:
Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett
: subs x = 2, f n x end do
Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x
1+2 x, dvs. løse ligningen mhp. x. y = 100. y(1+2 x ) = = 2 x = y. xln2 = ln 100 y. x = 1 ln2 ln. f 1 (x) = 1 ln2 ln x
NTNU Institutt for matematiske fag TMA400 Matematikk Høsten 20 Løsningsforslag - Øving Avsnitt.5 59 a) Vi skal invertere y f(x) 00 +2 x, dvs. løse ligningen mhp. x. y 00 +2 x y(+2 x ) 00 2 x 00 00 y y
EKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2
Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.
Analyse og metodikk i Calculus 1
Analyse og metodikk i Calculus 1 Fredrik Göthner og Raymi Eldby Norges teknisk-naturvitenskapelige universitet 3. desember 01 1 Innhold Forord 3 1 Vurdering av grafer og funksjoner 4 1.1 Hva er en funksjon?.........................
Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100
Første og andrederivasjons testen Anvendt optimering Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 13. september 2011 Kapittel 4.3. Monotone funksjoner og førstederivasjons-testen
Oppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en
a) f(x) = 3 cos(2x 1) + 12 LF: Vi benytter (lineær) kjerneregel og får f (x) = (sin(7x + 1)) (sin( x) + x) sin(7x + 1)(sin( x) + x) ( sin(x) + x) 2 =
Innlevering DAFE ELFE Matematikk 000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Mandag 2. mars 205 før forelesningen 0:30 Antall oppgaver: 7 Løsningsforslag Deriver de følgende funksjonene. a) f(x)
SIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag
SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et
Løsning IM3 15.06.2011.
Løsning IM 15611 1 Oppgave 1 Innsetting viser at både teller og nevner er i origo, så uttrykket er ubestemt Siden det ikke er noen umiddelbar omskriving som forenkler uttrykket satser vi på å vise at grensen
Fasit til obligatorisk oppgave i MAT 100A
3. november, 000 Fasit til obligatorisk oppgave i MAT 00A Oppgave a) Grensen er et 0 0-uttrykk, og vi bruker l Hôpitals regel: ln cos π (ln ) (cos π ) ( sin π ) π b) Vi må først skrive uttrykket på eksponentiell
MA0002 Brukerkurs i matematikk B Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,
Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 18. august 2011
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 8. august 20 2 Definisjon av funksjon Definisjon En funksjon er en regel f som til et hvert tall i definisjonsmengden
Løsning, Oppsummering av kapittel 10.
Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 21. januar 2010 kl Antall oppgaver: 4.
Innlevering i matematikk Obligatorisk innlevering nr. 4 Innleveringsfrist: 1. januar 1 kl. 14. Antall oppgaver: 4 Løsningsforslag Oppgave 1 a = [3, 1, ], b = [, 4, 7] og c = [ 4, 1, ]. a) a = 3 + ( 1)
Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
TMA4100: Repetisjon før midtsemesterprøven
TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.
MA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,
MA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
Mer om likninger og ulikheter
Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere
Norges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
MA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det
MA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3
Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og
Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
Institutt for Samfunnsøkonomi. Utlevering: 29.04.2015 Kl. 09:00 Innlevering: 29.04.2015 Kl. 14:00
SENSORVEILEDNING MET 803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 9.04.05 Kl. 09:00 Innlevering: 9.04.05 Kl. 4:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave Beregn følgende
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100
Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema
Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Løsningsforslag, midtsemesterprøve MA1101, 5.oktober 2010 Oppgave 1 Løs ulikheten x + 6 5 x + 2 Strategien er å
NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 12. Avsnitt Ved Taylors formel (med a = 0) har vi at. 24 For x < 0 har vi at
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 200 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),
. Vi får dermed løsningene x = 0, x = 1 og x = 2.
