FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG"

Transkript

1 UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg: Tilla hjlpmidl : Kalklao Hogsad: oml A-9 Don Panic omann: amaisk omlsamling Ikk illa å ski i omlsamlingn KANDIDATEN Å SELV KONTOLLEE AT OPPAVESETTET E ULLSTENDI

2 A-9 Usa Eksamn Oppg n Pong a b a b a b a b c d g h i j k Sm Pongn is kodlingn o d nkl dlspøsmåln. Vd kaakg klggs slølglig i illgg n oalding bl.a. n ding a i hilkn gad kandidan ha knnskap innno d lik omådn gi i oppgas. Bsalsn skal innhold mlloning. Kalklao skal ikk bns i bgningn kn il nll konoll a gn sa. Ta gn osning his d inn klah i oppgas. LYKKE TIL!

3 . Vi ha omåd n nn pla agns a d kn s ig.: asshn anall kg p kadam a omåd plan gi d: a Bsm massn a omåd. b Bsm masssn cm cm a omåd. ig.. Vi ha gi ølgnd dobbl-ingal: I dd Dobbl-ingal I skal bgns d hjlp a ølgnd sbsisjon: a Tgn o ig som is hnholdsis ingasjonsomåd i -plan og ingasjonsomåd i -plan. b Bgn dobbl-ingal I d hjlp a dn gi sbsisjonn.

4 . Vi ha gi ølgnd spial-k i omm s ig.: b a a b a posii konsan Vid ha i gi ølgnd ngdl kako ll ngdka: ho m massn il n paikkl som binn sg i ngdl og g ngdakslasjonn. a Vis a ngdl psn d -ko konsai kol og inn n ponsialnksjon il -ko. b Bk sla a a il å bgn d abid ds bgn ingal: W B A d som ngdkan ø på dnn paikkln md mass m nå paikkln bg sg langs spialkn gi ono mn i mosa ning a pnk på oppn gi d paamdin = il pnk i bnnn gi d paamdin = ds a pnk A il pnk B is i ig.. ig.

5 . Vi ha gi ølgnd o la i omm: S : = + S : = 8 Vid ha i gi ølgnd kol: [ ] a okla ha slags la S og S. Tgn d lgm T som agns a d o lan S og S. Hin: Til hjlp md gning a lgm T gn n ll l hjlpig som is.ks. lans skjæingsk md -plan. b Vis a pojksjonn inn i -plan a skjæingskn mllom d o lan S og S n sikl md snm i oigo og adis. c Bsm n paamig a kn. Kn skal o øknd paamdi gjnnomløps i ning mo klokka s langs dn posii -aksn i ning mo oigo. d Bgn d hjlp a ipplingal olm a lgm T. Bsm digns og cl il d gi kol. Bsm kingal: d d dik bgning ds n bk a Soks om. g Bsm kingal i oppga d hjlp a Soks om. h Bsm no lks a d gi kol a d lkkd lgm T. i Bsm no lks a d gi kol a h a lan S og S som agns lgm T. j Vis a his kol ha koninlig øs- og and-pailldi så gjld ølgnd lasjon: Digns a cl lik nll k Bsm no lks a cl il d gi kol gi d -ko a h a d o lan S og S.

6 Vdlgg: S n S d d n niåla il som n la nhsnomalko il n niåla il som n la nomalko il ' h ' h h ' h ' an ' ' ln

7 Løsning:. a assn a omåd plan : dm d d dd b asssn a omåd : 6 6 dm dm 7 cm cm d d dd d d dd

8 . a Ingasjonsomådn i -plan og i -plan: Kn i -plan bsmms på ølgnd må: Omåd i -plan paallllogam. Omåd i -plan kada. b Jacobidminan: J d d d dd dd dd I

9 . a Vi bgn cl il -ko: [] ] [ k j i cl Kan også s a cl lik nllko sidn kompnn i -ko kn konsan. Sidn cl = nllko så n konsai ka kol konsai kol. Dmd så inns n ponsialnskjon som slik a gadinn il lik -ko. Bsmmls a n ponsialnksjon: h h h h g g g!! ll nkl som saning o all bgningn ono: ll - b Abid bgn a ngdn d paikkl-bgls a A il B: b b b a a b a b a A B d d d W B A B A B A Abid alså lik ngdn a paikkln mliplis md hødoskjlln b mllom pnkn A og B iahnig. Ingal kan også bgns dik n bk a ponsialnksjon nom oppgan h.

