Forelesning Elkraftteknikk 1, Oppdatert Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi
|
|
- Lilly Børresen
- 9 år siden
- Visninger:
Transkript
1 Forelesig Elkrafttekikk, Oppdatert Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer. Et elkraftsystem ka i sært mage tilfeller med meget god tilærmelse betraktes som et system i stasoær tilstad med alle strømmer og speiger siusarierede. Da ka strømmee og speigee i systemet represeteres som isere. E iser er rett og slett et komplekst tall som ieholder iformaso om e siusarierede størrelses amplitude og faseikel. Komplekse tall og isere er derfor del a grukuskape som e elkraftigeiør må ha. Komplekse tall er pesum i matematikkuderisige i. klasse ed høgskole, mes isere ble brukt i Elektrotekisk grulag, me ute at det ble eksplisitt sagt at ma brukte isere. Istedefor ble betegelse ektorer brukt med bakgru i det at grafisk addiso og subtrakso a isere og ektorer er helt likt. Mye a stoffet i dette otatet er hetet fra boka Electric Circuits a Nilsso og Riedel (5. utgae), og er til dels re oersettelse. De fleste figuree er kopiert fra boka. Det egelske uttrykket for iser er phasor. Komplekse tall Komplekse tall ble oppfuet for at ma skulle kue ta kadratrote a egatie tall. Komplekse tall forekler løsige a problemer som ellers ille ære sært askelige. igige x + 8x + 4 0, for eksempel, har ige løsig i et tallsystem som ekskluderer komplekse tall. Disse tallee, og mulighete til algebraisk å maipulere dem, er særdeles yttig i kretsaalyse. Notaso Det fis to måter å agi et komplekst tall på: kartesisk form, også kalt rektagulær form polar form, også kalt trigoometrisk form Rektagulær form: a + b hor a kalles realdele, mes b kalles imagiærdele. er per defiiso lik, kadratrote a mius e. * Polar form: θ ce * I matematikke brukes som oftest symbolet i for kadratrote a mius e, me i elkrafttekikke er det alig å bruke symbolet i for strøm, og derfor har ma algt å bruke.
2 hor c er størrelse, θ er ikele, e er grutallet i de aturlige logaritme, mes som før er lik. I elkrafttekikke bruker i ofte otasoe c θ for polar form, me i meer da det samme som oer. Vi ka eksle mellom polar og rektagulær form geom å bruke Eulers idetitet: ± θ e cosθ ± siθ Vi ka derfor gå fra polar til rektagulær form ed å skrie: ce θ c(cos θ + siθ ) c cosθ + csiθ a + b Vi ka gå fra rektagulær til polar form ed å skrie: a + b ( a ) + b e θ der ta θ b / a Det er ikke åpebart fra uttrykket oer hilke kadrat ikele θ ligger i. Dee tetydighete ka løses ed de grafiske represetasoe a et komplekst tall. Grafisk represetaso a et komplekst tall Et komplekst tall represeteres grafisk i det komplekse tallpla, som bruker e horisotal akse for å plotte realdele og de ertikale akse for å plotte imagiærdele. Vikele til et komplekst tall måles mot klokka fra de positie reelle akse. De grafiske represetasoe a det komplekse tallet hor det er atatt at både a og b er positie. a + b c θ er ist i figure uder, Dee figure gør forholdet mellom rektagulær og polar form sært klart. Ethert pukt i det komplekse tallpla er etydig defiert ed ete å gi dets distase fra her akse (les: a og b), eller dets radielle distase fra origo c samt ikele θ.
3 3 Det følger fra figure oer at θ er i første kadrat år både a og b er positie, i adre kadrat år a er egati og b positi, i trede kadrat år a og b er begge egatie, og i ferde kadrat år a er positi og b er egati. Disse obserasoee er illustrert i figure uder, hor tallee 4 + 3, 4 + 3, 4 3, 4 3 er teget i. egg merke til at i også ka spesifisere θ som e ikel målt med klokka fra de positie reelle akse. I elkrafttekikke er det alig å uttrykke θ i egatie erdier år θ ligger i trede eller ferde kadrat. For eksempel ka 4 3 også uttrykkes som De grafiske fremstillige a et komplekst tall iser også sammehege mellom et komplekst tall og des kougerte. De kougerte a et komplekst tall daes ed å reersere forteget på de imagiære kompoete. Med adre ord, de kougerte a a + b er a b. Når i skrier et komplekst tall på polar form, daes de kougerte gaske ekelt ed å reersere forteget til ikele θ. Derfor er de kougerte a c θ lik c θ. Det er alig å bruke otasoe * for de kougerte a. Figure uder iser to komplekse tall og deres kougerte. egg merke til at kougerig iebærer å speile det komplekse tallet oer de reelle akse.
4 4 Aritmetiske operasoer For å addere eller subtrahere komplekse tall, er det best å uttrykke dem i rektagulær form. Addiso iebærer å addere realdelee og imagiærdelee her for seg. Eksempel addiso: (8 + ) + (6 3) Eksempel subtrakso: ( 8) + ( 3 6) 4 9 Når tallee er gitt i polar form, omformes de først til rektagulær form før idere addiso eller subtrakso. Oppgae: Reg ut og + (Sar: og ) Multiplikaso og diiso a komplekse tall ka utføres med tallee skreet ete i rektagulær eller i polar form.
5 5 Eksempel multiplikaso: eller (8 + 0)(5 4) ( )( ) Eksempel diiso: (8 + 0)(5 + 4) (5 4)(5 + 4) eller ommekalkulatorer for igeiørbruk har ofte mulighete til å rege med komplekse tall, ikludert fuksoer for å skifte mellom polar og rektagulær form. Nyttige idetiteter ± ( )( ) e e ± π ± π / ± 80 ± 90 ±
6 6 Visere Defiiso E iser er et komplekst tall som bærer iformaso om -erdie (eetuelt amplitude, dersom det skulle ære øskelig) og faseikele til e siusarierede fukso. Gitt følgede fukso: ( t) V cos( ω t + θ ) θ Viserrepresetasoe a dee fuksoe er V V e V cosθ + V siθ Vi bruker dee represetasoe år i skal aalysere systemer hor alle størrelsee er siusarierede (med forskellige faseikler) og frekese er ket, slik som i elkraftsystemet i stasoær tilstad. I Norge er frekese i elkraftsystemet f 50 Hz, slik at ikelfrekese ω πf 00π. Dee represetasoe er sært yttig fordi de reduserer aalyse a det stasoære elkraftsystem til komplekse talls algebra. His hor alle speigee på høyreside er siusformede speiger, så gelder at V V + V + + V Med adre ord, iserrepresetasoe a er lik summe a isere til delkompoetee. Eksempel: Gitt følgede fuksoer: y 0 cos( ω t 30 y 40 cos( ω t + 60 ) ) Fi y y + y som e ekelt siusformet fukso, a) Ved å bruke trigoometriske idetiteter b) Ved å bruke iser-koseptet Sar: a) Prø sel!
7 7 b) Y Y Y ( 7.3 0) + ( ) Y + Y 43 Ved å trasformere oss tilbake til tidsplaet, ka i å skrie y 44.7 cos( ω t ) (I dette eksempelet algte i å bruke topperdi istedefor -erdi i represetaso a isere. Dette er et alg ma står fritt til å gøre. For e siusformet fukso er o topperdie lik kadratrote a to gager -erdie, så dersom ma er koseket og et om ma opererer med topperdi eller -erdi, er ikke dette oe problem. Me ma må passe på å ære koseket. I elkrafttekikke er det alig å bruke effektierdi.) His du sel prøde å løse eksempelet som agitt i pukt a, ble du forhåpetligis oerbeist om at isermetodikke er eklere. De passie kretselemetee Når i skal aalysere e elektrisk krets i iserplaet, må alle størrelsee i kretse først represeteres som komplekse tall. I praksis betyr dette speiger, strømmer, motstader (R), iduktaser () og kapasitaser (C). De passie kretselemetee R, og C har følgede represetasoer i iserplaet år i behadler dem som impedaser: Elemet Tidspla Viserpla Resistas R R Spole ω X Kodesator C ω C X C Størrelsee X ω og X C /ωc kalles reaktas. Reaktase til e iduktas er positi, mes reaktase til e kapasitas er egati, som i ser a uttrykkee. Regereglee fra kretstekikk gelder også i iserplaet: Kirchoffs speigslo gelder (KV Kirchoff s Voltage aw) Kirchoffs strømlo gelder (KC Kirchoff s Curret aw) De geeraliserte Ohms lo V ZI gelder, der Z er kompleks impedas Regereglee for seriekoplig og parallellkopliger a motstader gelder også i iserplaet, og da mer geerelt side reglee gelder også for alle mulige kombiasoer a serie- og parallellkopliger a R, X og X C. Det ma må passe på er at ma reger med komplekse tall, og følgelig må følge regereglee for slike. Ofte slår ma samme passie kretselemeter samme til e impedas Z. Geerelt er e impedas et komplekst tall.
8 8 Eksempel: Seriekoplig a R og i iserplaet. R Ω, mh. Ha er impedase Z? 3 Sar: Z R + ω + 00π Ω Parallellkoplig a Z og Z 0.5 Ω. Ha blir total impedas Z 3? Z 3 Z 3 Z 3 ZZ Z + Z ( )( 0.5) Ω egg merke til at impedas ka represeteres ete i rektagulær form eller på polar form, på samme måte som alle adre komplekse tall. Det er også alig å beytte admittas. Admittas Y er gaske ekelt de ierse a impedas, og er defiert som: Y Z R + X G + B R og X er heholdsis resistase og reaktase til impedase Z, mes G og B kalles heholdsis koduktase og susceptase til admittase Y. Parallellkoplig a to admittaser Y og Y er ekialet med e admittas lik Y + Y. De passie kretselemetee har følgede represetasoer i iserplaet år i behadler dem som admittaser: Elemet Tidspla Viserpla Koduktas G G Spole /ω B Kodesator C ωc B C Størrelsee B /ω og B C ωc kalles susceptas. Susceptase til e iduktas er egati, mes susceptase til e kapasitas er positi, som i ser a uttrykkee. Resistas og reaktas måles i Ω, mes koduktas og susceptas måles i siemes. øsigsmetodikk for stasoær siusaalyse Metodikke for å løse e krets i iserplaet blir altså:. Fi isere til alle kete speigskilder og strømkilder. Represeter passie kretselemeter i iserplaet, som ist oer 3. øs kretse på alig måte ed help a KV, KC og Ohm s lo 4. Me husk at du å reger med komplekse tall, slik at regereglee for komplekse tall må følges!
9 9 Eksempel: E resistas på 60 Ω, e spole med iduktas 30 mh og e kodesator med kapasitas 50 µf er koplet oer e siusformet speigskilde som ist i figure edefor. Speigskilde ka uttrykkes som s 750 cos(34t + 30 ) olt. Vi skal løse dee kretse med hesy på strømme i kretse ed å bruke metodikke for stasoær siusaalyse. R 60 ohm 30 mh s C 50E-6 F Steg : 750 V s olt Steg : Impedase til motstade: 60 Ω 3 Impedase til spole: ω Ω Impedase til kodesatore: ωc Ω (egg merke til at ω 34 er gitt fra uttrykket for speige.) Ka å tege kretse i iserplaet, som ist edefor. R 60 ohm w ohm Vs /wc ohm
10 0 Steg 3: De tre impedasee er koplet i serie, og de totale impedase sett fra speigskilde ka derfor fies ed å summere dem: Z tot Ω Bruker å Ohm s lo V s Z tot I, som i løser med hesy på I: V s I ampere Z tot Strømmes effektierdi er altså 7.53 A, og des faseikel er.5º. (Dette betyr at de ligger 3.5º etter speige side speige hadde e faseikel på 30º.) Uttrykt i tidsplaet er strømme: i 7.53cos(34t.5 ) 0.65cos(34t.5 ) ampere Tillegg: Utledig a de komplekse impedase til e spole Speige oer e spole med iduktas er som ket gitt a di dt hor i er strømme geom spole. a å ære e siusformet fukso gitt a V cos( ω t + θ ) (hor θ er speiges faseikel) m Vi reger ut i ed å itegrere Vm i Vm t + d t t + + k cos( ω θ ) ( ω ) si( ω θ ) ω Vi atar at spole ikke har likestrømskompoet, og kostate k blir derfor lik ull. Vi ka derfor skrie i Vm Vm si( ωt + θ ) cos( ωt + θ 90 ω ω ) hor i har beyttet oss a at si( α ) cos( α 90 ). E faktisk spole il alltid ha e iss resistas. E eetuell likestrømskompoet il derfor etter hert dø ut, og i stasoær siustilstad reger i med at alle likestrømskompoeter som måtte ha ært i systemet, er borte.
11 Basert på uttrykkee oer skal å uttrykke speige og strømme som isere Vm V V θ (hor V ) I V ω V ( θ 90 ) 90 θ ω Me i et at I V ω θ 90 e 90 slik at strømisere også ka uttrykkes som Forholdet mellom speigsisere og strømisere blir V I V θ V θ ω ω Dette forholdet ka ses på som sele defiisoe a de komplekse impedase til e spole med iduktas, og i har å utledet at dee er lik Z ω Som før sagt, kalles størrelse ω X reaktas. Oppgae: Bruk samme metodikk som oer og, a) utled de komplekse impedase for e kodesator med kapasitas C. b) utled de komplekse impedase for e motstad med resistas R. Sar: a) Z C ωc b) Z R R ωc
Kommentarer til oppgaver;
Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe
DetaljerForkunnskaper i matematikk for fysikkstudenter. Derivasjon.
Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka
DetaljerEKSAMEN Løsningsforslag
..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:
DetaljerOM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z
OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke
DetaljerVi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall
Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp
DetaljerPåliteligheten til en stikkprøve
Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee
DetaljerFØLGER, REKKER OG GJENNOMSNITT
FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel
DetaljerUtvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008
Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))
DetaljerMer om utvalgsundersøkelser
Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse
DetaljerLøsning eksamen R1 våren 2010
Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:
DetaljerEksamen R2, Høsten 2010
Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si
DetaljerSensorveiledning eksamen ECON 3610 Høst 2017
J; oember 07 a) Sesoreiledig eksame ECON 360 Høst 07 I dette problemet skal plalegger maksimere (, ) gitt at c G( ) og. i har tre ariable (,, ), og to bibetigelser; dermed har i é frihetsgrad som muliggjør
Detaljer1. Egenverdiproblemet.
Forelesigsotater i matematikk Egeerdier og egeektorer Side Egeerdiproblemet De gruleggede problemstillige Fra de gruleggede matriseregige husker du sikkert at år e ektor multipliseres med e kadratisk matrise
DetaljerEksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:
DetaljerRefleksjon og brytning av bølger
Refleksjo og brytig a bølger Når i å skal studere oe bølgefeomeer, bruker i oerflatebølger på a som eksempel. Derfor begyer i med å gjøre oss kjet med abølger. Fotografiee edefor iser to eksempler på bølgeformer
DetaljerKOMPLEKSE TALL KARL K. BRUSTAD
KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet
DetaljerKapittel 10 fra læreboka Grafer
Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet
DetaljerARBEIDSHEFTE I MATEMATIKK
ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består
DetaljerDifferensligninger Forelesningsnotat i Diskret matematikk Differensligninger
Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid
DetaljerPlan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1
Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte
DetaljerAvsnitt 8.1 i læreboka Differensligninger
Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker
DetaljerPrøveeksamen 2. Elektronikk 24. mars 2010
Prøveeksame 2 Elektroikk 24. mars 21 OPPGAVE 1 E 8 bit D/A-omformer har et utspeigsområde fra til 8 V V 1LSB, der V 1LSB er de aaloge speige som svarer til det mist sigifikate bit (LSB). a) Hvor stor er
DetaljerINF3400 Digital Mikroelektronikk Løsningsforslag DEL 9
IF00 Digital Mikroelektroikk Løsigsforslag DEL 9 I. Oppgaver. Oppgave 6.7 Teg trasistorskjema for dyamisk footed igags D og O porter. gi bredde på trasistoree. va blir logisk effort for portee?. Løsigsforslag
DetaljerFagdag 2-3mx 24.09.07
Fagdag 2-3mx 24.09.07 Jeg beklager at jeg ikke har fuet oe ye morsomme spill vi ka studere, til gjegjeld skal dere slippe prøve/test dee gage. Istruks: Vi arbeider som valig med 3 persoer på hver gruppe.
Detaljer2. Bestem nullpunktene til g.
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).
Detaljer2.1 Polynomdivisjon. Oppgave 2.10
. Polyomdivisjo Oppgave. ( 5 + ) : = + + ( + ):( ) 6 + 6 8 8 = + + c) ( + 5 ) : = + 6 6 d) + + + = + + = + + + 8+ ( ):( ) + + + Oppgave. ( + 5+ ):( ) 5 + + = + ( 5 ): 9 + + + = + + + 5 + 6 9 c) ( 8 66
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. Noen viktige sannsynlighetsmodeller. Binomisk modell. Kp. 3 Diskrete tilfeldige variable
ÅMA Saslighetsregig med statistikk, våre K. 3 Diskrete tilfeldige variable Noe viktige saslighetsmodeller Noe viktige saslighetsmodeller ( Sas.modell : å betr det klasse/te sas.fordelig.) Biomisk modell
DetaljerFORANDRINGER KAN KOMME SÅ FØLG MED PÅ VÅR HJEMMESIDE www.melby-son n.no DER KOMMER ALL AUKSJONSINFORMASJON
Skreet a Rue Torgerse AUKSJONSINFORMASJON 2007 GODT NYTT ÅR ØNSKER VI ALLE VÅRE KUNDER OG FORRETNINGSFORBINDELSER AUKSJONSINFORMASJON 2007 EN FORELØPIG AUKSJONSKALENDER FOR FØRSTE HALVÅR I 2007 SER DERE
DetaljerObligatorisk oppgave nr. 3 i Diskret matematikk
3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer
Forelesning nr. INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslo 1 Dagens temaer Sammenheng, strøm, spenning, energi og effekt Strøm og motstand i serielle kretser Bruk
DetaljerUkeoppgaver i BtG207 Statistikk, uke 4 : Binomisk fordeling. 1
Ukeoppgaver i BtG20 Statistikk, uke 4 : Biomisk fordelig. 1 Høgskole i Gjøvik Avdelig for tekologi, økoomi og ledelse. Statistikk Ukeoppgaver uke 4 Biomisk fordelig. Oppgave 1 La de stokastiske variable
DetaljerTMA4100 Matematikk 1 Høst 2014
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag TMA400 Matematikk Høst 04 Løsigsforslag Øvig 3 Review Exercises, side 454 Vi starter med å tege e figur av e skål med va: z A(z)
DetaljerLØSNING: Eksamen 17. des. 2015
LØSNING: Eksame 17. des. 2015 MAT100 Matematikk, 2015 Oppgave 1: økoomi a I optimum av T Rx er dt Rx 0 1 som gir d Ix Kx 0 2 dix dix dkx dkx 0 3 4 dvs. greseitekt gresekostad, q.e.d. 5 b Gresekostad ekstrakostade
Detaljer8 + 2 n n 4. 3n 4 7 = 8 3.
Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal
DetaljerEksamen REA3028 S2, Våren 2011
Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l
DetaljerEksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres
Detaljerf(x) = x 2 x 2 f 0 (x) = 2x + 2x 3 x g(x) f(x) = f 0 (x) = g(x) xg0 (x) g(x) 2 f(x; y) = (xy + 1) 2 f 0 x = 2(xy + 1)y f 0 y = 2(xy + 1)x
Ogave a) f() = f 0 () = + 3 ) f() = g() f 0 () = g() g0 () g() c) f(; y) = (y + ) f 0 = (y + )y f 0 y = (y + ) d) f(; y) = ( y + ) ( y ) f 0 = ( y + ) r y ( y ) + ( y + ) ( y ) r y = ( y + )( r y y ) ((
DetaljerOPPGAVE 4 LØSNINGSFORSLAG OPPGAVE 5 LØSNINGSFORSLAG UTVIKLING AV REKURSIV FORMEL FOR FIGURTALL SOM GIR ANDREGRADSFUNKSJONER
OPPGAVE 4 LØSNINGSFORSLAG Tallfølge i f) rektageltallee. Her er de eksplisitte formele R = ( +1) eller R = +. Dette er e adregradsfuksjo. I figurtallsammeheg forutsetter vi at de legste side er (øyaktig)
DetaljerMatematikk for IT. Oblig 7 løsningsforslag. 16. oktober
Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5
ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59
DetaljerMatematikk for IT. Løsningsforslag til prøve 2. Torsdag 24. oktober 2013
.. Matematikk for IT Løsigsforslag til prøve Torsdag. oktober Oppgave Gitt følgede predikat: P(x : x > 5 ta at uiverset ( de mulige verdier av x som vi tar i betraktig er alle hele tall, Z. Skriv hvert
DetaljerAvdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)
DetaljerE K S A M E N : FAG: Matematikk 1 MA-154 LÆRER: MORTEN BREKKE. Klasse(r): Alle Dato: 1. des 11 Eksamenstid, fra-til: 0900-1400
UNIVERSITETET I AGDER Grimstad E K S A M E N : FAG: Matematikk MA-54 LÆRER: MORTEN BREKKE Klasse(r): Alle Dato:. des Eksamestid, fra-til: 0900-400 Eksamesoppgave består av følgede iklusive forside Atall
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNIVERSITETET I OSLO Det ateatisk-aturviteskapelige fakultet Eksae i: FY 105 - Svigiger og bølger Eksaesdag: 11. jui 003 Tid for eksae: Kl. 0900-1500 Tillatte hjelpeidler: Øgri og Lia: Størrelser og eheter
DetaljerMetoder for politiske meningsmålinger
Metoder for politiske meigsmåliger AV FORSKER IB THOMSE STATISTISK SETRALBYRÅ Beregigsmetodee som brukes i de forskjellige politiske meigsmåliger har vært gjestad for mye diskusjo i dagspresse det siste
Detaljer«Uncertainty of the Uncertainty» Del 5 av 6
«Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:
Detaljer2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen
T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter
DetaljerEksamen R2, Våren 2010
Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)
DetaljerDer oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.
Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:
DetaljerLØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 2015
NTNU Norges tekisk-aturviteskapelige uiversitet Fakultet for aturviteskap og tekologi Istitutt for aterialtekologi TT4110 KJEI LØSNINGSFORSLAG TIL ØVING NR. 1, VÅR 015 OPPGAVE 1 Vi starter ALLTID ed å
DetaljerFakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk
Side 1 av 9 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 10. desember 018 Tid: 09:00 1:00 Atall sider (ikl. forside): Atall oppgaver: 6 Tillatte
DetaljerLøsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik
Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.
DetaljerUNIVERSITETET I OSLO
UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische
DetaljerFakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk
Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet
DetaljerSTK1100: Kombinatorikk
1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs i aalyse II Vår 09 9 Vi har rekke Dette er e geometrisk rekke som beskrevet på side 50 i læreboka, med x (side ) Spesielt
DetaljerOm Grafiske Bruker-Grensesnitt (GUI) Hvordan gjør vi det, to typer av vinduer? GUI (Graphical User Interface)-programmering
Uke9. mars 2005 rafisk brukergresesitt med Swig og awt Litt Modell Utsy - Kotroll Del I Stei jessig Ist for Iformatikk Uiv. i Oslo UI (raphical User Iterface)-programmerig I dag Hvorda få laget et vidu
DetaljerTerminprøve R2 Høsten 2014 Løsning
Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger
DetaljerKapittel 9: Mer kombinatorikk
MAT00 Disret Matemati Forelesig : Mer ombiatori Roger Atose Istitutt for iformati, Uiversitetet i Oslo Kapittel 9: Mer ombiatori 5. april 009 (Sist oppdatert: 009-04-5 00:06) MAT00 Disret Matemati 5. april
DetaljerAvdeling for ingeniørutdanning
Adeling for ingeniørutdanning Emne: Elektro & Reguleringsteknikk Gruppe(r): 2M Emnekode: LO521 M Dato: 16.12.2003 Faglig eiledere: Bjørn Engebretsen Eksamenstid: 09.00-12.00 Eksamensoppgaen består a: Tillatte
DetaljerTMA4245 Statistikk Eksamen mai 2017
TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side1av4 HØGSKOLEN I NARVIK Istitutt for data-, elektro-, og romtekologi Siviligeiørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital sigalbehadlig Tid: Fredag 06.03.2008, kl: 09:00-12:00 Tillatte
DetaljerEKSAMEN Løsningsforslag
7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator
DetaljerEksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål
Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast
DetaljerHøgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 12. desember 2008
Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL. desember 8 EKSAMEN I MATEMATIKK, Utsatt røve Modul 5 studieoeg Tid: 5 timer Ogavesettet er å sider (ikludert formelsamlig).
DetaljerECON 3610/4610 Veiledning til oppgaver seminaruke 43. Planleggingsproblemet for en planlegger med en utilitaristisk velferdsfunksjon er her
Jo Vislie; oktober 07 CON 360/460 Veiledig til oppgaer semiaruke 43 Oppgae Plaleggigsproblemet for e plalegger med e utilitaristisk elferdsfuksjo er her rett frem, med de atakelsee som er gjort: Max H
DetaljerAVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE
AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud
DetaljerKONTINUASJONSEKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME
Norges teknisk naturitenskapelige uniersitet Institutt for elektronikk og telekommunikasjon ide 1 a 8 Bokmål/Nynorsk Faglig/fagleg kontakt under eksamen: Robert Marskar (48222091) Hjelpemidler: C - pesifiserte
DetaljerLøsningsforslag til prøveeksamen i MAT1110, våren 2012
Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme
DetaljerCONSTANT FINESS SUNFLEX SMARTBOX
Luex terrassemarkiser. Moterig- og bruksavisig CONSTNT FINESS SUNFLEX SMRTBOX 4 5 6 7 8 Markises hovedkompoeter og mål Kombikosoll og plasserig rmklokker og justerig Parallelljusterig Motordrift og programmerig
DetaljerKonfidensintervall. Notat til STK1110. Ørnulf Borgan, Ingrid K. Glad og Anders Rygh Swensen Matematisk institutt, Universitetet i Oslo.
Kofidesitervall Notat til STK1110 Ørulf Borga, Igrid K. Glad og Aders Rygh Swese Matematisk istitutt, Uiversitetet i Oslo August 2007 Formål E valig metode for å agi usikkerhete til et estimat er å berege
DetaljerEcon 2130 uke 15 (HG) Poissonfordelingen og innføring i estimering
Eco 130 uke 15 (HG) Poissofordelige og iførig i estimerig 1 Poissofordelige (i) Tilærmig til biomialfordelige. Regel. ( Poissotilærmelse ) Ata Y ~ bi(, p) E( Y ) = p og var( Y ) = p(1 p). Hvis er stor
DetaljerForkunnskaper i matematikk for fysikkstudenter. Vektorer.
I dette lille notatet skal jeg gi en kortfattet oersikt oer grnnleggende ektorregning Me a dette er forhåpentlig kjent fra før, men det skader sikkert ikke med en kort repetisjon Definisjoner Mange a de
DetaljerLøsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.
.. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet
DetaljerSignifikante sifre = alle sikre pluss ett siffer til
Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede
DetaljerI forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c.
NOTAT TIL FORELESNING OM FUNKSJONER, DEL Forelesige om uksjoer består av to deler, ørste del bygger på dette otatet Notatet bygger på læreboke og er oe mer utyllede e orelesige I bolk 5a så vi hvorda vi
DetaljerEksempeloppgave 2014. REA3028 Matematikk S2 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)
Eksempeloppgave 2014 REA3028 Matematikk S2 Eksempel på eksame våre 2015 etter y ordig Ny eksamesordig Del 1: 3 timer (ute hjelpemidler) Del 2: 2 timer (med hjelpemidler) Mistekrav til digitale verktøy
DetaljerOblig 2 - MAT1120. Fredrik Meyer 26. oktober 2009 = A = P1 1 A 1 P 1 A 1 A 2 = P 1. A k+1. A k P k
Oblig 2 - MAT20 Fredri Meyer 26 otober 2009 Matrisee A i er defiert sli der P er e rotasjosmatrise som defierer i oppgave 2: A A 2 A + = A = P A P = P A P Oppgave Matrisee A i+ og A i er similære det fies
DetaljerUNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet
UNVERTETET OLO Det matematisk-naturitenskapelige fakultet Eksamen i: Fys1120 Eksamensdag: Onsdag 12. desember 2018 Tid for eksamen: 0900 1300 Oppgaesettet er på: 5 sider Vedlegg: Formelark Tilatte hjelpemidler
DetaljerLøsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan
Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave
Detaljer2 Algebra R2 Oppgaver
2 Algebra R2 Oppgaver 2 Tallfølger 2 22 Tallrekker 8 23 Uedelige geometriske rekker 5 24 Iduksjosbevis 20 25 Eksamesoppgaver 2 Øvigsoppgaver Stei Aaese og Olav Kristese/NDLA Eksamesoppgavee er hetet fra
DetaljerFjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
DetaljerTMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag
TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt
DetaljerM O N T E R I N G S V E I L E D N I N G
AvetaSolar solfager M O N T E R I N G S V E I L E D N I N G for Stebråtlia Versjo: 191113 1 Ihold 1. Kompoeter i leverase, AvetaSolar solfager... 3 2. Tegiger, mål og betegelser på kompoeter... 4 3. Forberedelse...
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i MAT00 Matematikk I Eksamesdag: Fredag 4 jui 00 Tid for eksame: 0900 00 Oppgavesettet er på sider Vedlegg: Tillatte hjelpemidler:
DetaljerKombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon
Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksame i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamesdag: 6.05.017 Sesur kugøres: 16.06.017 Tid for eksame: kl. 14:30 17:30 Oppgavesettet er på 6 sider Tillatte helpemidler: Alle
DetaljerEstimering og hypotesetesting. Estimering og hypotesetesting. Estimering og hypotesetesting. Kapittel 10. Ett- og toutvalgs hypotesetesting
3 Estimerig og hypotesetestig Kapittel 10 Ett- og toutvalgs hypotesetestig TMA445 V007: Eirik Mo Feome Bilkjørig Høyde til studeter Estimator ˆp = X, X atall ˆµ = X gjeomsittlig høyde. som syes de er flikere
DetaljerKap 5 Anvendelser av Newtons lover
Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket
DetaljerKapittel 7: Noen viktige sannsynlighetsfordelinger
Kapittel 7: Noe viktige sasylighetsfordeliger I mage situasjoer ka feomeet vi ser på beskrives med e bestemt type sasylighetsfordelig e sasylighetsfordelig gitt ved e bestemt formel. Vi skal se på oe av
DetaljerUke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO
Uke 12 IN3030 v2019 Eric Jul PSE-gruppa Ifi, UiO Oblig 5 Kovekse Ihylliga Itroduksjo De kovekse ihylliga til pukter Oblig 5 Hva er det, defiisjo Hvorda ser de ut Hva brukes de til? Hvorda fier vi de? 24
DetaljerEKSAMEN løsningsforslag
05.0.08 EKSAMEN løsigsforslag Emekode: ITF0705 Dato: 5. desember 07 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 09.00 3.00 Faglærer: Christia F Heide
DetaljerDel1. b) 1) Gittrekka 2 4 6 8 Finnleddnummer20 ogsummenavde20førsteleddene.
Del1 Oppgave 1 a) Deriver fuksjoee: 1) fx ( ) x 2 1 x 2 1 2) g x x 2 2 e x b) 1) Gittrekka 2 4 6 8 Fileddummer20 ogsummeavde20førsteleddee. 1 1 2) Gitt de uedelige rekka 2 1 2 4 Avgjør om rekka kovergerer.
DetaljerR2 - Kapittel 1: Vektorer
R2 - Kapittel : Vektorer Kompetanseniåer: L(at), M(iddels), H(øyt) Vanlige feil og tips: I (L) Løsningsskisser Korrekt og konsekent arunding: Teoretiske oppgaer: Eksakte tall eller 3 gjeldende siffer.
DetaljerLøsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009
Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen
DetaljerTFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerLøsningsforslag TFE4120 Elektromagnetisme 13. mai 2004
Løsningsforslag TFE4120 Elektromagnetisme 13. mai 2004 Oppgae 1 a) Speilladningsmetoden gir at potensialet for z > 0 er summen a potensialet pga ladningen Q i posisjon z = h og potensialet pga en speillanding
Detaljer