Innlevering i FO99A - Matematikk Innlevering 1 Innleveringsfrist. oktober 010 Antall oppgaver 11 Løsningsforslag Oppgave 1 a) ( 3 + 1)( 7 + ) 1 + 3 = 3 7 + 7 + 3 + 3 + 3 = 1 + 7 + 5. b) 5/3 3 50 = 3 5
x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124
NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får
LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
Fysikkonkurranse 1. runde 6. - 17. november 2000
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Fysikkonkurranse 1. runde 6. - 17. november 000 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 100
NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).
NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk
Nicolai Kristen Solheim
Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende
Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en
Taylor-polynom. Frå læreboka Kalkulus med én og ere variabler"av Lorentzen, Hole og Lindstrøm, Universitetsforlaget 2003
Taylor-polynom Frå læreboka Kalkulus med én og ere variabler"av Lorentzen, Hole og Lindstrøm, Universitetsforlaget 00 Tidligere har vi sett på korleis vi kan bruke tangentar til funksjoner til å estimére
NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
Løsning eksamen R1 høsten 2009
Løsning eksamen R høsten 009 Oppgave a) b) f( ) 5e 3 f ( ) 5 e (3 ) 5e 35e 3 3 3 3 ( ) ln( ) g 3 3 3 g( ) ln( ) ln( ) 3 ln( ) ( ) 3 3 ln( ) 3 ln( ) (3ln( ) ) c) La 3 f( ) 0 0. Da er 3 f () 0 0 0 0 0 Dermed
Sammendrag kapittel 9 - Geometri
Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning
= x lim n n 2 + 2n + 4
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten
Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsdag 8. august 2002
NTNU Sie 1 av 7 Institutt for fysikk Fakultet for fysikk, informatikk og matematikk Løsningsforslag til eksamen i SIF4072 KLASSISK FELTTEORI Torsag 8. august 2002 Eksamen gitt av Kåre Olaussen Dette løsningsforslaget
Generell trigonometri
7 Generell trigonometri 7.1 et utvidede vinkelbegrepet Oppgave 7.110 Tegn vinklene i grunnstilling. a) 30 b) 120 c) 210 d) 300 Oppgave 7.111 Tegn vinklene i grunnstilling. a) 45 b) 360 c) 540 d) 720 Oppgave
Stigende og avtagende funksjoner Definisjon. Horisontal og vertikal forskyvning. Trigonometriske funksjoner
Funksjoner Forelesning i Matematikk TMA00 Hans Jako Rivertz Institutt for matematiske fag 9. august 0 Stigende og avtagende funksjoner En funksjon f kalles stigende på intervallet I vis f (x ) < f (x )
Løsningsforslag. f(x) = 2/x + 12x
Prøve i FO929A - Matematikk Dato: august 212 Målform: Bokmål Antall oppgaver: 5 (2 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver
Oppfriskningskurs i matematikk Dag 2
Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på
Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist
Eksamen i klassisk feltteori, fag 74 50, 8. esember 1998 Lsninger 1a) Vi antar at x +, x x =0; (1) og at c = g x x. Sa gjr vi en koorinattransformasjon x 7 ex,ogskal vise at ex + e, ex ex =0; () er c =
UNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
Fasit og løsningsforslag til Julekalenderen for mellomtrinnet
Fasit og løsningsforslag til Julekalenderen for mellomtrinnet 01.12: Svaret er 11 For å få 11 på to terninger kreves en 5er og en 6er. Siden 6 ikke finnes på terningen kan vi altså ikke få 11. 02.12: Dagens
Oppgave 2 Løs oppgavene I og II, og kryss av det alternativet (a, b eller c) som passer best. En funksjon er ikke deriverbar der:
Oppgave a) Si kort hva deriverte til en funksjon forteller oss. Hva handler deriverbarhet om? b) Er f (x) = deriverbar for alle reelle x-verdier? x Bestem deriverte til f i sin definisjonsmengde. c) Tegn