10 . a oklaing og gning a d o lan S og S. S : = + S : = 8 S n paaboloid md bnnpnk i og smmiaks paallll md -aksn. S plan paallll md -aksn og skjæing md hnholdsis -aksn og -aksn i 8 og. b Ligningn o pojksjonn a kn inn i -plan: 8 8 Pojksjonn a kn inn i -plan alså n sikl md snm i oigo og adis. c Paamig a kn : 8 8 8

11 d Volm a lgm T: d d dd dd d dv V T Digns og cl il kol: ] [ ] [ di ] [ ] [ k j i cl

12 K-ingal d dik bgning n bk a Soks om: d d d d d ] 8 [ ] [ ] [ ] 8 8 [ ] 8 [ ] 8 8 [ d d d d

13 g K-ingal ha Soks om: Som la i Soks om lg i dn dln a lan = 8 som ligg innno kn sidn dnn dln a lan ha kn som and. Lag ølgnd skala nksjon: lan S da gi d = 8 ds lan S n niåla il dn skala nksjonn. adinn il så da nomal på lan S. gad [ ] [ ] [ ] Lngdn a gadinn il gi d: [] 7 Enhsnomaln il lan S da gi d: n [ ] 7 K-ingal nå gi d: d S nds p [] 7 [ ] 7 [] [] 8 k a p-ko lik [] sidn i ha pojksjon inn i -plan. sla smm ons md sla a oppga. h No lks a d gi kol a d lkkd lgm T: S nds T dv T dv dv 8 6 T

14 i No lks a d gi kol a lan S : 8 [] [] 7 7 S nds No lks a d gi kol a lan S : 6 6 j Bis o a digns il cl lik nll: k j i

15 k Nolks a lan S a cl il kol p d gi d: l S n ds Sa på d dobbl-ingal ha i a oppga. Do å i: l n ds 8 S Bk a ass dignsom gi oss ølgnd o nolks a d lkkd lgm a cl il kol bn sla a oppga j om a digns il cl lik nll: l S nds dv dv dv T Ha å i a no lks a lan S a cl il kol gi d: T T l l l l l l 8 8

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEIEE I AGE Gimsad E K A M E N O P P G A V E : FAG: MA-9 Mamaikk LÆE: P Hnik Hogsad Klass: ao: 9..6 Eksamnsid fa-il: 9. 4. Eksamnsoppgan bså a følgnd Anall sid: 6 inkl. fosid dlgg Anall oppga: 5 Anall

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIERSITETET I ADER imsad E K S A M E N S O P P A E : A: MA-9 Mamaikk LÆRER: P nik ogsad Klass: Dao:.5. Eksamnsid a-il: 9.. Eksamnsoppgavn bså av ølgnd Anall sid: 5 inkl. osid vdlgg Anall oppgav: 5 Anall

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8..6 Eksamnsi, fa-il: 9.. Eksamnsoppgavn bså av følgn Anall si: 6 inkl. fosi + vlgg Anall oppgav:

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : AG: MA-9 Matmatikk ÆRER: P Hnik Hogstad Klass: Dato:.. Eksamnstid, fa-til: 9.. Eksamnsoppgavn bstå av følgnd Antall sid: 6 inkl. fosid vdlgg Antall

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsad E S A M E N S O P P G A V E : AG: MA-9 Maemaikk LÆE: Pe Henik Hogsad lasse: Dao: 6.5. Eksamensid a-il: 9.. Eksamensoppgaven beså av ølgende Anall side: 5 inkl. oside vedlegg

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Dt matmatisk-natuvitnskaplig fakultt Eksamn i MAT-INF 00 Modlling og bgning. Eksamnsdag: Fdag 6. dsmb 0. Tid fo ksamn: 9:00 :00. Oppgavsttt på 8 sid. Vdlgg: Tillatt hjlpmidl: Fomlak.

