I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c.

Størrelse: px
Begynne med side:

Download "I forelesningen så vi litt på hvordan vi tegner grafer manuelt. Enkel bruk av GeoGebra er vist gjennom noen korte videoer i bolk 5c."

Transkript

1 NOTAT TIL FORELESNING OM FUNKSJONER, DEL Forelesige om uksjoer består av to deler, ørste del bygger på dette otatet Notatet bygger på læreboke og er oe mer utyllede e orelesige I bolk 5a så vi hvorda vi kue komme rem til e uksjo ra et praktisk orsøk Dette or å mie om at uksjoer har stor praktisk avedelse, og at vi må være oppmerksom på at det ka være ysiske og praktiske begresiger vi må ta hesy til år vi setter e uksjo i i e praktisk sammeheg Hvis vi teker oss at e uksjo viser høyde til e plate etter hvert som tide går Plate vil vel ikke bare bli høyere og høyrere etter hvert som tide går? Mage tig ka skje i tillegg til at de slutter å vokse, vide ka kekke de, et dyr ka spise de, år høste kommer ka de vise og dø Dette er tig som vi ikke ka orutse, og som vi deror heller ikke klarer å ta hesy til år vi lager e uksjo Hvis vi sier at uksjoe gjelder or et begreset tidsområde(deiisjosmegde), vil uksjoe kue beskrive høyde til plate som e uksjo av tide rimelig bra Her blir vi å ta or oss viktige begrep i orbidelse med uksjoer, vi blir å legge vekt på at dere skal orstå prisippee, og ikke okusere så mye på kokrete tall Flere eksempler med kokrete tall og orklariger ies som ege dokumeter I orelesige så vi litt på hvorda vi teger graer mauelt Ekel bruk av GeoGebra er vist gjeom oe korte videoer i bolk 5c LINEÆRE FUNKSJONER Med utgagspukt i et valig koordiatsystem, med og y akse eller ørste- og adreakse, ka ma tege e rett lije Hvilke type uksjo er det hvor grae er e rett lije? Jo det er e ørstegradsuksjo eller også kalt e lieær uksjo, som er gitt med det geerelle uttrykket, hvor a er stigigstallet og b er kostatleddet Stigigstallet sier oe om hvor mye y a b grae stiger eller syker, mes kostatleddet svarer til y verdie der grae skjærer y akse For oversikte si del ka det være yttig å huske de tre tilellee: a stigigstallet er positivt og grae stiger år vi beveger oss mot høyre i koordiatsystemet stigigstallet er egativt og grae syker år vi beveger oss mot høyre i koordiatsystemet a stigigstallet er ull, grae blir e horisotal lije som krysser a y akse i y b Husk at hvis både stigigstallet og kostatleddet er lik ull, år vi e lieær uksjo gitt ved hvor grae blir e horisotal lije som krysser y akse i y y, Det geerelle uttrykket over ka ikke beskrive e vertikal lije Stigigstallet til e vertikal lije vil ikke være et kokret tall, det vil være uedelig stort E vertikal lije skrives som c, or eksempel er e vertikal lije som krysser akse i Vi mier om at to lijer er parallelle hvis de har samme stigigstall Sagt på e ae måte, vi ka avgjøre om to lijer er parallelle ved å sammelige stigigstallee, vi treger ikke å tege de or å avgjøre det

2 Vi mier også om deiisjoe på begrepet uksjo: E uksjo er e regel som til hvert elemet i e megde gir ett, og bare ett, elemet i e ae megde Her ka det være verdt å merke seg at dee sammehege ikke er e-til-e, uksjoe ka godt til to orskjellige elemet i e megde gi det samme elemetet i e ae megde For eksempel vil uksjoe ( ), gi at () og ( ) Valigvis beteger vi e uksjo med lite bokstav, or eksempel Og vi agir de rie variabele ved å skrive ( ) som betyr at er e uksjo av Tilsvarede betyr ht () at uksjoe h er e uksjo av t, som ote brukes i orbidelse med tid Når vi kjeer e uksjo vet vi hva de gjør med elemetee i e megde, dee megde ka være begreset(itervall av reelle tall) eller uedelig(alle reelle tall), vi kaller dee megde or deiisjosmegde til uksjoe og skriver de D, hvis de gjelder uksjoe De mulige verdiee uksjoe ka gi ka også være begreset eller ubegreset og kalles verdimegde, de skrives V, hvis de gjelder uksjoe deiisjosmegde edres Mer at verdimegde vil kue edre seg hvis Før vi går videre skal vi se litt på hva vi meer med itervall og megder av tall TALLINJA Tallija er e rett lije der tallee og plassert i to orskjellige pukter, og de adre tallee har si aturlige plasserig i orhold til disse Legde av lijestykket med edepukter og kaller vi tallijes legdeehet Hvert tall tilsvarer et bestemt pukt på tallija, og omvedt vil hvert pukt på tallija tilsvare et bestemt tall Alle disse tallee til samme kaller vi de reelle tallee I dee sammeheg vil det være aturlig å repetere litt om megder I matematikke kalles e sammeatig av objekter e megde, og objektee de består av, kalles elemetee i megde Noe eksempler: De aturlige tallee (dvs tallee,,3,4, ) De hele tallee (dvs, 3,,,,,,3, ) E megde ka ha et edelig eller uedelig atall elemeter Vi bruker valigvis store bokstaver or megder og små bokstaver or uspesiiserte elemeter La A være e vilkårlig megde Hvis a er et elemet i A, skriver vi a A Hvis a ikke er et elemet i A, skriver vi a A Eksempel: 3,3,5 og 4,3,5 (dette omtales ote som listeorm) To megder kalles like hvis de har øyaktig de samme elemetee,,,3 3,,, rekkeølge elemetee er listet opp i er ute betydig

3 Det er oe megder i matematikke som har ått sitt eget symbol: megde av alle aturlige tall megde av alle hele tall megde av alle reelle tall de tomme megde Istedeor å liste opp elemetee i e megde ka vi ortelle hvilke egeskap elemetee må ha or å være med i megde: Megde av alle positive reelle tall ka vi skrive, leses «megde av alle elemet i slik at» E ae måte å agi e megde på er å si at de består av alle løsiger av e gitt likig DELMENGDE, UNION OG SNITT La A og B være to vilkårlige megder Hvis ethvert elemet i A også er et elemet i B, sier vi at A er ieholdt i B, og skiver A B Vi sier at A er e delmegde av B Eksempel:,,3, La A og B være to vilkårlige megder De megde som består av alle de elemetee som er med i både A og B, kalles sittet av A og B og skrives A B De megde som består av alle de elemetee som er med i mist e av megdee A og B, kalles uioe av A og B og skrives A B ULIKHETER OG INTERVALLER De reelle tallee deles i i de positive tallee, de egative tallee og tallet, som verke reges or positivt eller egativt Hvis a og b er reelle tall slik at dierase a b er positiv, så sier vi at a er større e b, og skriver (eller vi sier at b er midre e a, og skriver b a ) a b Regler or regig med ulikheter: Hvis a b og c er et vilkårlig tall, så har vi a c b c Hvis a b og, så har vi ac bc Hvis a b og, så har vi ac bc Reglee over gjelder også om byttes ut med Mier om at a b eller a b, og leses «a er større e eller lik b» a b betyr at a b midre e eller lik b» c c per deiisjo betyr at a b eller a b, og leses «a er Megde av alle tall som ligger mellom to gitte tall på tallije, kalles et itervall Vi skiller mellom de itervallee som ieholder sie edepukter og de som ikke gjør det: ab,, det åpe itervallet ra a til b, a b ab,, det halvåpe itervallet ra og med a til b, a b ab,, det halvåpe itervallet ra a til og med b, a b a, b, det lukkede itervallet ra a til b, a b Itervallee over kalles begresede itervaller Med blat itervallee reger vi også de

4 ubegresede itervallee: b a, a a, a, b b,b, På tallija bruker vi orteg til å agi om et tall er positivt eller egativt Vi ka da si at et tall består av e absoluttverdi, også kalt tallverdi, og et orteg Vi deierer absoluttverdi: Absoluttverdie til tallet a skrives a a a hvis a hvis a For eksempel er og avstade ra tallet til tallet a og er deiert ved DIVERSE FUNKSJONER E uksjo vil ote være gitt ved e ormel Geometrisk ka vi teke på absoluttverdie til et tall som ( ), som gir oss uksjosverdie verdi av Hvis ikke deiisjosmegde er oppgitt, er det uderorstått at D ( ) or hver er megde av alle slik at ormele gir meig Iledigsvis så vi på de lieære uksjoe, vi skal å se på oe adre uksjoer Vi starter med de kvadratiske uksjoe Det ka vises at grae til uksjoe parabeles akse er parallell med åper seg oppover(blid, a ( ) a b c ( ) a b c La a, b y akse Forteget til koeisiete a ) eller edover(sur, a ) og c være gitte tall, alltid har orm som e parabel, og at a orteller oss om parabele Parabele har e geometrisk egeskap som har yttige avedelser, bla i optikk, akustikk og radioastroomi Krummer vi et speil som e parabel, år speilet de egeskape at lysstråler som aller i mot speilet parallelt med parabeles akse, relekteres og samles i et bestemt pukt, brepuktet Lager vi speilet rotasjossymmetrisk om parabeles akse, år vi et såkalt parabolsk speil Slike speil ka brukes til kokig av mat La g være uksjoe gitt ved g( ) Uttrykket gir bare meig år er større e eller lik, side vi ikke har deiert kvadratrote til egative tall Deiisjosmegde i dette tilellet blir Dg, Fuksjoe som til hver gir absoluttverdie til, kalles absoluttverdiuksjoe og er gitt ved ( ) : hvis ( ) hvis Side vi ka rege ut absoluttverdie or alle tall, har vi at D Dette er et eksempel på e uksjo gitt ved delt orskrit, dvs uksjoe er gitt ved orskjellige ormler på orskjellige

5 itervaller Et pukt der uksjoe skiter ormel, kalles et bruddpukt til uksjoe Grae til på itervallet itervallet,, er de rette lija gjeom origo med stigigstall, og grae til er de rette lija gjeom origo med stigigstall Vi har at lijee heger samme i dette puktet Vi har også at E uksjo tall og a, a,, a som er deiert or alle ved på er positiv or alle, bortsett ra a a a a er kostater, kalles e polyomuksjo Hvis, og de to ( ) der et aturlig a, sier vi at er et tegradspolyom E polyomuksjo er alltid e kotiuerlig uksjo, me grae ka å et okså komplisert utseede, avhegig av koeisietee a, a,, a 5 3 For eksempel er ( ) 3 e emtegradsuksjo side 5 er de største potese av som orekommer Vi ser at uttrykket gir meig or alle reelle tall, så D Det bør også eves i dee sammeheg at kostate uksjoer, lieære uksjoer og kvadratiske uksjoer er heholdsvis te, ørste- og adregradsuksjoer Som kjet, ka vi også deiere poteser av rasjoalt tall, dvs e brøk: der ekspoete er et helt egativt tall, eller et m/ or m Mier om at / og Vi ka å dae potesuksjoer på orme ( ) a r Merk at e tegradsuksjo er e sum av potesuksjoer med heltallige ekspoeter, og at rotuksjoer er potesuksjoer, or eksempel: g( ) / 5 5 Side vi ikke har deiert partallsrøtter av egative tall, har vi h ( ) reges også som e potesuksjo side vi har 3, Fuksjoee og g 3 Dg, Husk også er også eksempler på potesuksjoer Fuksjoe h gitt ved or Vi har sett at vi ka summere ledd av ulike poteser av or å dae tegradsuksjoer Geerelt ka vi bruke sum eller dierase av ulike uksjosuttrykk or å dae ye uksjoer Hvis vi har to uksjoer og g, ka vi dae uksjoe g : g( ) ( ) g( ) dvs or hver summerer vi uksjosverdiee til g : g( ) ( ) g( ) og g Tilsvarede år vi uksjoe Vi ka også dae produkter og kvotieter av uksjoer Fuksjoe g: g( ) ( ) g( ) Kvotiete av og g, der er tellere:

6 ( ) ( ) der g( ) g g( ) Dette kalles e rasjoal uksjo Spesialtilellet potesuksjo a r der a er e kostat, kalles også e 3 Fuksjoe er et eksempel på e rasjoal uksjo Hva som er spesielt or rasjoale uksjoer blir vi å komme tilbake til i del For å kue modellere alle de ulike eomeee vi har treger vi mage uksjoer, e meget viktig kostruksjo or å skae oss lere uksjoer er såkalt sammesetig av to uksjoer: La og g være to uksjoer Sammesetige av med g er e uksjo h gitt ved h( ) g( ), dvs g er e variabel i uksjoe Eksempel på sammesatt uksjo: gitt og g da år vi at h( ) g( ) 4 4

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon.

Forkunnskaper i matematikk for fysikkstudenter. Derivasjon. Defiisjo av derivert Vi har stor ytte av å vite hvor raskt e fuksjo vokser eller avtar Mer presist: Vi øsker å bestemme stigigstallet til tagete til fuksjosgrafe P Q Figure til vestre viser hvorda vi ka

Detaljer

Løsning eksamen R1 våren 2010

Løsning eksamen R1 våren 2010 Løsig eksame R våre 00 Oppgave a) ) f ( ) l f ( ) ' l l l l f ( ) (l ) ) g( ) 4e g( ) 4 e ( ) 4 e ( ) g( ) 4( ) e b) ( ) 4 4 6 P ) P() 4 4 6 8 6 8 6 0 Divisjo med ( ) går opp. 4 4 6 : ( ) 8 4 4 8 6 8 6

Detaljer

Eksamen R2, Høsten 2010

Eksamen R2, Høsten 2010 Eksame R, Høste 00 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (6 poeg) a) Deriver fuksjoee ) f l f ( ) l l (l ) ) g( ) si cos f si

Detaljer

Mer om utvalgsundersøkelser

Mer om utvalgsundersøkelser Mer om utvalgsudersøkelser I uderkapittel 3.6 i læreboka gir vi e kort iførig i takegage ved utvalgsudersøkelser. Vi gir her e grudigere framstillig av temaet. Populasjo og utvalg Ved e utvalgsudersøkelse

Detaljer

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z

OM TAYLOR POLYNOMER. f x K f a x K a. f ' a = lim x/ a. f ' a z OM TAYLOR POLYNOMER I dette otatet, som utfyller avsitt 6. i Gullikses bok, skal vi se på Taylor polyomer og illustrere hvorfor disse er yttige. Det å berege Taylor polyomer for håd er i prisippet ikke

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag MA0 Grukurs Aalyse I Høst 07 Løsigsforslag Øvig..b) Vi skriver om 7 = 4 4 7 Korollar.. gir at 7 4 er irrasjoal (side vi vet 7 4 er

Detaljer

Kommentarer til oppgaver;

Kommentarer til oppgaver; Kapittel - Algebra Versjo: 11.09.1 - Rettet feil i 0, 1 og 70 og lagt i litt om GeoGebra-bruk Kommetarer til oppgaver; 0, 05, 10, 13, 15, 5, 9, 37, 5,, 5, 59, 1, 70, 7, 78, 80,81 0 a) Trykkfeil i D-koloe

Detaljer

Eksamen R2, Va ren 2013

Eksamen R2, Va ren 2013 Eksame R, Va re 013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x f x 3 six 3si x b) gx x 6si 7 Bruker kjereregele på uttrykket si x der og Vi har da guu siu u cosu cos x gx 6cos x 6 cos x u x g u

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del : Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer: Del 1 skal leveres

Detaljer

Eksamen R2, Våren 2010

Eksamen R2, Våren 2010 Eksame R, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 a) Deriver fuksjoe gitt ved f x x cos 3 x b) Bestem itegralee 1)

Detaljer

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt.

Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Tid: 3 timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (3 poeg) Deriver fuksjoee a) f( ) cos5 f 5 si5 0 si5 g e si Vi bruker produktregele for derivasjo,

Detaljer

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21%

Totalt Antall kandidater oppmeldt 1513 Antall møtt til eksamen 1421 Antall bestått 1128 Antall stryk 247 Antall avbrutt 46 % stryk og avbrutt 21% TMA4100 Høste 2007 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Kommetarer til eksame Dette dokumetet er e oppsummerig av erfarigee fra sesure av eksame i TMA4100 Matematikk

Detaljer

Kapittel 10 fra læreboka Grafer

Kapittel 10 fra læreboka Grafer Forelesigsotat i Diskret matematikk torsdag 6. oktober 017 Kapittel 10 fra læreboka Grafer (utdrag) E graf er e samlig pukter (oder) og kater mellom puktee (eg. odes, vertex, edge). E graf kalles rettet

Detaljer

Obligatorisk oppgave nr. 3 i Diskret matematikk

Obligatorisk oppgave nr. 3 i Diskret matematikk 3. obligatoriske oppgave i Diskret matematikk høste 08. Obligatorisk oppgave r. 3 i Diskret matematikk Ileverigsfrist. ovember 08 Oppgave er frivillig og tregs ikke leveres, me hvis dere leverer de ie

Detaljer

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1

Plan for fagdag 3. Plan: Litt om differanse- og summefølger. Sammenhengen a n a 1 n 1 i 1 Pla for fagdag 3 R2-18.11.10 Pla: Litt om differase- og summefølger. Sammehege a a 1 1 i 1 d i. Geometriske resoemet. Arbeidsoppgaver. Differase- og summefølger Regresjo med lommereger Differaser er ofte

Detaljer

FØLGER, REKKER OG GJENNOMSNITT

FØLGER, REKKER OG GJENNOMSNITT FØLGER, REKKER OG GJENNOMSNITT Espe B. Lagelad realfagshjoret.wordpress.com espebl@hotmail.com 9.mars 06 Iledig E tallfølge er e serie med tall som kommer etter hveradre i e bestemt rekkefølge. Kvadrattallee

Detaljer

Løsningsforslag til prøveeksamen i MAT1110, våren 2012

Løsningsforslag til prøveeksamen i MAT1110, våren 2012 Løsigsforslag til prøveeksame i MAT, våre Oppgave : Vi har A = 3 III+I I+II 3 ( )II 3 3 Legg merke til at A er de utvidede matrise til ligigssystemet. Vi ser at søyle 3 og 4 i de reduserte trappeforme

Detaljer

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger

Differensligninger Forelesningsnotat i Diskret matematikk Differensligninger Differesligiger Forelesigsotat i Diskret matematikk 017 Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker er imidlertid

Detaljer

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen

2T kapittel 3 Modellering og bevis Utvalgte løsninger oppgavesamlingen T kapittel 3 Modellerig og bevis Utvalgte løsiger oppgavesamlige 301 a Sitthøyde i 1910 blir 170,0 171, 4 170,7. I 1970 blir de 177,1 179, 4 178,3. b Med som atall år etter 1900 og y som sitthøyde i cetimeter

Detaljer

Avsnitt 8.1 i læreboka Differensligninger

Avsnitt 8.1 i læreboka Differensligninger Diskret Matematikk Fredag 6. ovember 015 Avsitt 8.1 i læreboka Differesligiger I kapittel lærte vi om følger og rekker. Vi studerte både aritmetiske og geometriske følger og rekker. Noe følger og rekker

Detaljer

ARBEIDSHEFTE I MATEMATIKK

ARBEIDSHEFTE I MATEMATIKK ARBEIDSHEFTE I MATEMATIKK Temahefte r Hvorda du reger med poteser Detaljerte forklariger Av Matthias Loretze mattegriseforlag.com Opplsig: E potes er e forkortet skrivemåte for like faktorer. E potes består

Detaljer

TMA4245 Statistikk Eksamen mai 2017

TMA4245 Statistikk Eksamen mai 2017 TMA445 Statistikk Eksame mai 07 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsskisse Oppgave a Når vi reger ut disse tre sasylighetee må ma huske på at de mulige verdiee

Detaljer

2. Bestem nullpunktene til g.

2. Bestem nullpunktene til g. Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 0. desember 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig).

Detaljer

Eksamen REA3028 S2, Våren 2011

Eksamen REA3028 S2, Våren 2011 Eksame REA08 S, Våre 0 Del Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave (8 poeg) a) Deriver fuksjoee ) f 5 f 6 5 ) g g ) h l 9 9 6 4 h l

Detaljer

DEL 1. Uten hjelpemidler 500+ er x

DEL 1. Uten hjelpemidler 500+ er x DEL 1 Ute hjelpemidler Oppgave 1 (18 poeg) 500 = + 8 er a) Vis at de deriverte til fuksjoe ( ) O O ( ) = 500+ 16 b) Deriver fuksjoee 1) f( ) = l( ) ) g( ) = e c) Vi har gitt polyomfuksjoe f( ) = 1 + 15

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7 desember EKSAMEN Løsningsorslag Emnekode: ITD5 Dato: 6 desember Hjelpemidler: Emne: Matematikk ørste deleksamen Eksamenstid: 9 Faglærer: To A-ark med valgritt innhold på begge sider Formelhete Kalkulator

Detaljer

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene

S2 kapittel 1 Rekker Løsninger til innlæringsoppgavene Løsiger til ilærigsoppgavee kapittel Rekker Løsiger til ilærigsoppgavee a Vi ser at differase mellom hvert ledd er 4, så vi får det este leddet ved å legge til 4 Det este leddet blir altså 6 + 4 = 0 b

Detaljer

Løsning R2-eksamen høsten 2016

Løsning R2-eksamen høsten 2016 Løsig R-eksame høste 016 Tid: 3 timer Hjelpemidler: Valige skrivesaker, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (4 poeg) Deriver fuksjoee a) ( ) 3cos f( x) 3 six 6six f x x b) gx ( )

Detaljer

Eksamen REA3028 S2, Våren 2010

Eksamen REA3028 S2, Våren 2010 Eksame REA308 S, Våre 010 Del 1 Tid: timer Hjelpemidler: Valige skrivesaker, passer, lijal med cetimetermål og vikelmåler er tillatt. Oppgave 1 (6 poeg) a) Deriver fuksjoee: 1) f x x lx f x x lx x x f

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 69 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall

Vi skal hovedsakelig ikke bestemme summen men om rekken konvergerer. det vil si om summen til rekken er et bestemt tall Kapittel 8 Oppsummerig-Rekker Rekker er summe til edelig eller uedelig mage ledd i e tallfølge. Potesrekker ka beyttes til å uttrykke vaskelige fuksjoer om et pukt. Ma ka skreddesy potesfuksjoer ved hjelp

Detaljer

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling

Forelesning 4 og 5 Transformasjon, Weibull-, lognormal, beta-, kji-kvadrat -, t-, F- fordeling STAT (V6) Statistikk Metoder Yushu.Li@uib.o Forelesig 4 og 5 Trasformasjo, Weibull-, logormal, beta-, kji-kvadrat -, t-, F- fordelig. Oppsummerig til Forelesig og..) Momet (momet about 0) og setral momet

Detaljer

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008

Utvidet løsningsforslag Eksamen i TMA4100 Matematikk 1, 16/12 2008 Utvidet løsigsforslag Eksame i TMA4 Matematikk, 6/ 8 Oppgave i) Vi gjør substitusjoe u = si θ og får π/ [ u si θ cos θ dθ = u du = E ae løsigsmetode er π/ si θ cos θ dθ = π/ ] si θ dθ = 4 = 4 ( ( ) ( ))

Detaljer

Terminprøve R2 Høsten 2014 Løsning

Terminprøve R2 Høsten 2014 Løsning Termiprøve R Høste 04 Løsig Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate Puktet P3, 5, ligger

Detaljer

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag

TMA4100 Høst Løsningsforslag Øving 2. Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag TMA400 Høst 206 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 2 2..0: Vi bruker eisjoe for ikke-vertikale tagetlijer sie 97 i læreboke). Tagetlije gjeom et pukt

Detaljer

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side.

Dersom vi skriver denne reaksjonslikningen ved bruk av kjemiske tegn: side av likningen har vi ett hydrogen mens vi har to på høyre side. Støkiometri (megdeforhold) Det er særs viktig i kjemie å vite om megdeforhold om stoffer. -E hodepie tablett er bra mot hodesmerter, ti passer dårlig. -E sukkerbit i kaffe fugerer, 100 er slitsomt. -100

Detaljer

Kapittel 8: Estimering

Kapittel 8: Estimering Kaittel 8: Estimerig Estimerig hadler kort sagt om hvorda å aslå verdie å arametre som,, og dersom disse er ukjete. like arametre sier oss oe om oulasjoe vi studerer (dvs om alle måliger av feomeet som

Detaljer

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 26.05.2010. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 6.05.010 REA304 Matematikk R Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar: Del 1 skal leverast

Detaljer

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning

Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 22. mai EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng, fjernundervisning Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL mai 007 EKSAMEN I MATEMATIKK Modul 5 studiepoeg, fjerudervisig Tid: 5 timer Oppgavesettet er på 9 sider (ikludert formelsamlig)

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag ..4 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 6. desember Eme: Matematikk for IT Eksamestid: kl 9. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Kalkulator er ikke tillatt. Faglærer:

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Eksamesoppgave består av: Atall sider (ikl forside): 5 Emekode: FO 9A Dato: 57 Atall oppgaver: Fagasvarlig: Ulf Uttersrud

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20.05.2009 REA3028 Matematikk S2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund

Kulas posisjon etter 0, 1, 2, 3 og 4 sekund Total rullelegde i løpet av ett sekud: L Total rullelegde i løpet av to sekud: 4 L Total rullelegde i løpet av tre sekud: 9 L Total rullelegde i løpet av fire sekud: 6 L SYSTEM HER? Kulas posisjo etter

Detaljer

Eksamen R2, Våren 2013

Eksamen R2, Våren 2013 Eksame R2, Våre 2013 Oppgave 1 (4 poeg) Deriver fuksjoee a) f x 3cos x b) gx x 6si 7 2x c) hx 3e si3x Oppgave 2 (4 poeg) Bestem itegralet a) variabelskifte 2x dx x 4 2 ved å bruke b) delbrøkoppspaltig

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Oppgave 3 (4 poeng) x x. Deriver funksjonene. a) f( x) 2 sin 3x. Bestem integralene DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f( x) si 3x b) c) si x g ( x) x h( x) x cos x Oppgave (5 poeg) Bestem itegralee a) 3 ( 3 ) d x x x b) xe x dx c) x x 1 dx Oppgave 3 (4 poeg)

Detaljer

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x

x n = 1 + x + x 2 + x 3 + x x n + = 1 1 x Potesrekker Forelest: 29. Sept, 2004 Vi lærte fra de geometriske rekkee at x = 1 + x + x 2 + x 3 + x 4 + + x + = 1 1 x så lege x < 1. For uttrykket til høyre er ikke oe aet e sum-formele for geometriske

Detaljer

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016

Numeriske metoder: Euler og Runge-Kutta Matematikk 3 H 2016 Numeriske metoder: Euler og Ruge-Kutta Matematikk 3 H 06 Iledig Differesiallikiger spiller e setral rolle i modellerigsproblemer i igeiør viteskap, matematikk, fsikk, aeroautikk, astroomi, damikk, elastisitet,

Detaljer

R2 eksamen høsten 2017

R2 eksamen høsten 2017 R eksame høste 017 DEL 1 Ute hjelpemidler Oppgave 1 (5 poeg) Deriver fuksjoee a) f x si3 b) g x si x x h x x cos x c) x Oppgave (5 poeg) Bestem itegralee 3 a) x 3x dx b) xe x dx c) x x 1 dx Oppgave 3 (4

Detaljer

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen 04.06.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsigsforslag R2 Eksame 6 Vår 04.06.202 Nebuchadezzar Matematikk.et Øistei Søvik Sammedrag De fleste forlagee som gir ut lærebøker til de videregåede skole, gir ut løsigsforslag til tidligere gitte eksameer.

Detaljer

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) =

Ulike typer utvalg. MAT0100V Sannsynlighetsregning og kombinatorikk. Ordnet utvalg uten tilbakelegging 29 (29 1) (29 2) (29 3) = MAT000V Sasylighetsregig og kombiatorikk Urdede utvalg ute tilbakeleggig Pascals talltrekat og biomialkoeffisietee Ørulf Borga Matematisk istitutt Uiversitetet i Oslo Ulike typer utvalg Eksempel 6.: Vi

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 9. ovember 017 Tid: Atall sider (ikl. forside): 9 Atall oppgaver: 6 Tillatte hjelpemidler: Forhådsgodkjet

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. 1 ECON130: EKSAMEN 013 VÅR - UTSATT PRØVE TALLSVAR. Det abefales at de 9 deloppgavee merket med A, B, teller likt uasett variasjo i vaskelighetsgrad. Svaree er gitt i

Detaljer

KOMPLEKSE TALL KARL K. BRUSTAD

KOMPLEKSE TALL KARL K. BRUSTAD KOMPLEKSE TALL KARL K BRUSTAD 1 Defiisjoer og otasjo Defiisjo 1 Et kompleks tall er et objekt på forme x + i der x og er reelle tall og kalles heholdsvis realdele og imagiærdele til det komplekse tallet

Detaljer

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 21.05.2013. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 21.05.2013 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast i etter 2 timar. Del 2 skal leverast

Detaljer

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt).

8 (inkludert forsiden og formelsamling) Tegne- og skrivesaker, kalkulator, formelsamling (se vedlagt). Eksamesoppgave våre 011 Ordiær eksame Bokmål Fag: Matematikk Eksamesdato: 10.06.011 Studium/klasse: GLU 5-10 Emekode: MGK00 Eksamesform: Skriftlig Atall sider: 8 (ikludert forside og formelsamlig) Eksamestid:

Detaljer

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye.

Løsningsforslag. Oppgavesettet består av 9 oppgaver med i alt 21 deloppgaver. Ved sensur vil alle deloppgaver telle omtrent like mye. .. Løsigsforslag Emekode: ITF7 Dato:. desember Eme: Matematikk for IT Eksamestid: kl. til kl. Hjelpemidler: To A4-ark med valgfritt ihold på begge sider. Faglærer: Christia F Heide Eksamesoppgave: Oppgavesettet

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statistikk og økoomi, våre 07 Obligatorisk oppgave 6 Løsigsforslag Oppgave E terig kastes 0 gager, og det registreres hvor mage 6-ere som oppås i løpet av disse 0 kastee. Vi ka kalle atall 6-ere i løpet

Detaljer

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon

Kombinatorikk. MAT1030 Diskret matematikk Forelesning 20: Kombinatorikk. Repetisjon. Repetisjon Kombiatori MAT Disret matemati orelesig : Kombiatori Roger Atose Matematis Istitutt, Uiversitetet i Oslo 7. april 8 Kombiatori er studiet av opptelliger, ombiasjoer og permutasjoer. Vi fier svar på spørsmål

Detaljer

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk

IN3030 Uke 12, v2019. Eric Jul PSE, Inst. for informatikk IN3030 Uke 12, v2019 Eric Jul PSE, Ist. for iformatikk 1 Hva skal vi se på i Uke 12 Review Radix sort Oblig 4 Text Program Parallellizig 2 Oblig 4 Radix sort Parallelliser Radix-sorterig med fra 1 5 sifre

Detaljer

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1

Ukeoppgaver, uke 42, i Matematikk 10, Bestemt integrasjon. 1 Ukeoppgaver, uke 2, i Matematikk, Bestemt itegrasjo. Høgskole i Gjøvik Avdelig for igeiørfag Matematikk Ukeoppgaver uke 2 I løpet av uke blir løsigsforslag lagt ut på emeside http://www.hig.o/toel/allmefag/emesider/rea2

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5

ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Kp. 6, del 5 ÅMA110 Sasylighetsregig med statistikk, våre 2010 Kp. 6, del 5 Bjør H. Auestad Istitutt for matematikk og aturviteskap Uiversitetet i Stavager 12. april Bjør H. Auestad Kp. 6: Hypotesetestig del 4 1/ 59

Detaljer

Oppgaver fra boka: X 2 X n 1

Oppgaver fra boka: X 2 X n 1 MOT30 Statistiske metoder, høste 00 Løsiger til regeøvig r 3 (s ) Oppgaver fra boka: 94 (99:7) X,, X uif N(µ, σ ) og X,, X uif N(µ, σ ) og alle variable er uavhegige Atar videre at σ = σ = σ og ukjet Kodesitervall

Detaljer

8 + 2 n n 4. 3n 4 7 = 8 3.

8 + 2 n n 4. 3n 4 7 = 8 3. Seksjo 4. Oppgave (). Fi greseverdiee: 8 a) 4 + 4 7 b) 4 +7 5 c) + 7 4 ( ) d) 5 4 44 + 5 4 e) 5 + si() e +6 5 Løsig. Vi vil bruke samme metode som i Eksempel 4..5 fra boke i disse oppgavee. Når vi skal

Detaljer

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere

Lsningsforslag ved Klara Hveberg Lsningsforslag til utvalgte oppgaver i kapittel 4 I seksjon 4.1 gir de innledende oppgavene deg trening i a lse diere Lsigsforslag til utvalgte ogaver i kaittel 4 I seksjo 4. gir de iledede ogavee deg treig i a lse dieresligiger, og jeg reger med at det ikke er behov for a utdye lrebokas eksemler og fasit her. Me like

Detaljer

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE

AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE AVDELING FOR INGENIØRUTDANNING EKSAMENSOPPGAVE Eme: Diskret matematikk Gruppe(r): Emekode: FO 019A Dato: 12.12.200 Faglig veileder: Ulf Uttersrud Eksamestid: 9-14 Eksamesoppgave består av: Atall sider

Detaljer

Terminprøve R2 Høsten 2014

Terminprøve R2 Høsten 2014 Termiprøve R Høste 04 Del Tid: 3 timer Hjelpemidler: Skrivesaker Oppgave (6 poeg) E flate i rommet er gitt ved likige: x 4x y 6y z 8z 0 0 a) Vis at puktet P3, 5, ligger på flate b) Vis at dette er e kuleflate

Detaljer

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi

Forelesning Elkraftteknikk 1, 17.08.2004 Oppdatert 23.08.2004 Skrevet av Ole-Morten Midtgård. HØGSKOLEN I AGDER Fakultet for teknologi Forelesig Elkrafttekikk, 7.08.004 Oppdatert 3.08.004 Skreet a Ole-Morte Midtgård HØGSKOEN I AGDER Fakultet for tekologi Komplekse tall og isere Komplekse tall er sært yttige i aalyse a elkraftsystemer.

Detaljer

Signifikante sifre = alle sikre pluss ett siffer til

Signifikante sifre = alle sikre pluss ett siffer til Sigifikate siffer og stadardavvik behadles i kap. Disse to emee skal vi ta for oss i dag. Kofidesgreser behadles i kap 4. Dette skal vi ta for oss i osdag. Presetasjo av aalysedata ka gjøres på følgede

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk

Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Diskret matematikk Side 1 av 9 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: Bokmål Dato: 10. desember 018 Tid: 09:00 1:00 Atall sider (ikl. forside): Atall oppgaver: 6 Tillatte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: ST 105 - Iførig i pålitelighetsaalyse Eksamesdag: 8. desember 1992 Tid til eksame: 0900-1500 Tillatte hjelpemidler: Rottma: "Matematische

Detaljer

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan

Løsningsforslag for andre obligatoriske oppgave i STK1100 Våren 2007 Av Ingunn Fride Tvete og Ørnulf Borgan Løsigsforslag for adre obligatoriske oppgave i STK11 Våre 27 Av Igu Fride Tvete (ift@math..uio.o) og Ørulf Borga (borga@math.uio.o). NB! Feil ka forekomme. NB! Sed gjere e mail hvis du fier e feil! Oppgave

Detaljer

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008

Høgskolen i Telemark Avdeling for estetiske fag, folkekultur og lærerutdanning BOKMÅL 16. mai 2008 Høgskole i Telemark Avdelig for estetiske fag, folkekultur og lærerutdaig BOKMÅL 6. mai 008 EKSAMEN I MATEMATIKK Modul 5 studiepoeg Tid: 5 timer Oppgavesettet er på 8 sider (ikludert formelsamlig). Hjelpemidler:

Detaljer

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO

Uke 12 IN3030 v2019. Eric Jul PSE-gruppa Ifi, UiO Uke 12 IN3030 v2019 Eric Jul PSE-gruppa Ifi, UiO Oblig 5 Kovekse Ihylliga Itroduksjo De kovekse ihylliga til pukter Oblig 5 Hva er det, defiisjo Hvorda ser de ut Hva brukes de til? Hvorda fier vi de? 24

Detaljer

Ma Analyse II Øving 5

Ma Analyse II Øving 5 Ma0 - Aalyse II Øvig 5 Øistei Søvik.0.0 Oppgaver 9. Determie whether the give sequece is (a) bouded (above or below), (b) positive or egative (ultimately), (c) icreasig, decreasig, or alteratig, ad (d)

Detaljer

Fakultet for teknologi, kunst og design Teknologiske fag

Fakultet for teknologi, kunst og design Teknologiske fag Side 1 av 1 Fakultet for tekologi, kust og desig Tekologiske fag Eksame i: Diskret matematikk Målform: okmål Dato: 30.11.016 Tid: 5 timer / kl. 9-14 tall sider ikl. forside: 1 tall ogaver: 10 Tillatte

Detaljer

Refleksjon og brytning av bølger

Refleksjon og brytning av bølger Refleksjo og brytig a bølger Når i å skal studere oe bølgefeomeer, bruker i oerflatebølger på a som eksempel. Derfor begyer i med å gjøre oss kjet med abølger. Fotografiee edefor iser to eksempler på bølgeformer

Detaljer

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen 20.05.2009. REA3024 Matematikk R2. Nynorsk/Bokmål Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Nyorsk Eksamesiformasjo Eksamestid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgagsmåte: Rettleiig om vurderiga: 5 timar:

Detaljer

Påliteligheten til en stikkprøve

Påliteligheten til en stikkprøve Pålitelighete til e stikkprøve Om origiale... 1 Beskrivelse... 2 Oppgaver... 4 Løsigsforslag... 4 Didaktisk bakgru... 5 Om origiale "Zuverlässigkeit eier Stichprobe" på http://www.mathe-olie.at/galerie/wstat2/stichprobe/dee

Detaljer

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5

Fasit til utvalgte oppgaver MAT1110, uka 18/5-21/5 Fasit til utvalgte oppgaver MAT0, uka 8/5-2/5 Øyvid Rya (oyvidry@i.uio.o) May 28, 200 Oppgave 2.4. Rekke er betiget koverget, side + divergerer, mes de altererede rekke kovergerer etter teste for altererede

Detaljer

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober

Matematikk for IT. Oblig 7 løsningsforslag. 16. oktober Matematikk for IT Oblig 7 løsigsforslag. oktober 7..8 a) Vi skal dae kodeord som består av sifree,,,, 7. odeordet er gldig dersom det ieholder et like atall (partall) -ere. Dee løses på samme måte som..:

Detaljer

INF1010 våren 2017 Torsdag 9. februar. Interface - Grensesnitt

INF1010 våren 2017 Torsdag 9. februar. Interface - Grensesnitt INF1010 våre 2017 Torsdag 9. februar Iterface - Gresesitt og litt om geeriske klasser og geeriske iterface hvis tid Stei Gjessig Dages hovedtema Egelsk: Iterface (også et Java-ord) Norsk: Gresesitt Les

Detaljer

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

TMA4245 Statistikk. Øving nummer b5. Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer b5 Oppgave 1 Eksame mai 2001, oppgave 1 av 4 Vi ser på kosetrasjoe av et giftstoff i havbue like utefor

Detaljer

TMA4245 Statistikk Vår 2015

TMA4245 Statistikk Vår 2015 TMA4245 Statistikk Vår 2015 Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag Øvig ummer 12, blokk II Oppgave 1 Kari har ylig kjøpt seg e y bil. Nå øsker hu å udersøke biles besiforbruk

Detaljer

Forelesning Moment og Momentgenererende funksjoner

Forelesning Moment og Momentgenererende funksjoner ushu.li@uib.o Forelesig + 3 Momet og Mometgeererede fuksjoer 1. Oppsummerig til Forelesig 1 1.1) Fuksjoe av S.V: hvis variabele er e fuksjo (trasformasjo) av S.V. : g( ), da er også e S.V.: til ethvert

Detaljer

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1

s = k k=1 dx x A n = n = lim = lim 2 arctan ( x = π arctan ( n (2k 1)!, s n = k=1 TMA400 Høst 06 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Løsigsforslag Øvig 0 9.3.30 Me vil fia det miste itervallet som me ka vera sikker på at summe s k k + 4 ligg i. Om

Detaljer

IN1010 våren 2018 Tirsdag 13. februar. Interface - Grensesnitt

IN1010 våren 2018 Tirsdag 13. februar. Interface - Grensesnitt IN1010 våre 2018 Tirsdag 13. februar Iterface - Gresesitt Stei Gjessig Dages hovedtema Egelsk: Iterface (også et Java-ord) Norsk: Gresesitt Les otatet Gresesitt i Java av Stei Gjessig To motivasjoer for

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksame 20052009 REA3024 Matematikk R2 Nyorsk/Bokmål Bokmål Eksamesiformasjo Eksamestid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgagsmåte: Veiledig om vurderige: 5 timer:

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges tekiskaturviteskapelige uiversitet Istitutt for matematiske fag MA Grukurs i aalyse II Vår 4 Løsigsforslag Øvig..4 f ) Skriver om, og får Reger ut ved L'Hopitals regel at cos/) cos/)) = /. cos/)

Detaljer

Kapittel 5 - Vektorer - Oppgaver

Kapittel 5 - Vektorer - Oppgaver 5.4 Kapittel 5 - Vektorer - Oppgaver 5.4, 5.5, 5.45, 5.49, 5.300, 5.306 a) Kabeles legde: BA 6, 7, 6 6 7 6 b) Dette er e parameterfremstillig (på vektorform) for e lije: OT 6t,7t, 6t 0, 0, t6, 7, 6 OB

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro.

ÅMA110 Sannsynlighetsregning med statistikk, våren Kontinuerlige tilfeldige variable, intro. Kontinuerlige tilfeldige variable, intro. ÅMA Sasylighetsregig med statistikk, våre 6 Kp. 4 Kotiuerlige tilfeldige variable og ormaldelige Kotiuerlige tilfeldige variable, itro. (eller: Kotiuerlige sasylighetsdeliger) Vi har til å sett på diskrete

Detaljer

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler)

Eksempeloppgave 2014. REA3026 Matematikk S1 Eksempel på eksamen våren 2015 etter ny ordning. Ny eksamensordning. Del 1: 3 timer (uten hjelpemidler) Eksempeloppgave 04 REA306 Matematikk S Eksempel på eksame våre 05 etter y ordig Ny eksamesordig Del : 3 timer (ute hjelpemidler) Del : timer (med hjelpemidler) Mistekrav til digitale verktøy på datamaski:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-aturviteskapelige fakultet Eksame i: STK2100 Løsigsforslag Eksamesdag: Torsdag 14. jui 2018. Tid for eksame: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

STK1100: Kombinatorikk

STK1100: Kombinatorikk 1100: ombiatorikk auar 2009 Ørulf orga Matematisk istitutt Uiversitetet i Oslo 1 Uiform sasylighetsmodell: t stokastisk forsøk har N utfall Det er de mulige utfallee for forsøket i atar at de N utfallee

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 7. jauar 7 EKSAMEN Løsigsforslag Emekode: ITF75 Dato: 4. desember 6 Hjelpemidler: - To A4-ark med valgfritt ihold på begge sider. Emeav: Matematikk for IT Eksamestid: 9. 3. Faglærer: Christia F Heide Kalkulator

Detaljer

Polynominterpolasjon

Polynominterpolasjon Polyomiterpolasjo Ae Kværø March 5, 2018 1 Problemstillig Gitt + 1 pukter (x i, y i ) i=0 med distikte x-verdier (dvs. x i = x j hvis i = j). Fi et polyom p(x) av lavest mulig grad slik at p(x i ) = y

Detaljer

«Uncertainty of the Uncertainty» Del 5 av 6

«Uncertainty of the Uncertainty» Del 5 av 6 «Ucertaity of the Ucertaity» Del 5 av 6 v/rue Øverlad, Traior Elsikkerhet AS Dette er femte del i artikkelserie om «Ucertaity of the Ucertaity». Jeg skal vise deg utledig av «Ucertaity of the Ucertaity»-formele:

Detaljer

Følger og rekker. Kapittel Følger

Følger og rekker. Kapittel Følger Kapittel 4 Følger og rekker E viktig egeskap ved polyomiale fuksjoer er at vi ekelt) ka rege ut verdiee av fuksjoee i et valgt pukt. Grue er at polyomer er et slags speilbilde av de valige regeoperasjoee.

Detaljer

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort?

Oppgave 1. (i) Hva er sannsynligheten for at det øverste kortet i bunken er et JA-kort? ECON EKSAMEN 8 VÅR TALLSVAR Oppgave Vi har e kortstokk beståede av 6 kort. På av disse står det skrevet JA på forside mes det står NEI på forside av de adre kortee. Hvis ma får se kortet med bakside vedt

Detaljer