Forkunnskaper i matematikk for fysikkstudenter. Vektorer.

Størrelse: px
Begynne med side:

Download "Forkunnskaper i matematikk for fysikkstudenter. Vektorer."

Transkript

1 I dette lille notatet skal jeg gi en kortfattet oersikt oer grnnleggende ektorregning Me a dette er forhåpentlig kjent fra før, men det skader sikkert ikke med en kort repetisjon Definisjoner Mange a de størrelsene i bentter i matematikk, er fllstendig definert bare med et tall, eentelt med en måleenhet i tillegg Slike størrelser kaller i gjerne skalare størrelser I fsikk iser det seg imidlertid at i også må kjenne en retning Slike størrelser som består a tallerdi (gjerne med måleenhet i tillegg) og retning, kaller i ektorer For eksempel er krefter og hastigheter ektorer I tillegg til tallet som angir hor stor kraften eller hastigheten er, må i også ite retningen for at kraften eller hastigheten skal ære fllstendig definert Når i brker bokstaer for å angi en ektor, skrier i bokstaene med theet skrift eller med en pil oer: eller er anlige måter å angi en ektor Noen ganger brkes begge deler: Når i skrier for hand, brker i helst pil oer eller en strek nder bokstaen: eller I dette notatet skal jeg stort sett bentte theet skrift: Noen ganger er i kn interessert i størrelsen (lengden) a en ektor, ten å br oss om retningen Vi brker da skriemåten, eller bare for å angi størrelsen a Vi definerer likhet slik: To ektorer og er like his og bare his begge ektorene har samme størrelse og samme retning Mltiplikasjon a ektor med skalar La ære en ektor, mens t er en skalar (et anlig tall) Da definerer i: Dersom t > 0, er = t en n ektor der = t, og som har samme retning som Dersom t < 0, er = t en n ektor der = t, og som har motsatt retning a Vektorer illstreres gjerne med en anlig pil, der pilens lengde og retning angir ektorens størrelse og retning Nedenfor ser d en ektor samt ektorene = 3 og w = = 3 = w Legg spesielt merke til at er en ektor som er like stor som, men som har motsatt retning a Bjørn Daidsen, Uniersitetet i Tromsø

2 3 Addisjon og sbtraksjon a ektorer Figren nedenfor iser hordan i adderer to ektorer og : + Til enstre ser d de to ektorene og som skal adderes + I midten ser d den ene måten å gå fram på: Vi lar starte der sltter Vektorsmmen + blir da en ektor som går fra starten på til sltten a Til høre ser d en annen måte å gå fram på: Vi lar og starte i samme pnkt slik at de definerer et parallellogram Da blir + en ektor som følger diagonalen fra ektorenes felles startpnkt Dersom i skal addere tre eller flere ektorer, starter i med å addere to a dem Deretter legger i til den tredje Figren nedenfor iser hordan i kan gå fram for å finne a+ b+ c: a b c a a+ b b c a+ b+ c Ved hjelp a slike figrer kan i ise at regnereglene nedenfor må gjelde, der og er ektorer mens s og t er skalarer: a+ b = b+ a a+ b+ c = a+ b + c= a+ b+ c ( ) ( ) t ( + ) = t + t ( s+ t) = s + t Sbtraksjon a ektorer skjer enkelt ed å bentte at = + ( ) Figrene nedenfor iser hordan det kan gjøres: ( ) + + ( ) Vi starter som før med to ektorer og Figren i midten iser hordan i går fram når i adderer og, mens figren til høre iser hordan i bentter den andre diagonalen i + parallellogrammet som og tspenner til å finne ( ) Bjørn Daidsen, Uniersitetet i Tromsø

3 Eksempel 3: Nedenfor til enstre ser d to ektorer og Finn: a) b) 3 Løsning: a) b) 3 Oppgae 3 4 Dekomponering a ektorer La oss starte med et plant (to-dimensjonalt) koordinatsstem I dette koordinatsstemet fastlegger i to retninger, for eksempel ed å tegne to ikke-parallelle linjer l og l Å dekomponere en ektor i disse to retningene består da i å finne to ne ektorer og, en i her a de to retningene, slik at = l + Figren til enstre iser hordan i kan gjøre dette Vi parallellforsker slik at den begnner der l linjene krsser herandre Så trekker i paralleller med linjene l og l gjennom spissen a Dermed framkommer et parallellogram, og og går da langs sidene i dette parallellogrammet I et tre-dimensjonalt koordinatsstem går i fram på samme måten: Vi fastlegger tre retninger ed å trekke tre ikke-parallelle linjer Deretter bestemmer i tre ektorer, og 3, en i her a de tre retningene, slik at = Oppgae 4 5 Enhetsektorer θ Vi skal nå plassere en ektor i et rettinklet koordinatsstem I starten skal i begrense oss til et todimensjonalt koordinatsstem Da kan dekomponeres i to andre ektorer, en ektor parallell med -aksen og en ektor parallell med -aksen Vi har da at = + Se figren til enstre Bjørn Daidsen, Uniersitetet i Tromsø

4 π < θ < π = cosθ < 0 = sinθ > < θ < π = cosθ > 0 = sinθ > 0 3 π < θ < π π < θ < π = cosθ < 0 = sinθ < 0 = cosθ > 0 = sinθ < 0 Nå iser det seg å ære hensiktsmessig å endre litt på denne tolkingen Istedenfor å bentte to ektorer og, innfører i to skalare komponenter og slik: = cosθ, = sinθ Her er θ inkelen mellom positi -akse og Legg spesielt merke til at disse definisjonene fører til at og får korrekte fortegn Se figren til enstre, og hsk fortegnet til cosθ og sinθ når θ ligger i de angitte interallene Nå er det hensiktsmessig å definere to enhetsektorer i og j slik: = sin θ j i θ = cosθ i = j = i har retning langs positi -akse j har retning langs positi -akse Da kan en ektor skries slik: = i+ j Se figren til enstre I et tredimensjonalt koordinatsstem har i en -retning inkelrett på - og -aksene, slik at danner et hørehåndssstem Dette k kan defineres slik: Grip om -aksen slik at 0 j tommelen peker i positi -retning Da il de i fire andre fingrene peke fra positi mot positi slik figren til enstre iser Så innfører i en enhetsektor k i -retningen Et tredimensjonalt koordinatsstem med enhetsektorene i, j og k inntegnet er ist i midten oenfor I et slikt koordinatsstem kan en ektor skries = i+ j+ k Her er komponenten a langs -aksen Vi sier at er skreet på komponentform Slik dekomponering er sært nttig i mange sammenhenger, for eksempel når i skal addere eller sbtrahere ektorer slik eksemplet nedenfor iser: Eksempel 5: Vi har gitt ektorene = i j+ og = i+ 3 j k Bjørn Daidsen, Uniersitetet i Tromsø

5 Finn og + 3 Løsning: = ( i j+ k) ( i+ 3 j k) = 4 i j+ k + i 3 j+ k = 5 i 5 j k + 3 = ( i j+ k) + 3 ( i+ 3 j k) = i j+ k 3 i+ 9 j 6 k = i+ 8 j 5 k Oppgae 5, 5 Dersom det ikke kan føre til misforståelser, kan i nnlate å skrie enhetsektorene i, j og k Da skrier i bare ned komponentene, og i riktig rekkefølge slik: =,, eller ten brk a komma: = Vi kan også skrie ektoren på kolonneform: = Hittil har i fortsatt at enhetsektorene går langs - - eller -aksen Men det er slett ikke nødendig Vi kan ha enhetsektorer som peker i hilken som helst retning Dersom e ˆ er en enhetsektor som peker i samme retning som ektoren, har i at = e ˆ Dermed har i en grei måte å finne en enhetsektor i samme retning som : En enhetsektor i samme retning som er gitt ed eˆ = 6 Skalarprodktet Vi definerer skalarprodktet a to ektorer slik: Skalarprodktet a de to ektorene og er = cosθ der θ er inkelen mellom og Vi kan med en gang merke oss noen iktige konsekenser a denne definisjonen: Siden både, og cosθ er skalarer (anlige tall), blir også en skalar, ikke en ektor Skalarprodktet er kommtatit, ds at = Bjørn Daidsen, Uniersitetet i Tromsø

6 Dersom og står inkelrett på herandre, er θ = π slik at cosθ = 0 Dette fører til at dersom erken eller har lengde lik nll, må i ha at: = 0 = cos0 = = La oss se ha som skjer dersom i beregner skalarprodkt a enhetsektorene i, j og k : i i = j j= k k = fordi både i, j og k har lengde lik i j= j i = i = i = j = j= 0 fordi i, j og k står inkelrett på herandre Dette gir oss en enkel regneregel for skalarprodkt når ektorene er skreet på komponentform: Dersom = i+ j+ og = i+ j+ k, er = + + For oersiktens skld skal jeg nøe meg med å beise dette for todimensjonale ektorer: = i+ j i+ j= ii + i j+ ji + jj = + ( ) ( ) = = 0 = 0 = Beiset for tredimensjonale ektorer er helt likedan, bare med mer skriing Nå er det lett å finne lengden a en ektor på komponentform: = = + + Eksempel 6: Vi har gitt ektorene = i j+ og = i+ 3 j k Finn,,, og inkelen θ mellom og Løsning: = + 3+ = 7 ( ) ( ) ( ) ( ) = + + = 6 ( ) ( ) = = 4 7 = cosθ cosθ = = θ Oppgae 6 Bjørn Daidsen, Uniersitetet i Tromsø

7 Eksempel 6: Bestem t slik at ektorene = i j+ og = i+ t j k står inkelrett på herandre Løsning: Når to ektorer står inkelrett på herandre, er skalarprodktet lik nll: = 0 + t + = 0 4 t = 0 t = 4 ( ) ( ) ( ) Oppgae 6, 63 Til sltt skal jeg ten beis føre opp disse setningene: ( + w) = + w t ( + ) = t + t 7 Vektorprodktet h = sinθ θ La og ære to ektorer A figren til enstre ser d sikkert at arealet a det parallellogrammet som ektorene tspenner, er A= h= sinθ der θ er inkelen mellom ektorene Vi skal nå tilordne dette arealet en enhetsektor n inklerett på flata som tspennes a og, slik at, og n danner et hørehåndssstem På figren il da n peke t a papirplanet Den ektoren som har størrelse A og retning n skal i kalle ektorprodktet eller krssprodktet a og Vi definerer altså: Vektorprodktet (krssprodktet) a de to ektorene og er = sinθ n der θ er inkelen mellom og, og n er en enhetsektor slik at, og n danner et hørehåndssstem Vi kan med en gang merke oss noen iktige konsekenser a denne definisjonen: blir en ektor som står inkelrett på både og Vektorprodktet er ikke kommtatit Tert imot har i at = fordi n skifter retning når og btter plass Bjørn Daidsen, Uniersitetet i Tromsø

8 Dersom og er parallelle, er θ = 0 slik at sinθ = 0 Dette fører til at dersom erken eller har lengde lik nll, må i ha at: = 0 La oss se ha som skjer dersom i beregner ektorprodkt a enhetsektorene i, j og k : i k 0 j i i = j j= = 0 i j=, j k = i, k i = j j i = k, k j= i, i = j Disse sammenhengene kan d sel kontrollere ed hjelp a figren til enstre og hørehåndsregelen! Væpnet med disse sammenhengene kan i nå sette opp ektorprodktet på komponentform: = i+ j+ i+ j+ k ( ) ( ) = i i+ i j+ i k + j i+ j j+ j k = 0 = = k j = = 0 = i + k i+ k j+ k k = j = i = 0 = i j+ k ( ) ( ) ( ) Dette ttrkket er ikke lett å hske Men dersom d kan beregne determinanter, kan d slippe å hske det Uttrkket kan nemlig skries på determinantform slik det er gjort nedenfor: Dersom = i+ j+ og = i+ j+ k, er i j ( ) ( ) ( ) = = i j+ k Eksempel 7: Vi har gitt ektorene = i j+ = i+ 3 j k Finn Løsning: i j = 3 (( )( ) ) ( ) ( ) ( ) ( ( ) ( )) = 3 i j+ 3 k = i+ 3j+ 5k Bjørn Daidsen, Uniersitetet i Tromsø

9 Oppgae 7, 7 Det fins en mengde setninger for ektorprodkt, og for kombinasjoner a skalarprodkt og ektorprodkt Jeg skal nøe meg med disse: ( + w) = + w ( + w) = + w Bjørn Daidsen, Uniersitetet i Tromsø

Løsning 1med teori, IM3 høst 2011.

Løsning 1med teori, IM3 høst 2011. Løsning med teori, IM høst 0 Oppgae a) Vi obsererer at ttrkket er bestemt og i ndersøker det først langs koordinataksene Langs - aksen er = 0 Innsatt gir dette sin( ), 0 Langs - aksen sin( ) cos( ) er

Detaljer

Løsning 1 med teori, IM3 høst 2012.

Løsning 1 med teori, IM3 høst 2012. Løsning med teori, IM3 høst Oppgae a) Vi obsererer at ttrkket er bestemt og i ndersøker det først langs koordinataksene Langs - aksen er Innsatt gir dette sin( ), Langs - aksen er Innsatt gir dette sin(

Detaljer

Matematikk R1. Odd Heir Gunnar Erstad Ørnulf Borgan Håvard Moe Per Arne Skrede BOKMÅL

Matematikk R1. Odd Heir Gunnar Erstad Ørnulf Borgan Håvard Moe Per Arne Skrede BOKMÅL Matematikk R Odd Heir Gnnar Erstad Ørnlf Borgan Håard Moe Per Arne Skrede BOKMÅL Matematikk R dekker målene i læreplanen a 006 for Matematikk R i stdiespesialiserende tdanningsprogram H Aschehog & Co (W

Detaljer

R2 - Kapittel 1: Vektorer

R2 - Kapittel 1: Vektorer R2 - Kapittel : Vektorer Kompetanseniåer: L(at), M(iddels), H(øyt) Vanlige feil og tips: I (L) Løsningsskisser Korrekt og konsekent arunding: Teoretiske oppgaer: Eksakte tall eller 3 gjeldende siffer.

Detaljer

Løsning til utvalgte oppgaver fra kapittel 14 (12).

Løsning til utvalgte oppgaver fra kapittel 14 (12). Løsning til talgte oppgaer fra kapittel () For å gi et inntrkk a integrasjonsrekkefølgens betdning er oppgaene fra asnitt løst på begge måtene Vi får forskjellige ttrkk ahengig a integrasjonsrekkefølgen

Detaljer

Vektoranalyse TFE4120 Elektromagnetisme

Vektoranalyse TFE4120 Elektromagnetisme Vektoranalyse TFE4120 Elektromagnetisme Johannes kaar, NTNU 4. januar 2010 1 Integraler og notasjon Linjeintegral Et linjeintegral a et ektorfelt A oer en kure C skrier i C A d l. Når kuren er lukket tegner

Detaljer

TFE4120 Elektromagnetisme

TFE4120 Elektromagnetisme NTNU IET, IME-fakultetet, Norge teknisk-naturitenskapelige uniersitet TFE412 Elektromagnetisme Løsningsforslag repetisjonsøing Oppgae 1 a) i) Her er alternati 1) riktig. His massetettheten er F, il et

Detaljer

Forkunnskaper i matematikk for fysikkstudenter. Trigonometri. Omregning mellom grader og radianer skjer etter formelen nedenfor:

Forkunnskaper i matematikk for fysikkstudenter. Trigonometri. Omregning mellom grader og radianer skjer etter formelen nedenfor: Forkunnskper i mtemtikk for fysikkstudenter.. Vinkelmål. Vinkler måles trdisjonelt i grder. Utgngspunktet er d t en hel sirkel deles i 6 like store deler, der her del klles en grd. En grd kn deles inn

Detaljer

PARAMETERFRAMSTILLING FOR EN KULEFLATE

PARAMETERFRAMSTILLING FOR EN KULEFLATE 1 PARAMETERFRAMSTILLING FOR EN KULEFLATE Vi har tidligere sett hordan i kan lage en parameterframstilling for et plan ed å uttrykke koordinatene ed to parametere, f. eks s og t. Fra 1.2 et i at x = x0

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 18/10-22/10

Fasit til utvalgte oppgaver MAT1100, uka 18/10-22/10 Fasit til utalgte oppgaer MAT00, uka 8/0-/0 Øyind Ryan (oyindry@ifiuiono October 5, 00 Oppgae 645 a g er definert der neneren er 0, det il si der tan 0, og der tan er definert Førstnente utelukker bare

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +

Detaljer

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål

Institutt for matematiske fag EKSAMEN i MA-132 Geometri Fredag 7. desember 2007 kl Løsningsforslag. Bokmål Institutt for matematiske fag EKSAMEN i MA-3 Geometri Fredag 7. desember 007 kl. 9.00-4.00 Løsningsforslag. Bokmål Oppgae Gitt et linjestykke. La a ære lengden a dette linjestykket. (Alternatit: Tegn ditt

Detaljer

Vektorer. Mål. for opp læ rin gen er at ele ven skal kun ne

Vektorer. Mål. for opp læ rin gen er at ele ven skal kun ne 8 Vektorer Mål for opp læ rin gen er at ele en skal kun ne gjøre rede for begrepene implikasjon og ekialens, kjenne til anlige matematiske beistyper og argumentasjon og gjennomføre matematiske beis gjøre

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6

Løsningsforslag kontinuasjonseksamen FYS1000 H11 = 43, 6. sin 90 sin 43, 6 Løsningsforslag kontinuasjonseksamen YS1 H11 Oppgae 1 Sar KORTpå disse oppgaene: a) Totalrefleksjon: Når lyset inn mot en flate kommer i en slik inkel at ingenting blir brutt og alt blir reflektert. Kriteriet

Detaljer

Fysikkolympiaden 1. runde 24. oktober 4. november 2016

Fysikkolympiaden 1. runde 24. oktober 4. november 2016 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden 1. runde 4. oktober 4. noember 016 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN

MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN Institutt for fysikk, NTNU 5. april 2005 FY003/TFY455 Elektromagnetisme MAGNETFELT OG MAGNETISME SOM RELATIVISTISK FENOMEN (orienteringsstoff; ikke pensum til eksamen) Utgangspunkt: Anta at i kjenner til

Detaljer

Brukerhåndbok i Query/400

Brukerhåndbok i Query/400 iseries Brukerhåndbok i Query/400 Versjon 5 iseries Brukerhåndbok i Query/400 Versjon 5 Copyright International Business Machines Corporation 2000, 2001. All rights resered. Innhold Om Brukerhåndbok i

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Supplement til kap. 18 22 i Varian s Intermediate Microeconomics (HV)

Supplement til kap. 18 22 i Varian s Intermediate Microeconomics (HV) Jon Vislie ECON 22 år 27 Supplement til kap. 8 22 i Varian s Intermediate Microeconomics (HV) (De notatene som il bli lagt ut på emnesiden er supplement ikke erstatning til pensum. Jeg il ta opp spørsmål/problemer

Detaljer

Trigonometri. Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Formlikhet 200, 201, 202, 203, 204, 206 209, 210, 211, 212, 213, 215 219, 220, 221, 222, 223, 224

Trigonometri. Kompetansemål: Sti 1 Sti 2 Sti 3 2.1 Formlikhet 200, 201, 202, 203, 204, 206 209, 210, 211, 212, 213, 215 219, 220, 221, 222, 223, 224 2 Trigonometri Kompetansemål: Mål for opplæringen er at eleen skal kunne gjøre rede for definisjonene a sinus, cosinus og tangens og bruke trigonometri til å beregne lengder, inkler og areal i ilkårlige

Detaljer

Notat 3: Magnetfelt og magnetisme som relativistisk fenomen (orienteringsstoff; ikke pensum til eksamen)

Notat 3: Magnetfelt og magnetisme som relativistisk fenomen (orienteringsstoff; ikke pensum til eksamen) nst. for fysikk 202 TY455/Y003 Elektr. & magnetisme Notat 3: Magnetfelt og magnetisme som relatiistisk fenomen (orienteringsstoff; ikke pensum til eksamen) Utgangspunkt: Anta at i kjenner til Coulombs

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 12. TFY0 Fsikk. nstitutt for fsikk, NTNU. Høsten 06. Øving. Oppgave Partikler med masse m, ladning q og hastighet v kommer inn i et område med krsset elektrisk og magnetisk felt, E og, som vist i figuren.

Detaljer

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning

Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning Nork Fikklærerforenin Nork Fik Selkap faruppe for underinin FYSIKK-OLYMPIADEN 4 5 Andre runde: 3/ 5 Skri øert: Nan, fødeldato, hjeeadree o eentuell e-potadree, kolen nan o adree. Varihet: 3 klokketier

Detaljer

IBM Operasjonsnavigator

IBM Operasjonsnavigator Operasjonsnaigator Operasjonsnaigator Copyright International Business Machines Corporation 1998, 2001. All rights resered. Innhold Kapittel 1. Ha er nytt i Operasjonsnaigator for V5R1?.................

Detaljer

ECON 3610/4610 høsten 2012 Veiledning til seminaroppgave 2 uke 37

ECON 3610/4610 høsten 2012 Veiledning til seminaroppgave 2 uke 37 Jon Vislie ECO 360/460 høsten 0 Veiledning til seminaroppgae uke 37 I de første forelesningene har i sett på følgende problemstilling (modell): Velg den allokering a arbeidskraft til fremstilling a to

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.

Detaljer

1. Egenverdiproblemet.

1. Egenverdiproblemet. Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 7 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Onsdag 17. august 2016 Oppgae 1 I denne

Detaljer

Kap 5 Anvendelser av Newtons lover

Kap 5 Anvendelser av Newtons lover Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket

Detaljer

3.2.2 Tilstandsrommodeller

3.2.2 Tilstandsrommodeller 54 Dnamiske sstemer Sperposisjonsprinsippet. For lineære differensiallikninger men ikke for lineære gjelder sperposisjonsprinsippet: Den totale responsen som skldes avhengige inngangssignaler, vil være

Detaljer

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010

Løsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet

Detaljer

Repetisjonsoppgaver kapittel 3 - løsningsforslag

Repetisjonsoppgaver kapittel 3 - løsningsforslag Repetisjonsoppgaer kapittel 3 - løsningsforslag Krefter Oppgae 1 a) De tre setningene er 1. En kraft irker på et legeme fra et annet legeme.. En kraft som irker på et legeme, kan endre beegelsen til legemet

Detaljer

LGU11005 A Naturfag 1 emne 1

LGU11005 A Naturfag 1 emne 1 Indiiduell skriftlig eksamen i LGU11005 A Naturfag 1 emne 1 ORDINÆR EKSAMEN: 4.12.2013 BOKMÅL Sensur faller innen: 6.1.2014 Resultatet blir tilgjengelig på studentweb første irkedag etter sensurfrist,

Detaljer

6 Determinanter TMA4110 høsten 2018

6 Determinanter TMA4110 høsten 2018 6 Determinanter TMA4110 høsten 2018 En matrise inneholder mange tall og dermed mye informasjon så mye at det kan være litt overveldende Vi kan kondensere ned all informasjonen i en kvadratisk matrise til

Detaljer

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5

2 = 4 x = x = 3000 x 5 = = 3125 x = = 5 Heldagsprøve i FO99A matematikk Dato: 7. desember 010 Tidspunkt: 09:00 14:00 Antall oppgaver 4 Vedlegg: Formelsamling Tillatte hjelpemidler: Godkjent kalkulator Alle svar skal grunngis. Forsøk å gi svarene

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005

Løsningsforslag eksamen TMA4105 matematikk 2, 25. mai 2005 Løsningsforslag eksamen TMA5 matematikk, 5. mai 5 Oppgave Vi finner de partiellderiverte av første og annen orden av f, ) = sin : f = sin, f = cos, f =, f = cos, f = sin. Finner de kritiske punktene ved

Detaljer

Regler for arkivbeskrivelse i Asta Mappe

Regler for arkivbeskrivelse i Asta Mappe Regler for arkibeskrielse i Asta Mappe Dette kapitlet er en gjennomgang a alle aktuelle felter for å beskrie en mappe i Asta. Våre anbefalinger er basert på en gjennomgang og synkronising a tidligere arbeider

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004

Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding

Detaljer

Fysikkonkurranse 1. runde november 2001

Fysikkonkurranse 1. runde november 2001 Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for underisning Fysikkonkurranse. runde 5. - 6. noember 00 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 00 minutter

Detaljer

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11

=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11 3.3 Oppgaver 3.3.1 1 2 3 1 2 3 2 0 1.La A,,,,, 3 4 B 2 1 C 0 1 a -1 b 1 c 2 Regn ut (a) A a, (b) B b, (c) C c, (d) A B, (e) A B C ( a) ( c) ( e) ( f ) 1-2 2 1 2 + ( 2) ( 1) 4 A a 3 4 1 3 2 + 4 ( 1 ( b)

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

Felt i naturen, skalar- og vektorfelt, skalering

Felt i naturen, skalar- og vektorfelt, skalering Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Fredag 27. mai 2016 Oppgae 1 En koaksialkabel

Detaljer

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.

, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s. eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY445/FY00 6. des. 20 Side a 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støneng, telefon: 45 45 55 33 EKSAMEN I FY00 og TFY445 MEKANISK FYSIKK

Detaljer

TMA4105 Matematikk2 Vår 2008

TMA4105 Matematikk2 Vår 2008 TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2

Detaljer

MA1201 Lineær algebra og geometri Høst 2017

MA1201 Lineær algebra og geometri Høst 2017 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA1201 Lineær algebra og geometri Høst 2017 Løsningsforslag Øving 1 Med forbehold om feil. Kontakt gjerne mads.sandoy@ntnu.no

Detaljer

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling

Viktige Fourier-transform par. Konvolusjons-teoremet. 2-D Diskret Fourier-Transform (DFT) INF 2310 Digital bildebehandling - iskret Forier-Transform FT INF 3 igital bildebehandling FILTRERING I FREKVENS-OMÈNET II Konolsjons-teoremet Lapass- øypass- og Båndpass-filter esign a filtre i frekens-doménet Rask implementasjon a konolsjons-filtre

Detaljer

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3

Tegn en skisse som tydelig viser integrasjonsområdet og grensene: = 1 3. dy = 1 3 Integral y x Vi har integralet e x dxdy yx y Tegn en skisse som tydelig iser integrasjonsområdet og grensene: Integrassjonsområdet bestemmes a øre og nedre grenser i integralene Integranten har ingen betydning

Detaljer

Fysikkolympiaden 1. runde 26. oktober 6. november 2009

Fysikkolympiaden 1. runde 26. oktober 6. november 2009 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Uniersitetet i Oslo Fysikkolympiaden. runde 6. oktober 6. noember 009 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012

R2 2010/11 - Kapittel 4: 30. november 2011 16. januar 2012 R 00/ - Kpittel 4: 0. noemer 0 6. jnr 0 Pln for skoleåret 0/0: Kpittel 5: 6/ 6/. Kpittel 6: 6/ /. Kpittel 7: / /4. Prøer på eller skoletime etter hert kpittel. Én heildgsprøe i her termin. En del prøer

Detaljer

Innlevering i matematikk Obligatorisk innlevering nr. 5 Innleveringsfrist: 18. februar 2011 kl Antall oppgåver: 5 Ein skal grunngi alle svar.

Innlevering i matematikk Obligatorisk innlevering nr. 5 Innleveringsfrist: 18. februar 2011 kl Antall oppgåver: 5 Ein skal grunngi alle svar. Innleering i matematikk Obligatorisk innleering nr. Innleeringsfrist: 18. februar 2011 kl. 14.00 Antall oppgåer: Ein skal grunngi alle sar. Oppgåe 1 f(x) = x2 +3 x+1. Skjæring med aksane Nullpunkt: f(x)

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004.

FASIT OG TIPS til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag, 1.utgave 2003 og 2.opplag 2004. FAIT OG TIP til Rinvold: Visuelle perspektiv. Lineær algebra. Caspar forlag,.utgave og.opplag. Versjon..9. Det er ikke tatt med svar på alle oppgaver. Denne fasiten vil bli oppdatert etter hvert. Oppdager

Detaljer

Relativitet og matematikk

Relativitet og matematikk Reatiitet og matematikk Eementær agebra og igninger Beregning dersom rommet er absoutt og dersom det er reatit Horfor måingen i 887 ga det resutat man fant. At yset bruker ike ang tid ti å gå i ae retninger

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

Avdeling for ingeniørutdanning

Avdeling for ingeniørutdanning Adeling for ingeniørutdanning Emne: Elektro & Reguleringsteknikk Gruppe(r): 2M Emnekode: LO521 M Dato: 16.12.2003 Faglig eiledere: Bjørn Engebretsen Eksamenstid: 09.00-12.00 Eksamensoppgaen består a: Tillatte

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

9 Spenninger og likevekt

9 Spenninger og likevekt 9 Spenninger og likevekt Innhold: Volumkrefter og flatekrefter Traksjonsvektoren Spenningsmatrisen Retningscosinuser Cauchs ligning Hovedspenninger og hovedspenningsretninger Spenningsinvarianter Hdrostatisk

Detaljer

Forelesning nr.5 INF 1410

Forelesning nr.5 INF 1410 Forelesning nr.5 INF 40 Operasjonsforsterker Oersikt dagens temaer Kort historikk til operasjonsforsterkeren (OpAmp) Enkel Karakteristikker modell for OpAmp til ideell OpAmp Konfigurasjoner Mer med OpAmp

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Geometri. Kapittel 3. 3.1 Vektorproduktet

Geometri. Kapittel 3. 3.1 Vektorproduktet Kapittel 3 Geometri I dette kapitlet skal vi benytte den teorien vi utviklet i kapittel 1 og 2 til å studere geometriske problemstillinger. Vi skal se på kurver og flater, og vi skal også studere hvordan

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Jo.skjermo@idi.ntnu.no Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering 2 TDT495 Forrige gang Attributter til

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Løsning, Stokes setning

Løsning, Stokes setning Ukeoppgaver, uke 4 Matematikk, tokes setning 1 Løsning, tokes setning Oppgave 1 a) b) c) F x y z x y z F x x + y y + z z 1+1+1 iden F er feltet konservativt. ( z y y ) ( x i z z z ) ( y x x x ) k i +k

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn

Detaljer

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5

Kompetansemål Geometri, R Vektorer Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 1 Geometri Innhold Kompetansemål Geometri, R2... 3 1.1 Vektorer... 4 1.2 Regning med vektorer... 5 Addisjon av vektorer... 5 Vektordifferanse... 5 Multiplikasjon av vektor med tall... 6 Parallelle vektorer...

Detaljer

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer:

Determinanter. Kapittel 6. Determinanter for 2 2-matriser. La oss beregne arealet av dette parallellogrammet. Vi tegner på noen hjelpelinjer: Kapittel 6 Determinanter En matrise inneholer mange tall og erme mye informasjon så mye at et kan være litt overvelene Vi kan konensere ne all informasjonen i en kvaratisk matrise til ett enkelt tall som

Detaljer

I C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme

I C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra

Detaljer

Leksjon G2: Transformasjoner

Leksjon G2: Transformasjoner Programmering grunnkurs TDAT: Grafikkdel Leksjon G: Transformasjoner Fra modell til tegning på skjerm side Modell Plantransformasjoner/translasjon side 3 Modell Plantransformasjoner/skalering side 4 Modell

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet

UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

LotusLive. LotusLive Administrasjonsveiledning

LotusLive. LotusLive Administrasjonsveiledning LotusLie LotusLie Administrasjonseiledning LotusLie LotusLie Administrasjonseiledning Merknad Før du bruker denne informasjonen og produktet den støtter, må du lese informasjonen i Merknader på side 83.

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2007-2008 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Norges teknisk naturitenskapelige uniersitet Institutt for elektroniske systemer ide 1 a 8 Faglærer: Johannes kaar EKAMEN I EMNE TFE 4120 ELEKTROMAGNETIME Mandag 29. mai 2017 Alle anlige deloppgaer teller

Detaljer

Forelesning 5/ ved Karsten Trulsen

Forelesning 5/ ved Karsten Trulsen Forelesning 5/4 2018 ved Karsten Trulsen Litt regning med del-operatoren Rottmann s.64, M s.82 Eksempel: Se på uttrkket a b hvor pila som peker ned på krøllparentesen indikerer at del-operatoren sin derivasjonsoperasjon

Detaljer

Fysikkolympiaden Norsk finale 2010

Fysikkolympiaden Norsk finale 2010 Uniesitetet i Oslo Nosk Fysikklæefoening Fysikkolympiaden Nosk finale. ttakingsnde Fedag 6. mas kl 9. til. Hjelpemidle: abell/fomelsamling, lommeegne og tdelt fomelak Oppgaesettet bestå a 6 oppgae på side

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 8..16 Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 3

Løsningsforslag til utvalgte oppgaver i kapittel 3 Løsningsforslag til utvalgte oppgaver i kapittel 3 I dette kapittelet har mange av oppgavene et mindre teoretisk preg enn i de foregående kapitlene, og jeg regner derfor med at lærebokas eksempler og fasit

Detaljer

Fiktive krefter

Fiktive krefter Fiktie krefter 5.04.013 FYS-MEK 1110 5.04.013 1 Fiktie krefter problem: Newtons loer gjelder bare i inertialsystemer hordan analyserer i en beegelse i et akselerert system? z z x y transformasjon transformasjon

Detaljer