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn

Detaljer

Aksjeindeksobligasjoner et sparealternativ for Ola og Kari? Petter Bjerksund 9. februar 2007 Jubileumsseminar for Knut Boye

Aksjeindeksobligasjoner et sparealternativ for Ola og Kari? Petter Bjerksund 9. februar 2007 Jubileumsseminar for Knut Boye Aksjindksobligasjon spaalnaiv fo Ola og Kai? P Bjksund 9. fbua 7 Jubilumssmina fo Knu Boy Ovsik Ulik vaian: ndksobligasjon (O) Aksjindksobligasjon (AO) Bankinnskudd md aksjindksavkasning (BMA) Gunnlggnd

Detaljer

Velkommen INF 3/4130. Velkommen. Algoritmer: Design og effektivitet. Kvalitetssikring ved Ifi. Forelesere: Lærebok: Gruppelærer: Obliger:

Velkommen INF 3/4130. Velkommen. Algoritmer: Design og effektivitet. Kvalitetssikring ved Ifi. Forelesere: Lærebok: Gruppelærer: Obliger: Vlkommn Fols: INF 3/43 Dino Kbg, dino@ifi.uio.no Sin Kogdl, sink@ifi.uio.no P Kisinsn pk@ifi.uio.no Algoim: Dsign og ffkivi Læbok: Algoims: Squnil, Plll, nd Disibud, Knn A. Bmn nd Jom L. Pul. Til slgs

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:

Detaljer

Fakta kornartene. 1. Kornartene

Fakta kornartene. 1. Kornartene Fk konn 1. Konn Fk konn Innhold Om konn næingsinnhold i kon Konbll m om kon Fk konn Om konn 1 2 3 Kon bså 1. Skll: Innhold my næingssoff og spsil my kosfib. 2. Kjn: Innhold kbohyd/sils og poin. 3. Kim:

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I GDE Gims E K S M E N S P P G V E G M-9 Memi LÆE Pe Heni Hos Klsse Do.. Esmensi -il 9.. Esmensoppven eså v ølene nll sie inl. osie vele nll oppve nll vele Tille hjelpemile e Kllo Hos omle

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:

Detaljer

KulTur. Kino med høytlesning. Aktivitetsleir

KulTur. Kino med høytlesning. Aktivitetsleir N. 8 Spmb 2012 17. ågang KulTu Kino md høylsning Akivisli In o nh ld sn l y ø h Kino md Ridkus Kjæ ls! ing I d numm av Infoposn kan du s flo fibild fa blan ann Danmak og Tykia. Du kan også ls om and gøy

Detaljer

Intern korrespondanse

Intern korrespondanse BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013

Detaljer

Velkommen. Velkommen. Undervisningsplan. Kvalitetssikring ved Ifi. Forelesere: Gruppelærer: Lærebok: Obliger: Andre, nærliggende kurs: Hvem

Velkommen. Velkommen. Undervisningsplan. Kvalitetssikring ved Ifi. Forelesere: Gruppelærer: Lærebok: Obliger: Andre, nærliggende kurs: Hvem Vkommn Vkommn Fos: Guppæ: Dino Kbg, Sin Kogd, P Kisinsn Hvm dino@ifi.uio.no sink@ifi.uio.no pk@ifi.uio.no pos@sudn.mn.uio.no Læbok: Agoims: Squni, P, nd Disibud, Knn A. Bmn nd Jom L. Pu. Ti sgs i bokndn.

Detaljer

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.

16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt. Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,

Detaljer

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart

Uke Område Kompetansemål Delmål/læringsmål Læremiddel/lærever k/ metode 2 u k e r. Kunne lese og bruke papirbaserte og digitale kart ÅRSPLAN Tinn: 5 Piod: Høst og vå U Omåd Komptansmål Dlmål/læingsmål Læmiddl/læv / mtod Kat og od Fag vis fosjll Himmltning Atlas Et synlig tntt Kat på data Knn ls og b papibast og digital at Kat Om attgn

Detaljer

VEDLEGG EGENOPPGAVE Slgr/ir:,J air^ 0< K^ l,rn narrr' 5,/rzi{ rr? cnn, BNR l-, fl KoMMNR S*lrr/^ I Posnr: f Å,f0 Ko na^ l Grunnmur, fundamn og sokkl: L I Kjnnr du

Detaljer

Grunntall 10 Kapittel 2 Algebra Fordypning

Grunntall 10 Kapittel 2 Algebra Fordypning Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls

Detaljer

Velkommen til LAMBERTSETER OPEN 2017

Velkommen til LAMBERTSETER OPEN 2017 Vlkommn il LAMBERTSETER 20.-22.okob 2017 LAMBERTSETER SVØMMEKLUBB www.lsvk.no - sammn mo oppn E NSFs lov og gl ønsk Lambs Svømmklubb vlkommn il n hlig svømmhlg på Lambs Bad, Langbølgn 24, 1155 Oslo. Bassng

Detaljer

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN

JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN JERN GIR BARNET NÆRI NG TIL VEK ST, LEK OG LÆRING! I NFO RM A SJON OM B ARN OG J E RN R E G E J! I P M JIP O S K R E T S LIKE! I P P I P Nyttig hjer Nfød Fo å sik jnin ntakt hos små ban anbfal Hlsdiktoat

Detaljer

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e

P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d

Detaljer

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e

Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIEITETET I GDE Gimsta E K M E N O P P G E : FG: M-9 Matematikk LÆE: Pe Henik Hogsta Klasse: Dato: 8.5. Eksamensti fa-til: 9.. Eksamensoppgaen bestå a følgene ntall sie: 5 inkl. fosie elegg ntall oppgae:

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERITETET I AGDER Gimstad E K A M E N O P P G A V E : FAG: MA-9 Matematikk ÆRER: Pe enik ogstad Klasse: Dato:.6. Eksamenstid fa-til: 9.. Eksamensoppgaven bestå av følgende Antall side: 5 inkl. foside

Detaljer

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r

2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e

Detaljer

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med

med en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn

Detaljer

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside

Detaljer

Røde Kors Hjelpekorps

Røde Kors Hjelpekorps Rgion Sø - Sommkusn 2013 Hov - Andal, 08. - 12. mai(himmlfatshlgn) Sjødning Kvnd lnd ls d R O l S s g L øknin s t (Et k B) a m Ba Idttsskadkus Vlkommn! Aust-Agd Rød kos sin pinsli ha lang tadisjon, mn

Detaljer

helgen er bedre med meny

helgen er bedre med meny hlgn bd md mny 25-44% 14 od.pis,26,/s Lsposjon ilbd c 125 g, nll/min/ fyl, f fisdisn (102,76-1,20/g) 1-is god ilbd h! 17% 59 od.pis 72,/p Kyllingfil 550 g, Pio (108,91/g) MENY Kndis 16 Tosdg 16. pil -

Detaljer

Vedlegg: Kart over kabler fra Alta Kraftlag AL og Telenor Norge

Vedlegg: Kart over kabler fra Alta Kraftlag AL og Telenor Norge Vdlgg: Kat ov kabl fa Alta Kaftlag AL og Tlno Nog p p p $ S S S S 362500 363000 7764500 7765000 7765500 Boas 16012 Dalbakkn Romsdal 16013 Tvlvdalsvin 16 0 100m Dato: Sign: 2012.01.09 ES Målstokk 1:5000

Detaljer

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1

HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1 HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T

Detaljer

hvor A er arealet på endeflaten. Ladningen innesluttet av den valgte Gaussflaten: Q.E.D.

hvor A er arealet på endeflaten. Ladningen innesluttet av den valgte Gaussflaten: Q.E.D. LØSNNGSFORSLAG EKSAMEN EMNE SF5 FYSKK Fo kjmi og mtitknoogi Onsdg 6. ugust k. 9... Oppgv. z fuksintgt fo d to ndftn: EdA E A, Dt ktisk ftt undt n undig sto pt finns vd å uk Guss ov. Rtningn på dt ktisk

Detaljer

Tillatt utvendig overtrykk/innvendig undertrykk

Tillatt utvendig overtrykk/innvendig undertrykk Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,

Detaljer

VEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng

Detaljer

Ukens tilbudsavis fra

Ukens tilbudsavis fra Ukns budsvs f Hvodn b mn budsvsn? Fo å b budsvsn så kkk du nn v hjønn, du kn kkk på pn nd på mnynjn. S næm på podukn? Du kn zoom nn på podukn vd å kkk på poduk md musn, fo å zoom bk kkk du n gng. Du kn

Detaljer

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74

Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74 Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =

Detaljer

ARENA OPEN søndag 18. desember 2016

ARENA OPEN søndag 18. desember 2016 ARENA OPEN Lambs svømmklubb ha gldn av å invi il Ana Opn på Lambs bad søndag 18. dsmb 2016 www.lsvk.no LAMBERTSETER SVØMMEKLUBB www.lsvk.no - sammn mo oppn Vå samabidspan: INSTAGRAMKONKURRANSE! Lys il

Detaljer

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS113 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNVETETET AGDE Gid E K A E N O G A V E : FAG: FY Fikk/Kjei ÆE: Fikk : e Henik Hogd Kjei : Gehe ehnn Kle: Do: 7.5. Ekenid, -il: 9.. Ekenoppgen beå ølgende Anll ide: 6 inkl. oide og edlegg Anll oppge: 5

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK MANDAG 2. AUGUST 2004 KL LØSNINGSFORSLAG - GRAFIKK

KONTINUASJONSEKSAMEN I EMNE TDT4195/SIF8043 BILDETEKNIKK MANDAG 2. AUGUST 2004 KL LØSNINGSFORSLAG - GRAFIKK Si av 9 TU ogs tknisk-natuvitnskalig univsitt Fakultt fo infomasjonstknologi, matmatikk og lktotknikk Institutt fo atatknikk og infomasjonsvitnska KOTIUASJOSEKSAE I EE TDT95/SIF83 BILDETEKIKK ADAG. AUGUST

Detaljer

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor.

Disse strømforhold og strømretninger kan vi regne ut med metodene nedenfor. 3.6 KOPLNGE MED ASYMETSKE ENEGKLDE 3.6 KOPLNGE MED ASYMMETSKE ENEGKLDE Nå fl spnningskild ll ngikild koplt sammn og ha foskjllig ind sistans og lktomotoisk spnning dt asymmti. Dt fl mtod som kan bnytts

Detaljer

VEDLEGG Marikklrappor Bygg - 11112014_11:51 1841 Fausk Kommun Bygningsnr : 11212751 Bygningsdaa Bygningsyp Bygningssaus Enbolig (111) Ta i bruk (TB) - 24111984 Ufullsndig

Detaljer

Løsningsforslag til eksamen

Løsningsforslag til eksamen 8. januar 6 Løsningsforslag til ksamn Emnkod: ITD Dato: 7. dsmbr Hjlpmidlr: Emn: Matmatikk først dlksamn Eksamnstid: 9.. Faglærr: To -ark md valgfritt innhold på bgg sidr. Formlhft. Kalkulator r ikk tillatt.

Detaljer

Kommunedelplan for trafikksikkerhet Planprogram 2016

Kommunedelplan for trafikksikkerhet Planprogram 2016 Kommundlpln fo tfikksikkht Plnpogm 2016 Hldn kommun Foslg til plnpogm tfikksikkht Innhold 1 Innldning...3 2 Situsjonsbskivls...4 3 Utdningsbhov...4 4 ål og hnsikt md plnn...5 5 Plnposssn...6 6 Ognising...7

Detaljer

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.

Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies. FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9

Detaljer

Elevtallsgrunnlag Verdal kommune Jon Marius Vaag Iversen Trainee Innherred Samkommune

Elevtallsgrunnlag Verdal kommune Jon Marius Vaag Iversen Trainee Innherred Samkommune Evtagunnag Vda kommun.. Jon Maiu Vaag Ivn Tain Innhd Samkommun Poitik vdtak ommuntymøtt Novmb VEDTA: Vuku oppvktnt utbygg fo to paa ( v) på ungdomtinnt innnfo n kotnadamm på mi. kon Vdaøa ungdomko nov

Detaljer

JANNE CHRISTIAN SKOLMEN RASKE MENN JAN GUNNAR RØISE. Kino

JANNE CHRISTIAN SKOLMEN RASKE MENN JAN GUNNAR RØISE. Kino N. 8 Spmb 2013 18. ågang Innykk og uykk RASKE MENN JAN GUNNAR RØISE CHRISTIAN SKOLMEN JANNE FORMOE HENRIETTE STEENSTRUP CHRISTOFFER STAIB OG VINNI HAN ER RASKERE ENN LYNET. Kino Himmljgn PROPERTY OF FOX.

Detaljer

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er -

EKSAMENSOPPGAVE. KalKUlator som ikke kan kommunisere med andre. Tabeller O.R; formelsa~~er - I I høgskln i sl EKSAMESPPGAVE Emn: Fysikalsk kjmi Grupp(r): 2KA Eksamnsppgavn bstår av: Antall sidr (inkl frsidn): 4+1 Emnkd: L040IK Dat: 08.06.04 Antall ppgavr: 5 Faglig vildr Ingrid Gigstad Eksamnstid

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag 9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian

Detaljer

8SQEXIV. 6MO Tp P]OSTIR :MOXMK OMPHI XMP ZMXEQMR % SK ZMXEQMR ' (IP EZ SQ HEKIR -XEPMER. % italienske. av 24 tim. *PpHHI KYPI TPSQQIXSQEXIV

8SQEXIV. 6MO Tp P]OSTIR :MOXMK OMPHI XMP ZMXEQMR % SK ZMXEQMR ' (IP EZ SQ HEKIR -XEPMER. % italienske. av 24 tim. *PpHHI KYPI TPSQQIXSQEXIV Cppla n italinsk familibdift md lang tadisjn i å pdus t bdt utvalg av kvalittsmatva. Røttn vå stkk sg hlt tilbak til 1908. Da statt Cppla-familin md sving g mat- g vinhandl i Mcat San Svin i byn Saln.

Detaljer

Gyldig fra: 09.03.2016 Versjon nr.: 3.00 Dok. nr.: -KS-2.1.1-05 Sign.: Eirik Ørn Godkjent: Jan Kåre Greve Side: 1 av 7

Gyldig fra: 09.03.2016 Versjon nr.: 3.00 Dok. nr.: -KS-2.1.1-05 Sign.: Eirik Ørn Godkjent: Jan Kåre Greve Side: 1 av 7 Utviklingsplan fo Bgn maitim vigån skol 2015 16. 1. Vuing Mål Tiltak Rsultatmål/ kjnntgn All utabi mål konktis måln lvn/stun tn skal vus mot i sin fag. Dtt gjøs sammn md n som ha tilsvan fag Elvn/stu ntn

Detaljer

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt Hdn bd md mny 46-53% Rø snm/ sommol od.ps 74,84,/ f fsdsn jld Tlbd -onsd mnd 55% 7 od.ps 17,/s Nyll yllnlå Gndos Snd spm f msp so l so l % 50-57% GJELDER HELE APRIL 1 od.ps 32,/s GRØNNSAKER OG URTER od.ps

Detaljer

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto

Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har

Detaljer

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009

Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009 Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )

Detaljer

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1

Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1 Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.

Detaljer

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk

Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 3. augut d: 9-4 tall d klu fod: 7 kludt dlgg tall oppga: 6 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

Fakta kornartane. 1. Kornartane

Fakta kornartane. 1. Kornartane Fk konn 1. Konn Fk konn Innhld Om konn næingsinnhld i kon Konbll mi om kon Fk konn Om konn 1 2 3 WWW.bodogkon.no Kon innhld 1. Skl: Kon innhld mykj næingssoff og spsil mykj kosfib. 2. Kjn: Innhld kbohyd/si

Detaljer

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4

FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4 FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK

KONTINUASJONSEKSAMEN I EMNE TDT4195 BILDETEKNIKK MANDAG 6. AUGUST 2007 KL LØSNINGSFORSLAG - GRAFIKK Sid av 7 NTNU Norgs tknisk-naturvitnskapig univrsitt Fakutt for informasjonstknoogi, matmatikk og ktrotknikk Institutt for datatknikk og informasjonsvitnskap KONTINUASJONSEKSAEN I ENE TDT495 BILDETEKNIKK

Detaljer

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann

FAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Grethe Lehrmann UNIVRSITTT I GDR Gi K S M N S O P P G V : FG: FYS5 Fyikk/Kjei LÆRR: Fyikk : Pe Henik Hog Gehe Lehnn Kle: Do:.. keni, f-il: 9. 4. kenoppgen eå følgene nll ie: 6 inkl. foie / elegg nll oppge: 5 nll elegg:

Detaljer

CCD kamera. Analysator. Strålesplitter. Bilde forsterker. Pinhole. Objektiv (NA 1.2) Filterkube/ dikroiske speil. Polarisator.

CCD kamera. Analysator. Strålesplitter. Bilde forsterker. Pinhole. Objektiv (NA 1.2) Filterkube/ dikroiske speil. Polarisator. S av 8 NOGS TKNSK-NATUVTNSKAPLG UNVSTT NSTTUTT O SKK al oa sam: Nav: Bø To So Tl: 75 9 KSAMN MN T65 BOSSK MKOTKNKK a 5. smb T: l. 9. Tlla lpml: C- Tpo allao m om m. O. Ja o K.J. Ks: omlsaml mama K. oma:

Detaljer

Formelsamling for matematiske metoder 3.

Formelsamling for matematiske metoder 3. Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr

Detaljer

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen

Generelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr

Detaljer

Konstanter og formelsamling for kurset finner du bakerst

Konstanter og formelsamling for kurset finner du bakerst UNIVERSITETET I OSLO Dt atatisk-natuvitnskaplig fakultt Avsluttnd ksan i AST1100, 16. dsb 2015, 14.30 18.30 Oppgavsttt inkludt folsaling på 8 sid Tillatt hjlpidl: 1) Angl/Øgi og Lian: Fysisk støls og nht

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og c = 10 + c c c + c + + c + c d + c + c Oppgv Rgn ut når t = 5, s = 10 og v = st c st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4,

Detaljer

Fag: Menneskef maskin - interaksjon. Fagnr: LV "'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE.

Fag: Menneskef maskin - interaksjon. Fagnr: LV 'i3a. Faglig veileder: Ann-Mari Torvatn. Gruppe(r): 3AA -3AB- 3AC,3AD,3AE. Fag: nnskf maskin intraksjn Fagnr: LV "'i3a Faglig vildr: Annari Trvatn Grupp(r): 3AA 3AB 3A3AD3A Dat: 200401 ks amnstid fra til: 900 1200 ksamnsppgavn bstår av Antall sidr: inkl frsid 9 Antall ppgavr:

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 KAPITTEL 1 ALGERBA Oppgav 1 Rgn ut uttrykkn. a 6 (4 2) c 6 4 6 2 b 5 (10 7) d 5 10 5 7 Oppgav 2 Rgn ut uttrykkn. a 2 (3 4) c (2 3) 4 b 5 (6 7) d (5 6) 7 Oppgav 3 Rgn ut uttrykkn. a 25 (3 + 7) c 25 3 7

Detaljer

2FOR 2FOR 2FOR 2FOR 2FOR SMIL - DU HAR GJORT EN GOD DEAL KJØPER DU EN AV DISSE FÅR DU MED ET AV DISSE. Pr stk 23,20 1,5 l.

2FOR 2FOR 2FOR 2FOR 2FOR SMIL - DU HAR GJORT EN GOD DEAL KJØPER DU EN AV DISSE FÅR DU MED ET AV DISSE. Pr stk 23,20 1,5 l. - 30 % Uvlg D. O pizz 380-670 g U 45-46 15. Gjld il 15. nvmb. Kmpnjn gjld un piv hushldning s å p m ix g u l P i l b u v lg 15 G mgn yghu Uvlg vin. 190/195 g 38 + p n Cc-Cl Uvlg vin. 1,5 l F 12,67/l. 1

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

Faun rapport 008-2010

Faun rapport 008-2010 Fun ppo 8-21 Adsisin o bsndsvudin fo på Rini j 29 Oppdsiv: -Rini ommun Fof: Ls Ei Gnsi 1 Food D bs mi j dispon i fovnin f Rini. Omåd oså d j jnn bs md hnsyn i uviin i bsndn. Dfo h j hv å fosø å væ føs

Detaljer

Oppgave 1 (15%) KANDIDAT NR.:

Oppgave 1 (15%) KANDIDAT NR.: ES DETTE FØRST: D 4 førs oppgavn bsvars vd a du sr kryss i valg alrnaiv og lvrr diss arkn s. 5 inn som svar sammn md din løsning av oppgav 5, som r n radisjonll rgnoppgav. Husk å skriv kandidanr på arkn!

Detaljer

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]

KRAVFIL TIL KREDITORFORENINGEN [Spesialrapport] KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO

PEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s

Detaljer

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSIEE I GDER Grid E K S M E N S O G V E : FG: FYS5 Fyikk LÆRER: Fyikk : er Henrik Hogd Kle(r: Do: 5.5. Ekenid, r-il: 9. 4. Ekenoppgven beår v ølgende nll ider: 4 (inkl. oride nll oppgver: 4 nll vedlegg:

Detaljer

VELKOMMEN TIL BO BILLIG! Litt billigere - Alltid 2999,- 2499,- 7999,- 6999,- Miami recliner, stoff. Regulerbar stol med

VELKOMMEN TIL BO BILLIG! Litt billigere - Alltid 2999,- 2499,- 7999,- 6999,- Miami recliner, stoff. Regulerbar stol med VELKOMMEN TIL BO BILLIG! 7- - Miami clin stoff. Rgulba stol md Sov basic kontinntal md basic. 50x00 Sid 8 sving og innbygd fotskamml. Kompltt md basic og sokkl Sid Hilton -st md divan Sot ll cm. Hud/pvc.

Detaljer

Betinget bevegelse

Betinget bevegelse Beinge beegelse 13.0.017 FYS-MEK 1110 13.0.017 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =

Detaljer

Honda Civic og Peugeot 307 møter Ford Focus og Volkswagen Golf:

Honda Civic og Peugeot 307 møter Ford Focus og Volkswagen Golf: Honda Civic og Pugo 307 mø Fod Focus og Volkswagn Golf: Tonskif? I kompakklassn handl d fo idn my om plass. Båd Pugo og Honda hvd å ha funn oppskifn il dn ommligs biln i klassn. Søs i klassn hvd Pugo om

Detaljer

Faun rapport 003-2011

Faun rapport 003-2011 Faun rappor 003-2011 Aldrsrgisrring og bsandsvurdring for lg på Ringrik r jaka 2010 Oppdragsgivr: -Ringrik kommun Forfar: Lars Erik Gangsi 1 Forord Rapporn for Ringrik r dn førs jg frdigsillr r jaka 2010.

Detaljer

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013

FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng

Detaljer

299,Se prisen! Se prisen! til dame og herre

299,Se prisen! Se prisen! til dame og herre G-SPORT SLÅR TIL IGJEN Md vf å æ,, fb, fiufuy g y æ ø V f å g D bnn i Fø... ø P P U K v n å j d g i g d - d v n j å gn, Ai, B, i h jø i N, b U, d T, Bu, Adid, Ni i K, Pu Vi h gj n ng, c F h Din, Th N dbi

Detaljer

Faun rapport 018-2011

Faun rapport 018-2011 Faun rappor 18-211 Aldrsrgisrring og bsandsvurdring for lg og hjor i Gjrsad r jaka 21 Oppdragsgivr: -Gjrsad Villag Forfar: Lars Erik Gangsi 1 Forord Undrgnnd må bar bklag a min Pugo Parnr fan d for god

Detaljer

122-13 Vedlegg 3 Rapportskjema

122-13 Vedlegg 3 Rapportskjema Spsifikasjon 122-13 Vdlgg 3 Rapportskjma Dok. ansvarlig: Jan-Erik Dlbck Dok. godkjnnr: Asgir Mjlv Gyldig fra: 2013-01-22 Distribusjon: Åpn Sid 1 av 6 INNHOLDSFORTEGNELSE SIDE 1 Gnrlt... 1 2 Tittlflt...

Detaljer

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.

110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3. Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig

MAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m

Detaljer

HØSTFEST ONSDAG 23. TIL LØRDAG 26. OKTOBER VI SERVERER KRINGLE OG KAFFE TORSDAG, FREDAG OG LØRDAG. GEORG JENSEN Tørkerull-holder 40% før kr.

HØSTFEST ONSDAG 23. TIL LØRDAG 26. OKTOBER VI SERVERER KRINGLE OG KAFFE TORSDAG, FREDAG OG LØRDAG. GEORG JENSEN Tørkerull-holder 40% før kr. HØSTFEST ONSDAG 23 TIL LØRDAG 26 OKTOBER VI SERVERER KRINGLE OG KAFFE TORSDAG FREDAG OG LØRDAG ALESSI FISKEFAT T støs HØIE ORION DYNE Vm bhi intyn 14 x 2 cm fø k 199Finns så i 14 x 22 cm k 499- HØIE ORION

Detaljer

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG

FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn

Detaljer

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann

FAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Grethe Lehrmann UNIVEITETET I GDE Gid E K E N O G V E : FG: FY6 Fikk/Kjei LÆE: Fikk : e Henik Hogd Kjei : Gehe Lehnn Kle: Do: 7.5. Ekenid, f-il: 9.. Ekenogen beå følgende nll ide: 6 inkl. foide og edlegg nll oge: 5 nll

Detaljer

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00

LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00 Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.

Detaljer

Kompetansevurdering av MTS utøver

Kompetansevurdering av MTS utøver Norwgin Mnhstr Trig Group Komptnsvurring v MTS utøvr Tortisk l Hvrt spørsmål i tt skjm står v t utsgn ttrfulgt v fm yttrligr uttllsr. Hvr v uttllsn kn vær snn llr usnn. Kryss v snn / usnn for hvr uttlls.

Detaljer

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus

FAG: FYS122 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Tore Vehus UNIVESITETET I AGDE Giad E K S A M E N S O P P G A V E : FAG: FYS Fyikk LÆE: Fyikk : Pe Henik Hogad Toe Vehu Klae: Dao:.5.6 Ekaenid, fa-il: 9. 4. Ekaenoppgaen beå a følgende Anall ide: 6 inkl. foide Anall

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer