Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:

Størrelse: px
Begynne med side:

Download "Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:"

Transkript

1 Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som kalles eterminanten til matrisen Dette ene tallet sier oss en hel el om hvoran matrisen oppfører seg Vi har to forskjellige notasjoner for eterminanter Hvis A = a n1 a n2 a nn er en n n-matrise, så skriver vi enten et A eller a n1 a n2 a nn for eterminanten til A Determinanter for 2 2-matriser For en 2 2-matrise [ ] a b A = c er eterminanten efinert ve: a b c = a bc Determinanten har en fin geometrisk tolkning Vi ser på e to kolonnene i A som vektorer i R 2, tegner em som piler i planet, og lager et parallellogram me isse som to av siene Dette paralellogrammet kan vi kalle parallellogrammet utspent av e to vektorene c [ ] b b a [ a c] Parallellogrammet utspent av kolonnene i A La oss beregne arealet av ette parallellogrammet Vi tegner på noen hjelpelinjer: c + c b a a + b Parallellogramarealberegningshjelpefigur Vi kan finne arealet av parallellogrammet ve å starte me arealet av et store rektangelet, som er (a + b)(c + ), og trekke fra arealene av e to små rektanglene og e fire trekantene som omgir parallellogrammet Vi ser at hvert av e små rektanglene har areal bc, at e to trekantene øverst og neerst til sammen har areal ac, og at trekantene til venstre og høyre til sammen har areal b Det betyr at arealet av parallellogrammet er: (a + b)(c + ) 2bc ac b = ac + a + bc + b 2bc ac b = a bc = et A Vi kommer altså frem til at arealet av parallellogrammet utspent av kolonnene i A er lik eterminanten til A Denne utregningen var imilerti litt avhengig av hvoran isse to kolonnevektorene er plassert i forhol til hveranre i planet Hvis vi hae byttet plass på kolonnene, så ville vi isteen fått bc a som areal Da ville altså eterminanten vært negativ Det som holer i alle tilfeller, er at arealet av parallellogrammet utspent av kolonnene i A er lik absoluttverien til eterminanten: et A Så eterminanten gir oss arealet til et parallellogram Men hva forteller et oss om matrisen A? Vi kan tenke på A som en transformasjon av planet er hver vektor v i R 2 senes til vektoren Av Determinanten sier noe om hvoran planet enres uner enne transformasjonen 1

2 La [ 1 e 1 = 0] [ 0 og e 2 = 1] være e to enhetsvektorene i R 2, og se på kvaratet utspent av isse: e 2 1 e 1 Enhetskvaratet Nå vil vi se på hva som skjer me ette kvaratet ersom vi sener hvert punkt v i R 2 til Av, er A = [ ] er en 2 2-matrise me og som kolonner Da senes vektoren e 1 til, og vektoren e 2 senes til Alle vektorene som ligger inni enhetskvaratet i forrige figur senes til vektorer som ligger inni parallellogrammet utspent av og Vi skisserer noen forskjellige muligheter, for forskjellige valg av matrisen A: et A > 0 et A < 0 0 et A et A 0 første figuren, bortsett fra at et er ( et A) som er arealet Da får vi at me et A < 1 blir planet blåst opp, og me 1 < et A < 0 blir et krympet sammen I en treje og en fjere figuren har vi situasjoner er eterminanten er 0 Det vil si at parallellogrammet utspent av kolonnene i A har areal 0 Det blir altså ikke et virkelig parallellogram i isse tilfellene; et har kollapset til et egenerert parallellogram som er bare en linje På samme måte vil transformasjonen v Av i isse tilfellene kollapse hele planet ne til linjen utspent av og Eksempel 61 Vi kan også beregne eterminanten til en kompleks matrise: [ ] 1 i 3 et = (1 i)(1 + 2i) 3i i 1 + 2i = 3 2i Men tallet vi får ut har ingen enkel geometrisk tolkning Determinanter for 3 3-matriser For en 3 3-matrise A = = a 31 a 32 a 33 a 3 kan vi tegne opp raene i A som piler i R 3, og lage et parallellepipe me isse pilene som tre av siene Dette kaller vi for parallellepipeet utspent av vektorene Determinanten er: a 31 a 32 a 33 a = a 32 a a 31 a a 31 a 32 = a 3 = a 3 sin α cos θ Her er α er vinkelen mellom og a 3, og θ er vinkelen mellom og normalen til planet utspent av og a 3 Volumet av parallellepipeet utspent av kolonnene i A er lik absoluttverien av eterminanten til A For to kapitler sien sa vi at et var søylene i A som utspente et parallellepipe Det er ikke et samme parallellepipeet som raene spenner ut, men et har samme volum, og samme eterminant Om man baserer seg på raer eller søyler, er altså av ingen betyning I en første figuren har vi en matrise me positiv eterminant Da gjør transformasjonen v Av at enhetskvaratet skaleres til et parallellogram me areal et A Hvis et A > 1 betyr ette at planet blåses opp ; hvis 0 < et A < 1 betyr et at planet krympes sammen I en anre figuren har vi en matrise me negativ eterminant Da er situasjonen helt lik som i en θ a 3 α Parallellepipevolumberegningshjelpefigur 2

3 Den generelle efinisjonen Vi efinerer eterminanten til en vilkårlig stor kvaratisk matrise etter samme mønster som eterminanten til en 3 3-matrise Definisjon La A = a n1 a n2 a nn være en n n-matrise Determinanten til A, som har notasjonen et A, efineres på følgene måte 1 Hvis n = 1, så har vi at A = [ 1 ], og a efinerer vi at 1 2 Hvis n > 1, innfører vi først noen hjelpevariabler For hver i og j fr til n setter vi A ij til å være (n 1) (n 1)-matrisen vi får ve å fjerne ra i og kolonne j fra A, og vi setter C ij = ( 1) i+j et A ij til å være eterminanten til enne matrisen, me et fortegn som avhenger av i og j Determinanten til A efineres ve: j C 1j j=1 Tallene C ij i efinisjonen kalles kofaktorer av A Det er ikke vanskelig å se at hvis vi setter inn en 2 2-matrise eller en 3 3-matrise i enne generelle efinisjonen, så får vi bare e vanlige reglene for eterminanter av 2 2- og 3 3-matriser For å få litt erfaring me å bruke efinisjonen på større matriser regner vi ut eterminanten av en 4 4- matrise Eksempel 62 La A være følgene 4 4-matrise: A = Vi regner ut eterminanten til A Fra efinisjonen får vi: Vi regner ut hver av 3 3-eterminantene som trengs (merk at vi ikke trenger å regne ut en anre, for en skal uansett ganges me 0): = = = = = = 6 Ve å sette inn isse i uttrykket for et A får vi: ( 12) 4 ( 6) = 18 Vi har altså regnet ut at 18 Ve hjelp av efinisjonen kan vi regne ut eterminanten til en hvilken som helst kvaratisk matrise, men et kan bli velig mye jobb I eksempelet så vi at eterminanten til en 4 4-matrise er efinert ut fra eterminantene til fire 3 3-matriser, og hver av isse er igjen efinert ut fra eterminantene til tre 2 2-matriser Hvis vi går til større matriser, blir arbeismengen fort enormt stor I løpet av ette kapitlet skal vi se på noen lure teknikker for å regne ut eterminanter på minre arbeiskrevene måter Kofaktorekspansjon I efinisjonen av eterminanten går vi gjennom første ra i matrisen, og ser på tallene 1, 2,, n Hvert tall j ganges me en tilhørene kofaktoren C 1j, og til slutt summerer vi alle isse prouktene Det er imilerti ikke nøvenig å gå langs første ra når vi gjør ette Det fungerer like bra å gå langs en annen ra og følge et samme systemet, og resultatet blir et samme Det går essuten an å gå langs en hvilken som helst kolonne me samme system Vi oppsummerer ette i følgene teorem Teorem 63 La A være en n n-matrise, er n > 1, og la A ij og C ij være som i efinisjonen av eterminant Da har vi a kj C kj = a il C il j=1 i=1 for alle k og l slik at 1 k n og 1 l n Å regne ut eterminanten ve å beregne en sum av tall fra matrisen ganget me kofaktorer slik som i teoremet kalles kofaktorekspansjon Vi sier at vi gjør kofaktorekspansjon langs ra k eller langs kolonne l La oss nå regne ut en samme eterminanten som i eksempel 62, men på en lurere måte Eksempel 64 Vi lar igjen A være enne 4 4- matrisen: A =

