Elektrisk potensial/potensiell energi
|
|
- Hugo Mikalsen
- 6 år siden
- Visninger:
Transkript
1 Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle linjene 3 4 E Løsning: 3. V = E d l = dersom d l E.. En partikkel med negativ ladning plasseres med null starthastighet i et elektrostatisk felt E. Partikkelens bevegelse blir A. i retning høyere potensiell energi B. i retning lavere potensial C. i samme retning som E D. i retning normalt på E E. i retning lavere potensiell energi Løsning: På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet fra f.eks. jorda, dvs. beveger seg i retning lavere potensiell energi, vil en ladet partikkel med null starthastighet bevege seg i retning lavere potensiell energi i et elektrisk felt. Matematisk: F = kraft, = ladning <, U = potensiell energi, V = potensial F = E = E E = V U = V = V F = U = V = V Mulige rette svar er altså: Beveger seg i retning lavere potensiell energi U, i retning høyere potensial V, 3 i motsatt retning av E eller 4 i samme retning som kraft F, hvorav bare var gitt som et mulig flervalg. 3. Den potensielle energien til to elektroner i innbyrdes avstand. nm har verdi nærmest ev =.6 9 J A. 4.4 ev B. 8.9 ev C.. ev D. 7.3 ev E.. ev Løsning: U = e V = e k e r = e Vm/C.6 9 C. nm = e 4.4 V = 4.4 ev. 4. En punktladning har en ladning på.5 C. Ved hvilken avstand fra punktladningen er det elektriske potensialet 8. V? A..46 mm B mm C..5 mm D.. mm E..8 mm
2 Løsning: For en punktladning er V = k/r. Denne løser vi for r: r = k V = Nm /C.5 C =.8 3 m =.8 cm. 8. V 5. Fire ladninger er plassert i hjørnene på et kvadrat som vist i figuren. Det elektriske feltet E og det elektriske potensialet V relativt uendelig i punktet P i sentrum av kvadratet oppfyller A. E = og V = B. E og V > C. E = og V > D. E og V < E. Ingen av disse er korrekt Løsning: E = og V =. E-feltet rundt hver punktladning er Er = a = kq/a. Potensialet relativt rundt hver punktladning er V r = a = kq/a. Med to positive og to negative ladninger i samme avstand er E = og V = i P. 6. To punktladninger = +. nc og = 7.5 nc er plassert. m fra hverandre. Et punkt P er.8 m fra og.7 m fra. Hva er potensialet i P? A. 6. V B. 76. V C. 3. V D. 5. V E. 6.9 V Løsning: V = i = 4πε r i i 4πε i +. = Nm /C 9 C.8 m + r r C.7 m = 76. V. 7. En positiv ladning er plassert i punktet x, y =, og en negativ ladning er plassert i punktet x, y = a,. Anta at V =. Ved hvilken posisjoner på x-aksen er V =? A. x = a og a/3 B. x = a/ og a/ C. Kun i x = a/4 D. Kun i x = a E. x = a og a/4 Løsning: Et generelt uttrykk for potensialet langs x-aksen er V = k x, x a som er når x = a og a/3. Potensial rundt elektrisk dipol Page
3 8. En elektrisk dipol som består av to punktladninger ± er plassert langs z-aksen med sentrum i origo, som vist i figuren. Det elektriske dipolmomentet er da p = a, der a = a ẑ er vektoren fra til. Siden vi her opplagt må ha symmetri med hensyn til rotasjon omkring z-aksen, er det tilstrekkelig å se på forholdene i et halvplan som inneholder z-aksen, f.eks. xz-planet, med x >. Vi kan videre velge mellom kartesiske koordinater x, z eller polarkoordinater r, θ for å angi en vilkårlig posisjon i dette planet. Vi skal se på begge deler i denne oppgaven. For standard polarkoordinater er vinkelen θ lik vinkelen som r danner i forhold til z-aksen, som vist i figuren. z V =? r a θ r r x f.eks. a Bestem først sammenhengen mellom de kartesiske koordinatene og polarkoordinatene, dvs. xr, θ, zr, θ og rx, z. Løsning: Med vårt valg av polarvinkel θ ser vi fra figuren at x = r sin θ z = r cos θ r = x + z. b Vis at potensialet fra en slik dipol i kartesiske koordinater blir V x, z =. 4πε x + z a/ x + z + a/ Løsning: Vi bruker superposisjonsprinsippet for å bestemme potensialet fra de to punktladningene. Med punktet x, z i en avstand r fra og en avstand r fra får vi V x, z = 4πε r 4πε r = 4πε x + z a/ x + z + a/ Avstandene r og r uttrykt ved x og z ser vi direkte fra figuren. c Hva blir potensialet på x-aksen, V x,? Løsning: Potensialet på x-aksen blir V x, = 4πε x + a /4 =. x + a /4. Page 3
4 d Hva blir potensialet på z-aksen, V, z? På hele z-aksen; pass på fortegnene! Skissér funksjonen V, z. Løsning: Potensialet på z-aksen blir V, z = 4πɛ z a/ z + a/ Legg merke til at vi her må bruke absoluttverditegn hvis vi vil ha ett uttrykk som gjelder på hele z-aksen. Med z > a/: Med z < a/: Med a/ < z < a/:. z a/ z + a/ = z a/ z + a/ = a z a /4. z a/ z + a/ = z a/ + z + a/ = a z a /4. z a/ z + a/ = z a/ z + a/ = Skisse av V, z : V,z z z a /4 = z a /4 z. a/ a/ z e Vis at i stor avstand fra dipolen dvs r a er potensialet med god tilnærmelse gitt i polarkoordinater ved V r, θ = p cos θ 4πε r = p r 4πε r 3. Tips: Skriv om r r = r r r r, og bruk figuren over til å finne et tilnærmet uttrykk for dette når r a. Løsning: Vi bruker tipset gitt i oppgaveteksten, samt betraktning av følgende figur, og får: Med skisse menes en håndtegnet figur som viser hovedtrekkene i funksjonen. For den som insisterer på en mer rigid matematisk tilnærming til denslags, er det her snakk om å bestemme V r, θ til ledende orden i den lille parameteren a/r. Med andre ord, det oppgitte uttrykket for V r, θ er eksakt for en såkalt ideell dipol med null utstrekning dvs a. Page 4
5 V r, θ = = r r 4πɛ r r 4πɛ r r a cos θ 4πɛ r = p cos θ pr cos θ p r = = 4πɛ r 4πɛ r3 4πɛ r 3. z V =? r p θ r^ a θ θ r r x a cos θ r r Vi kan alternativt gå litt saktere fram: Fra figuren ser vi at følgende tilnærmelser kan brukes for r og r : r r a cos θ r r + a cos θ. Da blir a r r r r r + a r cos θ = cos θ r x + x r = r + x x, r der vi har definert x = a cos θ r, og siden x for r a gjelder rekkeutviklingen ±xn ± nx. Da får vi endelig r r r + x x = x r = a cos θ r. Merk at mens potensialet fra en enkelt punktladning monopol avtar som /r, avtar altså potensialet fra en dipol raskere, nemlig som /r. Dette er rimelig fordi dipolens negative og positive ladning bidrar med motsatt fortegn til det totale potensialet og vil delvis oppheve hverandre. På hele x-aksen vil de to bidragene eksakt oppheve hverandre. To kuleskall To svært tynne, konsentriske, metalliske kuleskall har radier henholdsvis og 3. Det indre skallet har ladningen, og det ytre skallet har ladningen 3. a Finn uttrykk for det elektriske feltet Er i alle deler av rommet. Løsning: For å finne E-feltet deler vi rommet opp i tre områder:, og 3 og bruker Gauss lov i hver av dem. r < : Innenfor det indre skallet er det ingen ladning, slik at E =. < r < 3 : Gaussflate = kuleflate som omslutter indre skall. Ladningen innenfor Gauss- Page 5
6 flata blir Q encl = og Gauss lov lyder E d A = ɛ. Pga. symmetri må E være konstant og radiell over kuleflata: E = Er ˆr, slik at E d A = Er 4πr Er = 4πɛ r. 3 < r: Gaussflate = kuleflate som omslutter ytre skall. Ladningen innenfor Gaussflata blir Q encl = 3 =. Er = 4πɛ r. Ei skisse av Er er vist under til høyre. b Hva er potensialdifferansen mellom skallene? Løsning: Vi kan finne potensialet på to måter, enten bruke E-felt fra oppgave a, eller bruke at potensialet fra et kuleskall er kjent V r = 4πɛ r, og addere bidraget fra de to kuleskall. Vi presenterer her den første metoden: V = V 3 V = 3 E d s = 3 ˆr dr ˆr = 4πɛ r [ 4πɛ 3 ] = πɛ. c Hvordan vil ladningen fordele seg dersom de to skallene forbindes med en tynn ledende tråd? Løsning: Når skallene blir forbundet, blir potensialforskjellen mellom dem null. Systemet kan betraktes som én leder, som ikke har noen ladning inni. All ladning går da til det ytterste skallet, som får ladning 3 =. Kule med gitt Qr 9. Ei kule med radius har en ladningfordeling slik at ladningen Qr innenfor radius r er gitt ved 4 Qr = 4πρ 3 r3 r4 for r. Den totale ladningen for kula er således Q = Q = 4π 3 3 ρ, hvor vi ser at ρ er gjennomsnittsverdien av ρr i kula. Utenfor kula er det ladningsfritt. Page 6
7 a Bruk Gauss lov til å bestemme det elektriske feltet utenfor kula r > og inne i kula r. Løsning: Oppgaveteksten virker kanskje litt tricky, siden det er ladningen som er gitt og ikke ladningstettheten. Men ganske likt oppgaver vi har sett tidligere er dette ei kule med en ladningstetthet som er avhengig av r innenfor, og ingen ladningstetthet utenfor. Det blir faktisk enklere å anvende Gauss lov da her ladning Q encl innenfor et visst kuleskall er gitt. Vi bruker Gauss lov, med Gaussflate lik ei kule konsentrisk til ladningsfordelinga. For r er det elektriske feltet som rundt en punktladning ved r = og med ladning Q. Dette har vi beregnet flere ganger tidligere: Er = Q 4πɛ r = ρ r, der det ved siste likhetstegnet er satt Q = 4πρ 3 3 og vi her og videre uttrykker størrelsene ved r/. For r er Q encl = Qr som gitt i oppgaven. Da E = Er ˆr er konstant over ei kuleflate blir: r : E da = Er 4πr = Qr = 4πρ 4 ɛ 3 r3 r4 Er = ρ 4 ɛ r 3 r. b Bestem det elektriske potensialet V r utenfor kula og inne i kula. Sett referanse V =. Tips: Finn først V r >. Uttrykk så integralet for V r < med V. V r må være kontinuerlig ved r =. Løsning: Det elektriske potensialet for r, relativt uendelig, er gitt ved: V r = r E d s = r Q 4πɛ r dr = Q 4πɛ Det elektriske potensialet for r kan skrives V r = [V r V ] + V, hvor V r V bestemmes ved å integrere ligning??: r r ρ V r V = E d s = 4r 3 3ɛ r dr = ρ = ρ ] [ r + r3 og V finnes ved innsetting i likning??: V = ρ. [ ] r = Q r 4πɛ r = ρ r. 3 ] r [r r3 Dermed er V r = [V r V ] + V = ρ ] [ r + r3 3 4 En potensialfunksjon kan ikke ha noen sprang. Dette ville innebære energiendring over null forflytning. Kontrollinnsetting av r = i de to uttrykkene for V r vil vise at potensialet Page 7
8 er kontinuerlig her: r, likning?? : V = ρ r, likning?? : V = ρ [ + ] = ρ c Finn uttrykk for romladningstettheten ρr for r. Løsning: omladningstettheten er definert ρr = dq. Med kulesymmetri bruker vi volumelement dv = 4πr dr, slik at vi med oppgitt Qr får dv ρr = dq 4πr dr = 4πρ d 4 3 r3 r4 4πr = ρ 4r dr r 4 r3 = 4ρ r. 5 Vi kan også beregne ρ fra Gauss lov på differensialform. Da må vi passe på å bruke rett utrykk for divergens i kulekoordinater fra formelark og Er fra ligning??: ρ = ɛ E d { = ɛ r r Er } { d ρ = ɛ 4r 3 dr r 3 } dr 3ɛ r4 = ρ { 3 r r } r3 = 4ρ r. d Bruk et digitalt verktøy f.eks. Python til å vise grafer av ρ, Q, E og V for < r/ < 3/. Velg dimensjonsløse variable: og plott alle i én figur. ρr/ 4ρ, Qr/ 4πρ, Er/ 3 3 ρ 3ε, V r/ ρ 3ε Løsning: Ved bruk av dataplott er det gunstig å bruke dimensjonsløse størrelser. Gode dimensjonsløse variable er gitt ved For r/ < : ρr 4ρ?? Qr 4πρ 3 3 Er/ ρ V r/ ρ = r oppgitt r 3 r 4 = 4 3?? r r = 4 3?? r r 3 = + For r/ : ρr = 4ρ oppgitt Qr 4πρ 3 3 Er/ ρ V r/ ρ oppgitt =?? =?? = r r Page 8
9 rho, Q, E og V for inhomogent ladd kule rho Q E V el. rho, Q, E og V r/ Page 9
Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)
Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen
Løsningsforslag til øving 3
Institutt for fysikk, NTNU TFY455/FY003 Elektromagnetisme Vår 2009 Løsningsforslag til øving 3 Oppgave a) C V = E dl = 0 dersom dl E b) B På samme måte som et legeme med null starthastighet faller i gravitasjonsfeltet
Overflateladningstetthet på metalloverflate
0.0.08: Rettet opp feil i oppgave 4 og løsningsforslag til oppgave 8b. Overflateladningstetthet på metalloverflate. Ei metallkule med diameter 0.0 m har ei netto ladning på 0.50 nc. Hvor stort er det elektriske
Løsningsforslag til øving 4
Institutt for fysikk, NTNU TFY455/FY003 Elektrisitet og magnetisme Vår 2007 Veiledning uke 5 Løsningsforslag til øving 4 Oppgave a) Vi benytter oss av tipsene gitt i oppgaveteksten og tar utgangspunkt
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 9. E dl = 0. q i q j 4πε 0 r ij. U = i<j
TFY404 Fysikk. Institutt for fysikk, NTNU. Høsten 207. Løsningsforslag til øving 9. Oppgave. a) C V = E dl = 0 dersom dl E b) B U = e2 4πε 0 r = e e 4πε 0 r = e.6 0 9 9 0 9 0 0 = 4.4 ev c) D Total potensiell
1. En tynn stav med lengde L har uniform ladning λ per lengdeenhet. Hvor mye ladning dq er det på en liten lengde dx av staven?
Ladet stav 1 En tynn stav med lengde L har uniform ladning per lengdeenhet Hvor mye ladning d er det på en liten lengde d av staven? A /d B d C 2 d D d/ E L d Løsning: Med linjeladning (dvs ladning per
Mandag qq 4πε 0 r 2 ˆr F = Elektrisk felt fra punktladning q (følger av definisjonen kraft pr ladningsenhet ): F dl
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 6 Mandag 05.02.07 Oppsummering til nå, og møte med Maxwell-ligning nr 1 Coulombs lov (empirisk lov for kraft mellom to
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 10. oktober 2016 Tid for eksamen: 10.00 13.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte
Tirsdag E = F q. q 4πε 0 r 2 ˆr E = E j = 1 4πε 0. 2 j. r 1. r n
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 3 Tirsdag 15.01.07 Elektrisk felt [FGT 22.1; YF 21.4; TM 21.4; AF 21.5; LHL 19.4; DJG 2.1.3] = kraft pr ladningsenhet
FYS1120 Elektromagnetisme, Ukesoppgavesett 1
FYS1120 Elektromagnetisme, Ukesoppgavesett 1 22. august 2016 I FYS1120-undervisningen legg vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som
Midtsemesterprøve fredag 10. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2006 Midtsemesterprøve fredag 10. mars kl 0830 1130. Løsningsforslag 1) A. (Andel som svarte riktig: 83%) Det
FYS1120 Elektromagnetisme - Ukesoppgavesett 2
FYS1120 Elektromagnetisme - Ukesoppgavesett 2 7. september 2016 I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 4 Onsdag 21.01.09 og fredag 23.01.09 Elektrisk felt fra punktladning [FGT 22.1; YF 21.4; TM 21.4; AF 21.6; LHL 19.5;
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 7 Onsdag 11.02.09 og fredag 13.02.09 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Gauss
Tirsdag r r
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 6 Tirsdag 05.02.08 Gauss lov [FGT 23.2; YF 22.3; TM 22.2, 22.6; AF 25.4; LHL 19.7; DJG 2.2.1] Fra forrige uke; Gauss
Kap. 22. Gauss lov. Vi skal se på: Fluksen til elektrisk felt E Gauss lov. Elektrisk ledere. Integralform og differensialform
Kap. 22. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. E-felt fra Coulombs lov: E k q r 2 r E k n q r n 2 0n r 0n dq E k r 2 r tot.
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS112 Elektromagnetisme Løsningsforslag til ukesoppgave 2 Oppgave 1 a) Gauss lov sier at den elektriske fluksen Φ er lik den totale ladningen
Gauss lov. Kap. 22. Gauss lov. Gauss lov skjematisk. Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform
Kap. 5..6 Kap.. Gauss lov Vi skal se på: Fluksen til elektrisk felt E Gauss lov Integralform og differensialform Elektrisk ledere. Efelt fra Coulombs lov: q E k r r E k n q r n n r n dq E k r r tot. ladn.
Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
Oppgave 4 : FYS linjespesifikk del
Oppgave 4 : FYS 10 - linjespesifikk del Fysiske konstanter og definisjoner: Vakuumpermittiviteten: = 8,854 10 1 C /Nm a) Hva er det elektriske potensialet i sentrum av kvadratet (punktet P)? Anta at q
Mandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke 4 Mandag 22.01.07 Elektriske feltlinjer [FGT 22.2; YF 21.6; TM 21.5; F 21.6; LHL 19.6; DJG 2.2.1] gir en visuell framstilling
Flervalgsoppgaver. Gruppeøving 5 Elektrisitet og magnetisme
Flervalgsoppgaver. Hvis en positiv ladning Q blir plassert i origo i figuren (i krysningspunktet mellom vertikal og horisontal linje), mot hvilken kvadrant vil den føle ei netto kraft? A. A B. B C. C D.
Flervalgsoppgaver. Gruppeøving 1 Elektrisitet og magnetisme
Gruppeøving Elektrisitet og magnetisme Flervalgsoppgaver Ei svært tynn sirkulær skive av kobber har radius R = 000 m og tykkelse d = 00 mm Hva er total masse? A 0560 kg B 0580 kg C 0630 kg D 0650 kg E
Frivillig test 5. april Flervalgsoppgaver.
Inst for fysikk 2013 TFY4155/FY1003 Elektr & magnetisme Frivillig test 5 april 2013 Flervalgsoppgaver Kun ett av svarene rett Du skal altså svare A, B, C, D eller E (stor bokstav) eller du kan svare blankt
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FY112 Elektromagnetisme Løsningsforslag til ukesoppgave 1 Oppgave 1 a i Her er alternativ 1 riktig. Hvis massetettheten er F, vil et linjestykke
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 ØSNINGSFOSAG TI EKSAMEN I FY1003 EEKTISITET OG MAGNETISME
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPEIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 ØSNINGSFORSAG TI EKSAMEN I TFY4155 EEKTROMAGNETISME
Midtsemesterprøve fredag 11. mars kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Vår 2005 Midtsemesterprøve fredag 11. mars kl 1030 1330. Løsningsforslag 1) B. Newtons 3. lov: Kraft = motkraft. (Andel
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.
TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 KONTNUASJONSEKSAMEN TFY4155 ELEKTOMAGNETSME Fredag 11.
To sider med formler blir delt ut i eksamenslokalet. Denne formelsamlingen finnes også på første side i oppgavesettet.
Forside Midtveiseksamen i FYS 1120 Elektromagnetisme Torsdag 12. oktober kl. 09:00-12:00 (3 timer) Alle 18 oppgaver skal besvares. Lik vekt på alle oppgavene. Ikke minuspoeng for galt svar. Maksimum poengsum
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME Mandag 4. desember 2006 kl
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 4. desember
Øving 1. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme. Veiledning: Mandag 19. januar Innleveringsfrist: Fredag 23. januar kl 12.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Veiledning: Mandag 19. januar Innleveringsfrist: Fredag 23. januar kl 12.00 Øving 1 Oppgave 1 a) Komponentene av en vektor A er A =
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 10.
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 10. Oppgave A B C D 1 x x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10 x 11 x 1 x 13 x 14 x 15 x 16 x 17 x 18 x 9 x 0 x 1) Glass-staven
FYS1120 Elektromagnetisme
Det matematisk-naturvitenskapelige fakultet Universitetet i Oslo FYS1120 Elektromagnetisme J. Skaar: Øvingsoppgaver til midtveiseksamen (med fasit) Her er 46 flervalgsoppgaver som kanskje kan være nyttige
A. positiv x-retning B. negativ z-retning C. positiv y-retning D. negativ y-retning E. krafta er null
Flervalgsoppgaver En lang, rett ledning langs x-aksen fører en strøm i positiv x-retning. En positiv punktladning beveger seg langs z-aksen i positiv z- 1. retning (opp av papirplanet). Den magnetiske
Elektrisk og Magnetisk felt
Elektrisk og Magnetisk felt Kjetil Liestøl Nielsen 1 Emner for i dag Coulombs lov Elektrisk felt Ladet partikkel i elektrisk felt Magnetisk felt Magnetisk kraft på elektrisk eladninger Elektromagnetiske
EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 7 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 24 mai 2011 Eksamenstid: 09:00-13:00 Faglig
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2015. Øving 11. Veiledning: 9. - 13. november.
TFY0 Fysikk. Institutt for fysikk, NTNU. Høsten 05. Øving. Veiledning: 9. -. november. Opplysninger: Noe av dette kan du få bruk for: /πε 0 = 9 0 9 Nm /, e =.6 0 9, m e = 9. 0 kg, m p =.67 0 7 kg, g =
Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl K. Rottmann: Matematisk formelsamling (eller tilsvarende).
NOGES TEKNSK- NATUVTENSKAPELGE UNVESTET NSTTUTT FO FYSKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTSTET OG MAGNETSME Mandag 17. desember
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: Prøveeksamen 2017 Oppgavesettet er på 9 sider Vedlegg: Tillatte hjelpemidler: Formelark
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN I TFY4155
UNIVERSITETET I OSLO
UNIVESITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS1120 Elektromagnetisme Eksamensdag: 29. November 2016 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 3 sider. Vedlegg: Tillatte
E, B. q m. TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 12.
TFY4104 Fsikk. nstitutt for fsikk, NTNU. ving 12. Oppgave 1 Partikler med masse m, ladning q og hastighet v kommer inn i et omrade med "krsset" elektrisk og magnetisk felt, E og, som vist i guren. E har
FYS1120 Elektromagnetisme ukesoppgavesett 7
FYS1120 Elektromagnetisme ukesoppgavesett 7 25. november 2016 Figur 1: En Wheatstone-bro I FYS1120-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør.
Den franske fysikeren Charles de Columb er opphavet til Colombs lov.
4.5 KREFTER I ET ELEKTRISK FELT ELEKTRISK FELT - COLOMBS LOV Den franske fysikeren Charles de Columb er opphavet til Colombs lov. Kraften mellom to punktladninger er proporsjonal med produktet av kulenes
Øving 6, løsningsskisse.
Inst for fysikk 202 TFY455/FY003 Elektr & magnetisme Øving 6, løsningsskisse Diol Platekondensatorer Ogave Potensial rundt diol Vi skriver først V a om til en funksjon av x og z ved å bruke relasjonene
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
Løsningsforslag til øving
1 FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Løsningsforslag til øving 11-2012 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel
OPPGAVESETT 1. PS: Spørsmål 1a) og 1b) har ingenting med hverandre å gjøre. 1b) refererer til to nøytrale kuler, ikke kulene i 1a)
Fasit for FYS1120-oppgaver H2010. OPPGAVESETT 1 1a) 9.88 10-7 C 1b) 891 PS: Spørsmål 1a) og 1b) har ingenting med hverandre å gjøre. 1b) refererer til to nøytrale kuler, ikke kulene i 1a) 2a) 7.25 10 24
NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
TFY4104 Fysikk. Institutt for fysikk, NTNU. ving 11.
TFY0 Fysikk. Institutt for fysikk, NTNU. ving. Opplysninger: Noe av dette kan du fa bruk for: =" 0 = 9 0 9 Nm /, e = :6 0 9, m e = 9: 0 kg, m p = :67 0 7 kg, g = 9:8 m/s Symboler angis i kursiv (f.eks
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME Onsdag 17. august 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 KONTINUASJONSEKSAMEN TFY4155 ELEKTROMAGNETISME
Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, 8.juni 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag, eksamen MA11 Flerdimensjonal analyse, 8.juni 21 Oppgave 1 a) Finn og klassifiser alle kritiske
Felttur 2016 Elektromagnetisme
Felttur 2016 Elektromagnetisme August Geelmuyden Universitetet i Oslo Teori I. Påvirkning uten berøring Når to objekter påvirker hverandre uten å være i berøring er det ofte naturlig å introdusere konseptet
(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I Mandag 5. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag, eksamen MA1103 Flerdimensjonal analyse, vår 2009 Oppgave 1 Avgjør om grenseverdiene eksisterer:
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 10.
TFY404 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 0. Oppgave A B C D x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 0 x x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 29 x 20 x ) Glass-staven er ikke i berring med
SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 31. mai 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 41 43 39 30 EKSAMEN TFY4155 ELEKTROMAGNETISME FY1003
EKSAMENSOPPGAVE. Adm.bygget, Aud.max. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Dato: 30. september 2016 Klokkeslett: 09.00-13.00 Sted: Tillatte hjelpemidler: Adm.bygget, Aud.max ü Kalkulator med tomt dataminne
EKSAMENSOPPGAVE. Fys-1002 Elektromagnetisme. Adm.bygget B154 Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: Fys-1002 Elektromagnetisme Dato: Onsdag 26. september 2018 Klokkeslett: Kl. 9:00-13:00 Sted: Tillatte hjelpemidler: Adm.bygget B154 Kalkulator
Plan. I dag. Neste uke
Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME
Side 1 av 8 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL EKSAMEN i TFY4155/FY1003 ELEKTRISITET OG MAGNETISME Eksamensdato: Tirsdag 22 mai 2012 Eksamenstid: 09:00-13:00 Faglig
Onsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2009, uke 13 Onsdag 25.03.09 og fredag 27.03.09 Amperes lov [FGT 30.1, 30.3; YF 28.6, 28.7; AF 26.2; H 23.6; G 5.3] B dl = µ 0
EKSAMEN I TFY4155 ELEKTROMAGNETISME OG FY1003 ELEKTRISITET OG MAGNETISME
TFY4155/FY1003 31. mai 2010 Side 1 av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT FO FYSKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 KSAMN TFY4155 LKTOMAGNTSM OG FY1003
OBLIGATORISK MIDTSEMESTERØVING I EMNE TFE 4120 ELEKTROMAGNETISME
ide 1 av 6 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for informatikk, matematikk og elektroteknikk Institutt for elektronikk og telekommunikasjon OBLIGATORIK MIDTEMETERØVING I EMNE TFE
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MEK 1100 Feltteori og vektoranalyse. Eksamensdag: Fredag 29 mai 2009. Tid for eksamen: 14:30 17:30. Oppgavesettet er på 6 sider.
Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
EKSAMENSOPPGAVE. 7 (6 sider med oppgaver + 1 side med formler)
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 (elektromagnetisme) Dato: 9. juni 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt
LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8
LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r
Ma Flerdimensjonal Analyse II Øving 9
Ma23 - Flerdimensjonal Analyse II Øving 9 Øistein Søvik 2.3.22 Oppgaver 4.5 Evaluate the triple integrals over the indicated region. Be alert for simplifications and auspicious orders of integration 3.
Maxwell s ligninger og elektromagnetiske bølger
Maxwell s ligninger og elektromagnetiske bølger I forelesningene og i læreboken er Coulombs lov for the elektriske felt E formulert på følgende form: v da E = Q/ε 0 (1) Integralet til venstre går over
EKSAMENSOPPGAVE. Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling.
EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: Mandag 4. juni, 2018 Klokkeslett: 9:00 13:00 Sted: ADM B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne, Rottmann: Matematisk formelsamling. Eksamenoppgaven
LØSNING EKSTRAØVING 2
TFY415 - løsning Ekstraøving 1 Oppgave 9 LØSNING EKSTRAØVING hydrogenlignende atom a. For Z = 55 finner vi de tre målene for radien til grunntilstanden ψ 100 vha formlene side 110 i Hemmer: 1/r 1 = a =
EKSAMENSOPPGAVE. ü Kalkulator med tomt dataminne ü Rottmann: Matematisk Formelsamling. rute
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAE Eksamen i: FYS-1002 Dato: 26. september 2017 Klokkeslett: 09.00-13.00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: ü Kalkulator med tomt dataminne
NTNU. MA1103 Flerdimensjonal analyse våren Maple/Matlab-øving 2. Viktig informasjon. Institutt for matematiske fag
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal analyse våren 2012 Maple/Matlab-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
Flervalgsoppgaver. Gruppeøving 8 Elektrisitet og magnetisme. 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. E.
Flervalgsoppgaver 1. SI-enheten til magnetisk flukstetthet er tesla, som er ekvivalent med A. N s C m B. N C s m C. N m s 2 D. C A s E. Wb m 2 Løsning: F = q v B gir [B] = N Cm/s = N s C m. 2. Et elektron
LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
I C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme
nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra
Eksamensoppgave i TFY4155 ELEKTRISITET OG MAGNETISME FY1003 ELEKTRISITET OG MAGNETISME
Institutt for fysikk Eksamensoppgave i TFY455 ELEKTRISITET OG MAGNETISME FY003 ELEKTRISITET OG MAGNETISME Faglig kontakt under eksamen: Institutt for fysikk v/arne Mikkelsen, Tlf: 486 05 392 / 7359 3433
Midtsemesterprøve torsdag 7. mai 2009 kl
Institutt for fysikk, NTNU FY1003 Elektrisitet og magnetisme TFY4155 Elektromagnetisme Våren 2009 Tillatte hjelpemidler: Midtsemesterprøve torsdag 7. mai 2009 kl 09.15 11.15. Oppgaver på side 5 10. Svartabell
Løsningsforslag til øving 9
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 9 Oppgave 1 a) Forplantning i z-retning betyr at E og B begge ligger i xy-planet. La oss for eksempel velge
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 LØSNING ØVING 4
FY2045/TFY4250 Kvantemekanikk I, løsning øving 4 1 Løsning oppgave 4 1 LØSNING ØVING 4 Elektron i potensial med to δ-funksjoner a En delta-brønn er grensen av en veldig dyp og veldig trang brønn Inne i
Oppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
MA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,
DEL 1. Uten hjelpemidler. Oppgave 1 (4 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. g( x) e x. x x x.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Deriver funksjonene a) f( x) 3cosx b) sin g( x) e x c) h( x) x sin x Oppgave (5 poeng) Bestem integralene a) ( 3 ) d x x x b) x cos x dx c) sin d x x x Oppgave
Flervalgsoppgaver. Gruppeøving 10 Elektrisitet og magnetisme
Flervalgsoppgaver. Figuren viser tverrsnittet av en lang, rett solenoide med et homogent magnetfelt B innvendig. Magnetfeltet har retning ned i papirplanet og styrken er økende med tida. Hva er retningen
Matematikk 1 Første deleksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon
LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME FY1003 ELEKTRISITET OG MAGNETISME Tirsdag 30. mai 2006 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME
Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017
Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate