Kap Rotasjon av stive legemer
|
|
- Esben Tollefsen
- 6 år siden
- Visninger:
Transkript
1 Kap Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls): L Spinnsatsen (Newton 2 fo otasjon): τ = dl/dt Stie legeme: L = I, τ = I d/dt Eksemple: gyoskop, m.m.m z Stit legeme som otee om z-akse: Sylindekoodinate (, θ, z) hensiktsmessig θ Vinkle måles i adiane: θ= s/ ds. s = θ Vinkelhastighet: = dθ/dt Viktige støelse (otasjon) Vinkelpos. θ = s/ Vinkelhastighet = dθ/dt = / Vektostøelse: langs akseetning Peiode T = tid/omd = 1/f ekens f = 1/T Vinkelfekens = inkelhastighet = = 2πf Vinkelaksel. α = d/dt = d 2 θ /d 2 t Banefat = = ds/dt = Vektostøelse: = x Baneaksel. a t = α Sent.aksel. a c = 2 / = 2 Vektostøelse: ac = w = w ( w ) Total aksel = a=- a + a q c t 1
2 Vektoe: = x a c = x = x ( x ) Lik fo hele legemet: Vinkelhastighet = dθ/dt Vinkelaksel. α= d/dt Øke med adien : Banefat = ds/dt = = x = x a c = x Tang.aksel. a t = α Sent.aksel. a c = 2 Tanslasjon: E k = ½ m 2 Massens plasseing ingen betydning fo E k E k = ½ I 2 i Samme, samme E k I = Σ i2 m i m i Rotasjon: E k = ½ I 2 de I = 2 dm E k øke med (massens astand) 2 fa aksen He må i integee: I = 2 dm dm Samme, men ulik E k 2
3 Rotasjonshjul som enegilage Stålskie 10 cm tykk, 1,0 m diamete: I = ½ MR 2 = 77 kg m 2 Poblem: Tung! (600 kg) Defomees! I peifeien e: Banefat ==1000 m/s Sentipetalaksel 2 = xg) Bukes i motokjøetøy: KERS = Kinetic Enegy Recoey System: en.wikipedia.og/wiki/kers Ett eksempel: R=12 cm M=5,0 kg f= pm E = 400 kj KERS i sykle: Med KERS kan tolleybusse i Züch også kjøe uten støm: Enegi ed RPM (omd. pe min): E k = ½ I 2 = 170 MJ obenningsenegi i bensintank på 40 lite, ed utnyttelse 33%: ca 530 MJ Kap Rotasjon a stie legeme Vi ha sett på: Vinkelhastighet = dθ/dt, inkelakseleasjon α= d /dt Banehastighet = Vektoe: =w Sentipetalaks. a c = - 2 = - = - 2 / ac = w = w ( w ) Baneakseleasjon a t = α Rotasjonsenegi E k = ½ I 2 Teghetsmoment I = Σ i2 m i = 2 dm (om en gitt akse) Ring om sentum: I = M R 2 Skie om sentum: I = ½ M R 2 Lang, tynn sta om midtpunkt: I = (1/12) M L 2 (lle disse gjennom massefellespunktet = cm ) Steines sats (paallellakseteoemet): Teghetsmoment om annen paallell akse i astand d: I = I 0 + M d 2 ds. I 0 (akse gjennom cm) e alltid minst mulige teg.moment Kap Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stie legeme: τ = I d/dt Rulling Spinn (deieimpuls): L (N2-ot) alle legeme: τ = dl/dt Stie legeme: L = I, τ = I d/dt Eksemple: gyoskop, m.m.m 3
4 Kaftmoment = am x kaft x sinφ Matematisk: τ = x Φ τ = x τ = sinφ τ og τ Høyehåndsegelen: τ peke langs tommelen Φ Et. skå kaft τ plassees gjene langs otasjonsaksen Husk også ekto : Vektokysspodukt: Y& Kap Tanslasjon: = m d/dt = m a Rotasjon: τ = I d/dt = I α Buke sjelden komponentfom: i j k B= [,, ] [ B, B, B ] = x y z x y z x y z B B B x y z 4
5 Liknende eksempel: twoods (fall)maskin Øing 5 Tinsa med teghetsmoment I skal akseleees i tillegg til akseleasjon a m 2 og m 1 Kap Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stie legeme: τ = I d/dt Rulling Spinn (deieimpuls): L (N2-ot) alle legeme: τ = dl/dt Stie legeme: L = I, τ = I d/dt Eksemple: gyoskop, m.m.m Rulling (uten å glippe) Y 10.3, LL 6.7 Test Tanslasjon + otasjon = ulling cm = uendet f =0 f edusee f øke f f ½ m 2 + ½ I 2 = ½ m 2 (1+c) Yte kaft (mg sinα) ende f gi moment til otasjonen 5
6 h Hilken ulle fotest: Massi kule massi sylinde, elle hul sylinde? (Y &, Ex. 10.5) E k = ½ m 2 (1+c) = lik alle Støst fo den med minst c i tegh.momentet I = c m 2 1. Vannfylt flaske 2. Kule 3. Massi sylinde 4. Hul sylinde = ing Uahengig a støelsen (nå ulleadius = legemets adius) ned lle 6 mulighete fo kombinasjon på skåplan f Rutsje ned > > Slue nedoe < f f Mest anlig fo bil og motsatt etn. Gli nedoe, fosøke komme opp B opp Rutsje oppoe f i etning som pøe å oppnå ein ulling. f < f Slue oppoe Gli oppoe, fosøke komme nedoe og motsatt etn. f Rulle på flatt undelag Rulle Rulle / skli / slue på flatt undelag Rulle Skli Slue = = f > < f f =0 his konst his: øke => f mot enste fo å øke minke => f mot høye fo å edusee øke => f mot høye fo å øke (akseleee) minke => f mot enste fo å minke (bemse) His yte kaft åsak til ending i His bilmoto/hjulotasjon åsak til ending i (me aanset) f =0 his konst inne etning fo f : f edusee (og øke ) f øke (og edus. ) 1. f i etning som pøe å oppnå ein ulling. elle 2. Sett minste edi lik null. 6
7 Oppsummeing: Rulling Rein ulling: = ; a = α (ds. tanslasjonshastighet = banefat til peifeien) E k = ½ m 2 + ½ I 2 = ½ m 2 (1+c) -med I = c m 2 og = / Statisk fiksjon f μ s N gi inkelakseleasjon: f = Iα. Ved ein ulling se i bot fa enegitap (ingen ullemotstand). Spinne/skli/utsje:. Kinematisk fiksjon f = μ k N i etning som pøe å oppnå ein ulling. Kinematisk fiksjon gjø et fiksjonsabeid som ende kinetisk enegi Teghetsmoment (om en gitt akse): I = Σ i2 m i 2 dm lle I 0 om massesentum (cm): Ring om sentum: I 0 = M R 2 Ring om diamete: I 0 = ½ M R 2 Sylinde elle skie om sentum: I 0 = ½ M R 2 Kule om diamete: I 0 = (2/5) M R 2 Kuleskall om diamete: I 0 = (2/3) M R 2 Rullende legeme: I 0 = c MR 2 (c=1, ½, 2/5 etc.) Lang, tynn sta om midtpunkt: I 0 = (1/12) M L 2 Rektangulæ plate om midtpunkt: I 0 = (1/12) M (a 2 + b 2 ) Om annen paallell akse i astand d ( Steines sats): I = I 0 + M d 2 Se også Table 9.2 i Young & eedman. Eksamensstatistikk: ) 4 B) 9 C) 67 Riktig D) 6 E) 83 blank 1 Tot 170 Test 45 o Peifeihastighet = ullehastighet Oppsummeing: Rulling Rein ulling: = ; a = α (ds. tanslasjonshastighet = banefat til peifeien) E k = ½ m 2 + ½ I 2 = ½ m 2 (1+c) -med I = c m 2 og = / Statisk fiksjon f μ s N esentlig fo ulling og gi inkelakseleasjon α: f = Iα Spinne/skli/utsje:. Kinetisk fiksjon f = μ k N i etning som pøe å oppnå ein ulling Kinetisk fiksjon gjø et fiksjonsabeid som ende kinetisk enegi Rein ulling: se i bot fa enegitap (ingen ullemotstand). Slue/skli : fiksjonsabeidet e esentlig. 7
8 Kap Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls): L Spinnsatsen (N2-otasjon): τ = dl/dt N2-otasjon: τ = I d/dt Stie legeme: L = I, τ = I d/dt Eksemple: gyoskop, m.m.m Denne uka Spinn (angula momentum) Y& L&L 5.5, 5.9, 6 1 Spinn punktlegeme 1.1 Spinn ed otasjon L = m => L = m L L = m 2 = I 90 o 1 Spinn punktlegeme 1.2 Spinn ed ilkålig beegelse L = m ikke => L = m sin Φ L m m 1 Spinn punktlegeme 1.3 Spinn ed ettlinjet beegelse L = m L = m sin Φ = 0 m mg 0 mg Φ His = 0 e = konst => L=konst. = m 0 His f.eks. = mg e τ 0 => L endes L ahengig a algt oigo ( 0 og ahengig a ) 8
9 1 Spinn punktlegeme 1.3 Spinn ed ettlinjet beegelse Med patikkelbanen gjennom (oigo), e og: L = m = 0 Φ 2 Spinn ed otasjon a stie legeme L i = i m i i i => L i = i m i i L i = m i i2 alle L i 90 o Stit legeme, ot. om symmetiakse: L = Σm i i2 = I Rotasjon a stie legeme Teghetsmoment I = Σ i2 m i (om en gitt akse) Rotasjonsenegi E k = ½ Σ m i 2 i = ½ I 2 Kaftmoment: τ = stie legeme: Spinn (deieimpuls) L = m L = I Spinnsatsen (N2-ot): τ = d/dt L τ = I d/dt (N2-ot) Ingen yte moment (N1-ot): L = konst. Tanslasjon: Beegelsesmengde (linea momentum): p = m N2-tans: = dp/dt Stit legeme (konst. m): = m d/dt = m a = 0 => p = konstant (N1) stit legeme: = konst Rotasjon: Spinn (angula momentum): L = m L = I Stit legeme N2-ot (spinnsatsen): τ = dl/dt Stit legeme (konst. I ): τ = I d/dt= I α τ = 0 => L = konstant (N1-ot) stit legeme: = konst 9
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):
Kap. 4+5 Rotasjon av stive legemer
Kap. 4+5 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ask ekap) Sentipetalakseleasjon, baneakseleasjon (ask ekap) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legeme Vi skal se på: Vinkelhastighet, inkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Rulling Kaftmoment τ Spinn (deieimpuls):
Kap Rotasjon av stive legemer
Kap. 9+10 otasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) otasjonsenegi E k Teghetsmoment I Kaftmoment τ ulling Spinn (deieimpuls):
Kap. 4+5 Rotasjon av stive legemer. L = r m v. L = mr 2 ω = I ω. ri 2 ω = I ω. L = r m v sin Φ = r 0 mv. L = r m v = 0
Kap. 4+5 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ (N2-ot) stive legeme:
Kap. 9+10 Rotasjon av stive legemer
Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legeme Vi skal se på: Vinkelhastighet, vinkelakseleasjon (ep) Sentipetalakseleasjon, baneakseleasjon (ep) Rotasjonsenegi E k Teghetsmoment I Kaftmoment τ Rulling Spinn (deieimpuls):
Sykloide (et punkt på felgen ved rulling)
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):
Kap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
Oppsummering Fysikkprosjekt
Tekno-/Realstat høsten 011 MTFYMA, BFY, LUR Oppsummeing Fysikkposjekt m? F? v m p a F v? a? p? Lineæ bevegelse Rotasjonsbevegelse Navn: Symbol: Navn: Symbol: distanse masse hastighet akseleasjon kaft bevegelsesmengde,
Rotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst
Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot
Arbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
Oppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
Fysikkolympiaden Norsk finale 2010
Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side
UNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Mandag 9. juni 28 Tid fo eksamen: Kl. 9-2 Oppgavesettet e på 5 side inkludet fomelaket. Tillatte
Fysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) B Beegelsesmengde e gitt som p m og enheten bli defo kgm/s. Samtidig et i at N = kgm/s. Da kan i skie b) C kgm/s kgm/s s N s Vi gi patiklene numme fa til 3, se figuen.
EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle
Stivt legemers dynamikk
Stvt legemes dnamkk 03.04.017 snubleguppen må avlses mogen, 4.apl. v plane flee snubleguppe / eksamensvekstede ette Påske YS-MEK 1110 03.04.017 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel
Stivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn 5.4.6 FYS-MEK 5.4.6 kaftmoment: F F sn F T F F R F T F sn NL fo otasjone:, I fo et stvt legeme med teghetsmoment I tanslasjon og otasjon: F et MA cm Icm ullebetngelse: ksk eneg:
Stivt legemers dynamikk
Stvt legemes dnamkk 1.04.016 YS-MEK 1110 1.04.016 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) d ( t) d vnkelhastghet akseleasjon a( t) dv d ( t) d d vnkelakseleasjon 1
Fysikkolympiaden Norsk finale 2016
Nosk fysikklæefoening Fysikkolypiaden Nosk finale 16 Fedag 8. apil kl. 9. til 11.3 Hjelpeidle: abell/foelsaling, loeegne og utdelt foelak Oppgaesettet bestå a 6 oppgae på side Lykke til! Oppgae 1 En patikkel
Eksamen 16. des Løsningsforslag
Institutt fo fysikk TFY44/FY Mekanisk fysikk Eksamen 6. des.. Løsningsfoslag Dette løsningsfoslaget e spesielt fyldig med flee altenative løsninge, som ukt av flee studente i eksamensesvaelsen. Det e også
Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p
b) C Det elektriske feltet går radielt ut fra en positivt ladd partikkel.
Løsningsfoslag Fysikk 2 Høst 203 Løsningsfoslag Fysikk 2 Høst 203 Opp Sva Foklaing gave a) B Fomelen fo bevegelsesmengde p = mv gi enheten kg m. s Dette kan igjen skives som: kg m = kg m s s2 s = Ns b)
Stivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn.4.5 FYS-MEK.4.5 Poblemløsnng dentfse sstem og omgvelse defne et koodnatsstem fnn massesente, otasjonsakse og teghetsmoment f N cm G fnn ntalbetngelse: possjon, hastghet, vnkel,
Notat i FYS-MEK/F 1110 våren 2006
1 Notat i FYS-MEK/F 1110 våen 2006 Rulling og skliing av kule og sylinde Foelest 24. mai 2006 av Ant Inge Vistnes Geneelt Rotasjonsdynamikk e en svæt viktig del av mekanikkuset våt. Dette e nytt stoff
Stivt legemers dynamikk
Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)
Tre klasser kollisjoner (eksempel: kast mot vegg)
kap8 2.09.204 Kap. 8 Bevegelsesmengde. Kollisjone. assesente. Vi skal se på: ewtons 2. lov på ny: Definisjon bevegelsesmengde Kaftstøt, impuls. Impulsloven Kollisjone: Elastisk, uelastisk, fullstendig
Løsning, eksamen 3FY juni 1999
Løsning, eksamen 3FY juni 1999 Oppgae 1 km/s a) Hubbles lo sie at H, de H. 10 lyså Faten til galaksen e: 3 10 m/s H 5,0 10 7 lyså 1,10 10 m/s 10 lyså b) Dopplefomelen gi oss λ, de c e lysfaten og λ 0 e
Oppgave 1 Svar KORT på disse oppgavene:
Løsningsfoslag til Eksamen i FYS000. juni 0 Oppgae Sa KORT på disse oppgaene: a) En kontinuelig stålingskilde il gi et Planckspektum. Desom den kontinuelige stålingskilden passee gjennom en gass, il stålingen
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
A) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
Betinget bevegelse
Betinget bevegelse 1.0.013 innleveing på fonte FYS-MEK 1110 1.0.013 1 Innleveinge aksenavn! enhete! kommente esultatene utegninge: skitt fo skitt, ikke bae esultatet vi tenge å fostå hva du ha gjot sett
Fiktive krefter. Gravitasjon og planetenes bevegelser
iktive kefte Gavitasjon og planetenes bevegelse 30.04.013 YS-MEK 1110 30.04.013 1 Sentifugalkaft inetialsstem S f N G fiksjon mellom passasje og sete sentipetalkaft passasje bevege seg i en sikelbane f
Øving 8. Dersom ikke annet er oppgitt, antas det at systemet er i elektrostatisk likevekt.
Institutt fo fysikk, NTNU TFY455/FY003: lektisitet og magnetisme Vå 2008 Øving 8 Veiledning: 04.03 i R2 25-400, 05.03 i R2 25-400 Innleveingsfist: Fedag 7. mas kl. 200 (Svatabell på siste side.) Opplysninge:
Eksamen 3FY mai Løsningsforslag
Eksaen 3FY ai. Løsningsfoslag Oppgae a Fekensen og enegien til fotone ed bølgelengden λ,43 e in f aks c 3 λ in,,3,43 Hz E aks hf aks hc λ in 6 4 4 34,63 s 3,,5,43,9 b De sale linjene i øntgenspekteet e
Løsningsforslag til ukeoppgave 11
Oppgave FYS1001 Vå 2018 1 Løsningsfoslag til ukeoppgave 11 Oppgave 23.04 B F m qv = F m 2eV = 6, 3 10 3 T Kaft, magnetfelt og fat stå vinkelett på hveande. Se læebok s. 690. Oppgave 23.09 a) F = qvb =
Arbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
Kap. 13. Gravitasjon. Kap. 13. Gravitasjonen. Gravitasjon/solsystemet. Litt historie: Kap 13grav
Kap. 13. Gavitasjon Keples love fo planetbane Newtons gavitasjonslov Gavitasjonens potensielle enegi. Unnslippshastighet Kap. 13. Gavitasjonen Natuens fie fundamentale kefte (fa kap 4): Gavitasjonskaft
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Fysikk-OL Norsk finale 2005
Univesitetet i Oslo Nosk Fysikklæefoening Fysikk-OL Nosk finale 005 3. uttakingsunde Tid: Fedag 5. apil kl 09.00.00 Hjelpemidle: Tabell/fomelsamling, gafisk lommeegne Oppgavesettet bestå av 7 oppgave på
Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Kap. 8 Bevegelsesmengde. Flerpartikkelsystem. Sentralt elastisk støt. Generell løsning: kap8.
Kap. 8 evegelsesmengde. Flepatkkelsystem. V skal se på: ewtons 2. lov på ny. Defnsjon evegelsesmengde. Kaftstøt, mpuls. Impulsloven. Flepatkkelsysteme: Kollsjone: Elastsk, uelastsk, fullstendg uelastsk
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
Løsningsforslag til eksempeloppgave 1 i fysikk 2, 2008
Fysikk Eksempeloppgae Løsningsfoslag til eksempeloppgae 1 i fysikk, 008 Del 1 Oppgae 1 Riktige sa på flealgsoppgaene a j e: a) B b) D c) D d) D e) B f) D g) B h) B i) C j) B Sa på kotsasoppgaene k n: k)
FYSIKK-OLYMPIADEN Andre runde: 4/2 2010
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning FYSIKK-OLYMPIADEN 009 010 Ande unde: / 010 Skiv øvest: Navn, fødselsdato, e-postadesse og skolens navn Vaighet:3 klokketime Hjelpemidle:abell
Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA
FY1001 og TFY4145 Mekanisk fysikk Institutt fo fysikk, august 2014 Realstat og Teknostat ROTASJONSFYSIKK PROSJEKTOPPGAVE fo BFY, MLREAL og MTFYMA Mål Dee skal i denne posjektoppgaen utfoske egenskape til
Kap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
Fysikk 2 Eksamen høsten Løsningsforslag
Fysikk - Løsninsfosla Oae a) C De elektiske keftene e tiltekkende fodi atiklene ha ulike ladnine. q q F ke k q e b) B Abeidet e lik intealet oe kaften som må bukes fo å flytte leemet mellom ensene o. Kaften
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: Eksamensdag: Tid fo eksamen: 14.30 18.30 Oppgavesettet e på 5 side. Vedlegg: Tillatte hjelpemidle: MEK3230 Fluidmekanikk 6. Juni,
Newtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
Tre klasser kollisjoner (eksempel: kast mot vegg)
Kap. 8 Bevegelsesmengde. Kollsjone. assesente. V skal se på: ewtons. lov på ny: Defnsjon bevegelsesmengde Kollsjone: Kaftstøt, mpuls. Impulsloven Elastsk, uelastsk, fullstendg uelastsk assesente (tyngdepunkt)
1 Virtuelt arbeid for stive legemer
1 Vituelt abeid fo stive legeme Innhold: Abeidsbegepet i mekanikk Pinsippet om vituelt abeid fo stive legeme Litteatu: Igens, Statikk, kap. 10.1 10.2 Hibbele, Statics, kap. 11.1 11.3 Bell, Konstuksjonsmekanikk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)
kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons
Fysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Oppgae a) A Q Det elektiske feltet fa en punktladning e gitt ed E ke. Siden alle de fie ladningene e like stoe og astanden fa alle ladningene til O e den sae, il E æe like sto fa
EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:
Fysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Ogae a) B Siden t, il enheten fo fluks kunne skies so t enheten til esen ultiliset ed enheten til tida, altså Vs. b) D Minial lengde a klasseoet: 0,990 0 9,90 Maksial lengde a klasseoet:,04
Forelesning 9/ ved Karsten Trulsen
Foelesning 9/2 218 ved Kasten Tulsen Husk fa sist våe to spøsmål om kuveintegale: Desom vi skal beegne et kuveintegal som state i et punkt og ende opp i et annet punkt 1, så kan det væe mange veie fo å
Løsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
ρ = = = m / s m / s Ok! 0.1
Løsningsfoslag TEP 00 FLUIDMEKNIKK.juni 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d g 6
Fysikk 2 Eksamen våren Løsningsforslag
Fysikk - Løsningsfoslag Ogae a) B Q Den elektiske feltstyken fa en unktladning e gitt ed E ke. Feltet E gå adielt ut fa en ositi ladning. Siden ladning og e like langt fa unktet P, il E æe like sto fa
Løsningsforslag TEP 4110 FLUIDMEKANIKK 18.desember ρ = = = m / s m / s 0.1
Løsningsfoslag TEP 40 FLUIDMEKNIKK 8.desembe 007 Oppgave a) Foskjellen i vekt e oppdiftskaften på kula nå den e neddykket i olje (oppdiften i luft neglisjees). Oppdift =ρ Volum g olje π =ρvann SGolje d
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet
Sammendrag, uke 14 (5. og 6. april)
Institutt fo fysikk, NTNU TFY4155/FY1003: Elektisitet og magnetisme Vå 2005 Sammendag, uke 14 (5. og 6. apil) Magnetisk vekselvikning [FGT 28, 29; YF 27, 28; TM 26, 27; AF 22, 24B; H 23; DJG 5] Magnetisme
Kap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
Løsningsforslag. FY-ME100 eksamen 13. juni 2003
1 Løsningsfoslag FY-ME100 eksamen 13. juni 003 Oppgaveteksten e gjengitt fo at løsningsfoslaget skal kunne leses uten at den oiginale oppgaveteksten e tilgjengelig samtidig. I en nomal studentbesvaelse
Fysikkolympiaden 1. runde 25. oktober 5. november 2004
Nosk Fysikklæefoening Nosk Fysisk Selskaps fagguppe fo undevisning Fysikkolympiaden 1. unde 5. oktobe 5. novembe 004 Hjelpemidle: abell og fomelsamlinge i fysikk og matematikk Lommeegne id: 100 minutte
Løsningsforslag Fysikk 2 V2016
Løsningsfoslag Fysikk V016 Oppgave Sva Foklaing a) B Faadays induksjonslov: ε = Φ, so gi at Φ = ε t t Det bety at Φ åles i V s b) D L in = 0,99 10 = 9,9 L aks = 1,04 10 = 10,4 L snitt = (L in + L aks )
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
Mandag E = V. y ŷ + V ẑ (kartesiske koordinater) r sin θ φ ˆφ (kulekoordinater)
Institutt fo fysikk, NTNU TFY4155/FY13: Elektisitet og magnetisme Vå 26, uke 6 Mandag 6.2.6 Beegning av E fa V [FGT 24.4; YF 23.5; TM 23.3; F 21.1; LHL 19.9; DJG 2.3.1, 1.2.2] Gadientopeatoen : V = V V
Stivt legemers dynamikk. Spinn
Stvt legees nakk Spnn 9.4.14 ngen ata-vekste enne uke FYS-MEK 111 9.4.14 1 Eksepel R Et legee av asse M, aus R, og teghetsoent ulle ne et skåplan. koonatsste e aksen langs planet ogo assesenteet otasjon
Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009
Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
Løsningsforslag Fysikk 2 Høst 2015
Løsningsfoslag Fysikk Høst 015 Oppgave Sva Foklaing a) A Vi pøve oss fa ed noen kjente fole: ε vbl B ε Φ vl t vl Nå vi nå egne ed enhete på denne foelen få vi Wb B s s Wb Magnetfeltet kan altså åles i
Eksamensoppgave i TFY4108 Fysikk
Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte
a) C Det elektriske feltet går radielt ut fra en positivt ladet partikkel og radielt innover mot en negativt ladd partikkel.
Løsningsfoslag Fysikk 2 Vå 2015 Løsningsfoslag Fysikk 2 Vå 2015 Oppgav e Sva Foklaing a) C Det elektiske feltet gå adielt ut fa en positivt ladet patikkel og adielt innove mot en negativt ladd patikkel.
Keplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 1.05.016 FYS-MEK 1110 1.05.016 1 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G 1 F g G FG R Gm J J Newtons ande lov: netalmasse m
Flervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-natuvitenskapelige fakultet Eksamen i: MEK3220/MEK4220 Kontinuumsmekanikk Eksamensdag: Onsdag 2. desembe 2015. Tid fo eksamen: 09.00 13.00. Oppgavesettet e på 7 side.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 14 juni 2019 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Vektorstørrelser (har størrelse og retning):
Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har
Stivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 06.05.05 FYS-MEK 0 06.05.05 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G F g G FG R Gm J J Newtons ande lov: netalmasse m a F ma
Newtons lover i én dimensjon
Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva
Kap 28: Magnetiske kilder. Kap 28: Magnetiske kilder. Kap 28. Rottmann integraltabell (s. 137) μ r. μ r. μ r. μ r
Kap 8 Kap 8: Magnetiske kilde Elektostatikk: Ladning q påvikes av kaft qe Definisjon E-felt E-feltet skapes fa ladninge (Coulombs lov) (Coulombs lov) Magnetostatikk: Ladning q i bevegelse påvikes av kaft
Høst 95 Ordinær eksamen
Høt 95 Odinæ eken. En ptikkel ed e =.5 kg e i o i oigo ed tiden t =.. Ptikkelen utette (f tiden t =. ) fo en kft F ho koponentene F og F e gitt ed: F = t F = t Kontntene og e gitt ed: = 5. N/ =. N/ ngdekften
Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
EKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet
b) 3 MATEMATISKE METODER I 1 ( ) ( ) ( ) ( ) ( ) ( ) Repetisjonsoppgaver Bruk av regneregler: 1 Regn ut: e) 0 x ) 4 3 d) 4 x f) 5y
MATEMATISKE METODER I Buk av egneegle: Regn ut: a ( ( b 7 c ( 7 y 8 d 8 e f 5y y Regn ut og tekk sammen: a 5a b a b a + b b y + y + + y c t t + 6 ( 6t t + 8 d s+ s + s ( s + s Multiplise ut og odne a (
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
Løsningsforslag Fysikk 2 Høst 2014
Løsningsfoslag Fysikk Høst 014 Løsningsfoslag Fysikk Høst 014 Opp Sva Foklaing gave a) D Det elektiske feltet gå adielt ut fa en positivt ladet patikkel. Til høye fo elektonet lage elektonet en feltstyke
Midtsemesterprøve onsdag 7. mars 2007 kl
Institutt fo fysikk, NTNU FY1003 lektisitet og magnetisme I TFY4155 lektomagnetisme Vå 2007 Midtsemestepøve onsdag 7. mas 2007 kl 1300 1500. Svatabellen stå på side 11. Sett tydelige kyss. Husk å skive
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt.5.3 YS-MEK.5.3 otensell eneg tl tyngdekaften en masse m bevege seg tyngdefeltet tl massen M fa punkt tl B Newtons gavtasjonslov abed: W B G d mm G ˆ