4 Vi kan observere at en anre kolonnen inneholer nesten bare nuller, så et er lurt å gjøre kofaktorekspansjon langs en Da får vi: ( = ) = 2 ( ( 1)) = 18 Vi fikk samme resultat som i eksempel 62, men me minre arbei, sien vi bare trengte å regne ut én 3 3-eterminant Vi må passe på at vi får fortegnene i kofaktorene riktig Når vi gjør kofaktorekspansjon langs første ra (slik som i efinisjonen) eller langs første kolonne, starter vi allti me positivt fortegn i et første leet Men når vi ekspanerer langs en annen ra eller kolonne, kan et hene vi må starte me negativt fortegn Det kan være nyttig å bruke følgene iagram som en huskeregel for hvilket fortegn vi skal ha i e forskjellige kofaktorene: Determinanter og raoperasjoner Hvis vi utfører en raoperasjon på en matrise, så får vi en ny matrise Den matrisen har ikke nøvenigvis samme eterminant som en opprinnelige, men et viser seg at eterminanten enrer seg på ganske kontrollerte måter når vi utfører raoperasjoner Dette kan vi utnytte for å spare oss for en el arbei når vi skal regne ut eterminanter, spesielt hvis vi har store matriser Teorem 65 La A være en n n-matrise, og la B være en matrise vi får ve å utføre en raoperasjon på A Da har vi følgene sammenheng mellom eterminantene til A og B, basert på hvilken type raoperasjon vi utførte: Raoperasjon Gange en ra me et tall k Legge til et multiplum av én ra i en annen Bytte om to raer Resultat et B = k et A et B = et A et B = et A La oss bruke ette teoremet til å beregne en eterminant Eksempel 66 Vi regner ut et A, er A = Vi får: = = = = = 3 1 ( 2) 5 = 30 Her startet vi me å gjøre raoperasjoner på matrisen, samtiig som vi holt styr på hvoran eterminanten enret seg Først ganget vi øverste ra me 1/3 Det meførte at eterminanten til en nye matrisen ble 1/3 ganger eterminanten til A, så vi måtte gange en me 3 for at tallene skal bli like En henig måte å huske hvoran ette fungerer er å tenke på et som å sette et tall utenfor parentes På samme måte som vi kan trekke ut et 3-tall fra en parentes og få ( ) = 3 ( ), kan vi trekke ut et 3-tall fra en ra i en eterminant Etterpå trakk vi fra multipler av første ra i e to anre raene, men et meførte ingen enring av eterminanten Så byttet vi e to neerste raene, og et gjore at eterminanten skifter fortegn Til slutt gjore vi kofaktorekspansjon langs en første kolonnen Sien vi ve å utføre raoperasjoner hae sørget for å få bare nuller uner iagonalen, ble kofaktorekspansjonen enkel og grei Triangulære matriser Vi sier at en n n-matrise er øvre triangulær hvis alle tall uner iagonalen er 0, altså hvis en er på følgene form: n n 0 0 a 33 a 3n a nn Tilsvarene sier vi at en n n-matrise er nere triangulær hvis alle tall over iagonalen er 0, altså hvis en er på følgene form: a 31 a 32 a 33 0 a n1 a n2 a n3 a nn Eksempel 67 I eksempel 69 brukte vi raoperasjoner til å skrive om matrisen vår til følgene: Denne matrisen er øvre triangulær 4

5 Hvis vi skal finne eterminanten til en øvre triangulær matrise er et praktisk å kofaktorekspanere langs første kolonne Da får vi bare ett le i ekspansjonen, nemlig tallet øverst til venstre i matrisen ganget me eterminanten til matrisen er første ra og kolonne er fjernet Denne matrisen er igjen øvre triangulær Så fortsetter vi me kofaktorekspansjon langs første kolonne i hvert steg neover Det vi ener opp me til slutt er å bare gange sammen alle tallene på iagonalen Vi oppsummerer ette i et teorem Teorem 68 La A være en (øvre eller nere) triangulær n n-matrise Da er eterminanten til A lik prouktet av tallene på iagonalen i A: 1 2 a 33 a nn Eksempel 69 Ve å bruke teoremet kan vi skrive opp eterminanten til en triangulær matrise irekte, uten å måtte beregne anre eterminanter først: = 1 ( 2) 5 Hvis vi skal beregne eterminanten til en stor og stygg matrise, er et en go strategi å bruke raoperasjoner for å skrive om matrisen til øvre triangulær form (og hole oren på hvoran eterminanten enrer seg ve hjelp av teorem 68), og så regne ut eterminanten til en triangulære matrisen ve hjelp av teorem 66 3 Kolonnene i A er lineært uavhengige 4 Kolonnene i A utspenner C n Bevis At A er lineært uavhengige er ekvivalent me at kolonnene spenner ut C n, beviste vi i forrige kapittel Vi beviser nå ekvivalensen av isse to me at A er inverterbar I følge teorem 57 er kolonnnene i A lineært uavhengige hvis og bare hvis vi får et pivotelement i hver kolonne når vi gausseliminerer En annen måte å si ette på, er at A I n, og ette er ekvivalent me at A er inverterbar, ifølge teorem 4 23 For å vise at et A 0 er ekvivalent me at A har lineært uavhengige kolonner, kan vi bruke teorem 66 Vi gausseliminerer A til å blir triangulær Dersom kolonnene i A er lineært uavhengige, får vi et pivotelement i hver kolonne Sien vi alri ganger en ra me 0 uner gausseliminering, viser 66 at et A 0 Dette resonnementet fungerer også baklengs: ersom et A 0, har en gausseliminerte triangulære matrisen ingen iagonalelementer lik null, og et betyr at en originale matrisen hae lineært uavhengige kolonner Flere regneregler Vi tar me et par regneregler til for eterminanter Teorem 610 Determinanten til et proukt av to matriser er prouktet av eterminantene Altså: Hvis A og B er to n n-matriser, så er et(ab) = (et A)(et B) Teorem 611 Determinanten enrer seg ikke når vi transponerer matrisen Altså: Hvis A er en n n- matrise, så er et A Karakterisering av inverterbarhet Vi kan bruke eterminanten til å sjekke om en matrise er inverterbar eller ikke Dette kan essuten knyttes sammen me hvorvit kolonnene i matrisen vår er lineært uavhengige, og hva et utspenner Følgene teorem gir en presis sammenheng mellom inverterbarhet, eterminant, lineær uavhengighet og mengen utspent av kolonnene Teorem 612 La A være en n n-matrise Følgene påstaner er ekvivalente: 1 A er inverterbar 2 et A 0 5

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

Logaritmer og eksponentialfunksjoner

Logaritmer og eksponentialfunksjoner Logaritmer og eksponentialfunksjoner Dette er fra e to første forelesningene i MA02 våren 2008. Noe er skrevet mer ut, men mange etaljer er utelatt. De er utelatt me vilje, for at u skal fylle em ut selv!

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Regneregler for determinanter

Regneregler for determinanter Regneregler for determinanter E.Malinnikova, NTNU, Institutt for matematiske fag 6. oktober, 2010 Triangulær matriser En kvadratisk matrise A = [a ij ] kalles øvre/nedretriangulær hvis a ij = 0 når i >

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur

Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur Vekstrater og eksponentiell vekst ECON 2915 Vekst og næringsstruktur KÅRE BÆVRE Høsten 2005 1 Vekstrater og eksponensiell vekst 1.1 Vekstrater i iskret ti Vekstraten til en størrelse Y angir hvor stor

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 2

MAT-1004 Vårsemester 2017 Obligatorisk øving 2 MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist

1b) Schwarzschil-metrikken er iagonal, og vi har at g tt = 1, c = r, c ; g rr =, r r r r, =,1, r, ; g =,r ; g '' =,r sin : (9) At raielle baner eksist Eksamen i klassisk feltteori, fag 74 50, 8. esember 1998 Lsninger 1a) Vi antar at x +, x x =0; (1) og at c = g x x. Sa gjr vi en koorinattransformasjon x 7 ex,ogskal vise at ex + e, ex ex =0; () er c =

Detaljer

Løsningsforslag øving 7

Løsningsforslag øving 7 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 014 Løsningsforslag Øving 03.7. Økningen i uksen, F, kan approksimeres som se sie 131 i boka F F =

Detaljer

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt . til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4100 Matematikk 1 Høst 2014 2.8.2 Vi merker oss først at funksjonen f er båe kontinuerlig og eriverbar på intervallet [1,2],

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

4. Viktige kvantemekaniske teoremer

4. Viktige kvantemekaniske teoremer FY1006/TFY4215 Tillegg 4 1 TILLEGG 4 4. Viktige kvantemekaniske teoremer Før vi i neste kapittel går løs på treimensjonale potensialer, skal vi i kapittel 4 i ette kurset gå gjennom noen viktige kvantemekaniske

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1

M1_01. Funksjonene f og g er definert ved f( x)= x 1. g( f( x)) er da lik. b ( x + 3) d ( x + 2) e x MA M1 Side 1 Funksjonene f og g er efinert ve f( )= 1 og g ( ) = ( +3). M1_01 g( f( )) er a lik a ( 1)( + 3) b ( + 3) 1 c ( ) ( + ) e + 8 MA13001 M1 Sie 1 En funksjon f er efinert ve: M1_0 f( )= 1 hvis < 1 f( )= +1

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

Fugletetraederet. Øistein Gjøvik

Fugletetraederet. Øistein Gjøvik Øistein Gjøvik Fugletetraeeret Nå skal vi lage et romlegeme u kanskje ikke har sett før. Det er ikke noe mystisk ve selve figuren, men en hører ikke til lant e mest rukte i unervisningen. Lag figuren før

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM

INEC1800 ØKONOMI, FINANS OG REGNSKAP EINAR BELSOM INEC1800 ØKONOMI, FINANS OG REGNSKA EINAR BELSOM HØS 2017 FORELESNINGSNOA 6 rouksjonsteknologi og kostnaer* Fokuset i ette notatet er på beriftenes atfer uner ulike markesformer, fra tilfellet er beriften

Detaljer

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall

Komplekse tall. Kapittel 2. Den imaginære enheten. Operasjoner på komplekse tall Kapittel Komplekse tall Oppfinnelsen av nye tallsystemer henger gjerne sammen med polynomligninger x + 4 0 har ingen positiv løsning, selv om koeffisientene er positive tall Vi må altså inn med negative

Detaljer

Anbefalte oppgaver uke 36

Anbefalte oppgaver uke 36 Anbefalte oppgaver uke 36 Høsten 2017 Løsningsforslag 1 Vi begynner me å skrive om ligningen litt, først til x y x + y = x2 + y, (1) y og så eller Nå eriverer vi, og får slik at xy y 2 = x 3 + xy + x 2

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Kapittel 23 KURSREGNING, FORHOLD OG PROPORSJONER

Kapittel 23 KURSREGNING, FORHOLD OG PROPORSJONER Valuta Kjøp Antall AUD Australske ollar 4,1050 1 CAD Canaiske ollar 4,6630 1 CHF Sveitsiske franc 493,5000 100 CYP Kypriotiske pun 1,3950 1 DKK Danske kroner 97,8700 100 EUR Euro 7,785 1 GBP Pun sterling

Detaljer

Litt mer om kjeglesnitt og Keplers lover om planetbanene

Litt mer om kjeglesnitt og Keplers lover om planetbanene Litt mer om kjeglesnitt og Keplers lover om planetbanene Det er ikke meningen at enne teksten skal stå for seg selv. Den er ment som en hjelp mens u leser 11.6 og eler av kapittel 8 i læreboka. Hvis u

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger

Eksamen i Ikkelineær dynamikk, fag TFY 4305 Onsdag 30. november 2005 Løsninger Eksamen i Ikkelineær ynamikk, fag TFY 4305 Onsag 30. november 2005 Løsninger 1) Den generelle løsningen av ligningen u t + cu x =0eru(x, t) =f(x ct), er f er en vilkårlig funksjon av en variabel. Hvoran

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

MAT Grublegruppen Notat 11

MAT Grublegruppen Notat 11 MAT1100 - Grublegruppen Notat 11 Jørgen O. Lye Matrisegrupper Den store gruppen vi skal se på er GL(n, K) = {inverterbare n n matriser med koesienter i K} Forkortelsen står for den generelle lineære gruppen

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

ANALYSER AV INDEKSER PÅ SKOLEPORTEN

ANALYSER AV INDEKSER PÅ SKOLEPORTEN Christian Wenelborg ANALYSER AV INDEKSER PÅ SKOLEPORTEN Analyser på fylkes- og nasjonalt nivå for 7.trinn, 10. trinn og Vg1 2018 Christian Wenelborg Analyser av inekser på Skoleporten 2018 Analyser på

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005 Kraftelektronikk (Elkraft høst), Løsningsforslag til øvingssett 3, høst 005 Ole-Morten Mitgår HiA 005 Oppgave Dioelikeretter: a) Dioene er snu, strømmen går i motsatt retning. (Husk at strømmen kan bare

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

EMNE 4. Determinanter

EMNE 4. Determinanter EMNE 4. Determinanter Gitt en kvadratisk matrise, A = ( n n ). determinant som angis som: Til alle kvadratiske matriser kan vi knytte en det Determinanten er i utgangspunktet bare en tallstørrelse (skalar),

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for ata- og elektroteknikk Eksamen i ELE620, Systemientikasjon (10 sp) Dato: Manag 15 esember 2014 Lenge på eksamen: 4 timer Tillatte hjelpemiler: Kun

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland

tma4110 Matematikk 3 Notater høsten 2018 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland tma4 Matematikk Notater høsten 8 Øystein Skartsæterhagen Morten Andreas Nome Paul Trygsland Innhold Introduksjon ii Lineære likningssystemer Gausseliminasjon 4 Vektor- og matriselikninger 8 4 Matriser

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner

Mer om mengder: Tillegg til Kapittel 1. 1 Regneregler for Booleske operasjoner MAT1140, H-16 Mer om mengder: Tillegg til Kapittel 1 Vi trenger å vite litt mer om mengder enn det som omtales i første kapittel av læreboken. I dette tillegget skal vi først se på regneregler for Booleske

Detaljer

Lineære likningssystemer

Lineære likningssystemer Lineære likningssystemer Mange fysiske problemer kan formuleres som lineære likningssystemer i vektorrommet, 1/19 Lu = f Lineær: betyr at virkningen av L på u + v er L(u + v) = Lu + Lv, og skaleres som

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 sforslag forkunnskapstest Faktoriser, hvis mulig, uttrkket +. (A) ( + 5)( ) (B) ( 5)( + ) (C) ( + )( )

Detaljer