Egenverdier for 2 2 matriser

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Egenverdier for 2 2 matriser"

Transkript

1 Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier er introdusert på s 95, Anton/Rorres (10utg) Definisjon 1 Hvis T : R n er slik at R n er en lineær operator, kalles et tall λ som for en x 0 i R n en egenverdi til T T x λx (1) En x 0 som oppfyller (1) kalles egenvektor svarende til egenverdien λ Det er mange anvendelser der disse begrepene er nyttige Vi skal senere se på et par slike anvendelser for å motivere innføringen av egenverdi og egenvektor Vi vet at for en lineær operator T finnes det en n n-matrise A slik at (1) kan representeres på formen: Ax λx () hvor A er en n n-matrise, x er en n 1-matrise og Ax står for vanlig matrise-multiplikasjon Vi kan da omskrive () til formen: (A λi)x 0 (3) Dette er altså et homogent likningssystem med n likninger og n ukjente der matrisen har formen (a 11 λ) a 1 a 1n a 1 (a λ) a n (A λi)x (4) a n1 a n (a nn λ) Siden vi bare er interessert i løsninger av likningssystemet (3) som er 0, må vi først bestemme λ slik at det(a λi) 0 Vi vet fra teorien at systemet da har uendelig mange løsninger - og da spesielt løsninger 0 1

2 Hvorfor er vi ikke interessert i løsninger x 0 av (1)? For det første ser vi jo straks at x 0 er en løsning av (1) Men når vi ser nærmere på de anvendelser vi har av egenverdier/vektorer senere, ser vi straks at den trivielle null-løsningen er helt uinteressant! Derfor må vi starte med å bestemme de λ-verdiene som gjør at det(a λi) 0 Vi innser lett fra (4) at vi da får å løse en likning av grad n: λ n + α 1 λ n 1 + α λ n + α n 1 λ + α n 0 Vi skal i dette notatet kun holde oss til tilfellet n Eksempel 1 Vi skal bestemme egenverdier og egenvektorer for matrisen: 5 6 A Vi må da bestemme røttene i likningen: (5 λ) 6 ( λ) 0 Utregning gir: som kan faktoriseres til: λ 3λ + 0 (λ 1)(λ ) 0 Vi får da egenverdier λ 1 1 og λ λ 1 1: Vi vender tilbake til likningssystemet i (3) for å finne egenvektoren tilhørende denne λ-verdien: (5 1) 6 ( 1) x1 x 0 0 som ved Gauss-Jordan blir: som gir løsningene: λ : v 1 3 t ; t 0

3 For denne verdi av λ blir likningssystemet: (5 ) 6 x1 ( ) x 0 0 som ved Gauss-Jordan blir: som gir løsningene: v 1 t ; t 0 Merknad Vi observerer straks at dersom λ 0 er en egenverdi med egenvektor v 0, så er også kv 0 en egenvektor for denne samme egenverdi for hver k 0 i R Vi har nemlig: A(kv 0 ) k(av 0 ) k(λ 0 v 0 ) λ 0 (kv 0 ) Derfor kan vi feks gjerne bestemme t for våre to egenvektorer v 1 og v i eksemplet ovenfor slik at begge har lengde (norm) lik 1: v ; v Oppgave 1 Kontroller ved utregning at Av 1 v 1 og Av v i eksemplet ovenfor Vi trenger nå følgende: Definisjon Vi sier at en n n-matrise A er diagonaliserbar dersom det finnes en invertibel n n-matrise P som er slik at P 1 AP D der D er en diagonalmatrise Vi skal illustrere dette vha vårt eksempel ovenfor Vi velger nå 3 P 1 Vi benytter formelen fra boken (Teorem 145, s 43) for å bestemme P 1 P

4 Vi har da: P 1 AP Altså har vi diagonalisert matrisen A Det som er et spørsmål her er hvordan man fant en riktig matrise P som var slik at P 1 AP D der D er en diagonalmatrise Vi merker oss videre at D har formen λ1 0 D, 0 λ der λ 1 1 og λ altså egenverdiene til matrisen vi startet med Er dette en ren tilfeldighet? Vi kan også observere at P v 1 v der v1 og v er egenvektorer til egenverdiene λ 1 1 og λ Er dette tilfeldigheter eller kan vi bevise at vi alltid har en slik sammenheng? Oppgave La A være en -matrisen gitt ved: 9 A 6 Bestem egenverdiene λ 1 og λ, og vis at tilhørende egenvektorer er: v 1 1 ; v La P være gitt som: P Vis at da må P 1 AP D, der λ1 0 D 0 λ og der λ 1 og λ er egenverdiene til A Teorem 1 La A være en -matrise med to reelle egenverdier λ 1 og λ der v11 v1 λ 1 λ La v 1 og v være to tilhørende egenvektorer La videre v 1 v, P v 1 v v11 v 1 v 1 v Da vil: P 1 AP D der D er diagonalmatrisen: λ1 0 D 0 λ 4

5 (Merknad: Dette teorem viser at det vi observerte i eksemplet og oppgaven ovenfor ikke var tilfeldig!) Bevis: Vi beviser først at matrisen P definert som ovenfor nødvendigvis er invertibel Vi har fra boken at P er invertibel hvis og bare hvis det P 0 Det gjelder her å bevise at Anta at det motsatte, dvs: v 11 v 1 v 1 v v 11 v 1 v 1 v 0 0 Siden vi har: v 11 v 1 v 1 v v 11 v 1 v 1 v følger det fra Teorem 354 (a), s 166, at denne determinanten 0 hvis og bare hvis arealet av parallellogrammet utspent av vektorene v 1 og v blir 0 Siden både v 1 og v er 0, betyr dette at v 1 kv for en skalar k 0 Ut fra tidligere merknad betyr dette at: Av 1 λ v 1, mao at også v 1 er en egenvektor svarende til egenverdien λ Dette betyr at Av 1 λ 1 v 1 og Av 1 λ v 1 som gir λ 1 v 1 λ v 1 eller (λ 1 λ )v 1 0 Siden v 1 0 betyr dette at λ 1 λ, i strid med antagelsen i teoremet Altså er P invertibel Det gjenstår da å bevise at: AP P D Vi har da a11 a AP 1 a 1 a v11 v 1 v 1 v Av 1 Av siden a11 a Av 1 1 a 1 a v11 v 1 a11 v 11 + a 1 v 1 a 1 v 11 + a v 1 5

6 og a11 a Av 1 v1 a11 v 1 + a 1 v a 1 a v a 1 v 1 + a v Videre har vi: v11 v P D 1 λ1 0 λ1 v 11 λ v 1 λ v 1 v 0 λ λ 1 v 1 λ v 1 v 1 λ v Siden Av 1 λ 1 v 1 og Av λ v har vi dermed bevist at: eller ekvivalent, siden P er invertibel: AP P D P 1 AP D Korollar For hvert naturlig tall n har vi A n P D n P 1 Bevis: Fra P 1 AP D følger A P DP 1 ut fra regneregler for matriseprodukt Altså holder likheten for n 1 Anta så at Vi har da: A k P D k P 1 A k+1 A k A (P D k P 1 )(P DP 1 ) P D k (P 1 P )DP 1 P D k DP 1 P D k+1 P 1 Ut fra induksjonsprinsippet holder derfor A n P D n P 1 for alle n N Anvendelse På en øy lever det rever og kaniner Ved tiden t 0 er antallet rever lik R og antallet kaniner K Vi betegner antall rever etter n måneder med R n og antall kaniner etter n måneder med K n Vi stiller opp følgende sammenheng: R n+1 04R n + 03K n (5) K n+1 04R n + 1K n (6) Hva er idéen bak denne matematiske modellen for utviklingen av disse to dyrebestander? Leddet 04R n gir at dersom kaninbestanden etter n måneder er lik 0, vil bare 40% av revene overleve til neste måned Leddet 03K n i likning (5) ovenfor betyr at revebestanden øker avhengig av hvor mange kaniner 6

7 som finnes I likning (6) har vi antatt at kaninbestanden øker med 0% på en måned dersom ingen rever finnes, mens leddet 04R n representerer revenes innvirkning på kaninbestanden avhengig av antall rever etter n måneder Vi har da to lineære likninger som angir utviklingen i bestanden fra måned n til måned n + 1 Hvorvidt denne modellen er realistisk eller ikke kan vel diskuteres Men den samme type matematiske modell benyttes ved forskjellige studier innenfor populasjonsdynamikk Vi kan stille opp ovenstående likning på matriseform: Rn+1 K n Rn Vi ønsker å finne ut hvordan de to bestandene endrer seg etter feks 10 måneder og hvordan utviklingen endrer seg i det lange løp Vil feks en eller kanskje begge bestandene dø ut fordi revene spiser så mange kaniner at de selv lider sultedøden? Vi får da å regne ut Rn+1 K n n n R0 K 0 K n A n R0 K 0 der A er den angitte matrise Etter en relativt omstendig regning kommer man fram til at A Ytterligere regning gir indikasjon på at 1/ 3/4 A n n 1 3/ Det gir A n n 5 50 Vi prøver å studere det samme problemet ved å diagonalisere A Vi må da bestemme egenverdiene A λi (/5 λ) 3/10 4/10 (1/10 λ) 0 som gir likningen (/5 λ)(1/10 λ) + 1/

8 eller som gir egenverdiene Bestemmelse av egenvektorene gir: λ 1 1: 3/5 3/10 x1 4/10 1/5 (λ 1)(λ 3/5) 0 λ 1 1 ; λ 3/5 x 0 0 ; v 1 1 t ; t 0 λ 3/5: 1/5 3/10 4/10 3/5 x1 x 0 0 ; v 3 t ; t 0 Dermed settes og vi får Derfor har vi som gir P P P 1 AP D A n P D n P 1 1 n n ( 3 5 )n ( 3 5 )n 3 4 ( 3 5 )n 1 1 6( 3 5 )n 3( 3 5 )n ( 3 5 )n ( 3 5 )n 6 Dette gir så A n R0 K ( 3 5 )n 3( 3 5 )n 3 4 4( 3 5 )n ( 3 5 )n ( 3 5 )n ( 3 5 )n n

9 Når n vokser vil altså bestanden stabilisere seg på 5 rever og 50 kaniner på øyen Definisjon 3 En n n-matrise A sies å være ortogonal dersom A T A 1 Merknad Det innsees lett at A er ortogonal hvis og bare hvis A T A I: Hvis A T A 1 vet vi at A T A A 1 A I Dersom A T A I er A T venstreinvers til A, og det følger fra Teorem 163(a) at A T A 1 cos θ sin θ cos θ sin θ Eksempel Dersom A blir A sin θ cos θ T sin θ cos θ Vi har da A T A cos θ + sin θ 0 0 cos θ + sin θ Altså er A ortogonal Eksempel 3 A sin π er ortogonal ut fra eksempel siden cos π 4 Definisjon 4 La v 1 og v være to vektorer i R Vi sier at {v 1, v } er en ortogonal mengde dersom v 1 v 0 {v 1, v } sies å være en ortonormal mengde dersom man i tillegg har at v 1 v 1 Teorem 3 En -matrise A er ortogonal hvis og bare hvis søylevektorene v 1 og v utgjør en ortonormal mengde a11 a Bevis: Hvis A 1 a11, er v a 1 a 1 og v a 1 A T a11 a 1 som gir a 1 a A T v1 v A 1 v 1 v v v 1 v v a1 a Vi har da ut fra vanlige regler for matrisemultiplikasjon og definisjon av skalarprodukt(kontroller denne påstanden på egen hånd!) Dersom A er ortogonal, skal pr def A T A I eller ekvivalent: v 1 v 1 v 1 1 v 1 v 0 v v v 1 9

10 Altså utgjør søylevektorene i A en ortonormal mengde Dersom søylevektorene i A utgjør en ortonormal mengde, blir v 1 v 1 og v 1 v 0 Altså følger det av det ovenstående at A T A I, mao A er en ortogonal matrise Definisjon 5 Vi sier at A er ortogonalt diagonaliserbar dersom det finnes en ortogonal matrise P som er slik at P T AP D der D er en diagonalmatrise Teorem 4 A ortogonalt diagonaliserbar hvis og bare hvis A er symmetrisk (Vi minner om at A er symmetrisk dersom A A T ) Bevis: Vi antar først at A er ortogonalt diagonaliserbar Altså at det finnes en ortogonal matrise P slik at: P T AP D der D er en diagonalmatrise Dette gir: siden P T P 1 Av dette følger så: A P DP T A T (P DP T ) T (P T ) T D T P T P D T P T P DP T A ut fra Teorem 148 og det faktum at en diagonalmatrise er symmetrisk Altså er A symmetrisk Vi antar så at A T A Vi skal først bevise at da har A enten to reelle egenverdier λ 1 og λ der λ 1 λ eller A har formen: A a 0 0 a I det siste tilfellet er A allerede en diagonalmatrise og diagonalisering er derfor ikke nødvendig En annen sak er at I T AI A, slik at A formelt er ortogonalt diagonaliserbar La oss anta at A A T, dvs at a b A b c Vi studerer som vanlig likningen: A λi (a λ) b b (c λ) 0 10

11 Dette gir λ (a + c)λ + ac b 0 Vi ser på diskrimanten i formelen for røttene i gradslikningen: B 4AC (a + c) 4 1(ac b ) a + ac + c 4ac + 4b (a c) + (b) Dette uttrykket er aldri negativt og lik 0 hvis og bare hvis a c og b 0, mao når a 0 A 0 a I alle andre tilfeller har derfor A to relle og innbyrdes ulike egenverdier Vi betegner egenvektorene tilhørende egenverdiene λ 1 og λ henholdsvis v 1 og v Vi har da: Av 1 λ 1 v 1 ; Av λ v Ut fra tidligere bemerkning kan vi anta uten tap av generalitet at v 1 1 og v 1 Vi minner nå om at skalarproduktet av to vektorer kan uttrykkes vha produktet av to matriser i det man oppfatter en 1 1-matrise som et reelt tall: u v u T v (Se s 139) Videre er det klart at når B er en 1 1-matrise Dette gir: Vi har mao B T B λ (v 1 v ) v 1 (λ v ) v 1 (Av ) v T 1 (Av ) (v T 1 Av ) T v T A T (v T 1 ) T v T Av 1 (7) v T (λ 1 v 1 ) v (λ 1 v 1 ) λ 1 (v v 1 ) λ 1 (v 1 v ) λ (v 1 v ) Siden λ 1 λ, må derfor v 1 v 0 Altså er {v 1, v } en ortonormal mengde Hvis vi som tidligere definerer P ved P v 1 v har vi foran bevist at P er ortogonal og P 1 AP D der D er diagonalmatrisen λ1 0 D 0 λ 11

12 Oppgave 3 Kontroller riktigheten av alle likhetene i (7) Fra ovenstående bevis har vi også: (a) Dersom A er symmetrisk og ikke er en diagonalmatrise, har A to reelle egenverdier, λ 1 λ, med tilhørende egenvektorer v 1 og v som danner en ortonormal mengde Da er P v 1 v en ortogonal matrise og A P DP T (b) Hvis A allerede er en diagonalmatrise er diagonalisering unødvendig Merknad Hvis A ikke er symmetrisk har den ikke nødvendigvis to rellle egenverdier Vi har for 0 1 A 1 0 at likningen A λi 0 blir λ som ikke har reelle røtter 1

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1

Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

15 Hovedprinsippet for vektorrom med et indre produkt

15 Hovedprinsippet for vektorrom med et indre produkt Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

EKSAME SOPPGAVE MAT-1004 (BOKMÅL)

EKSAME SOPPGAVE MAT-1004 (BOKMÅL) EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

= 3 11 = = 6 4 = 1.

= 3 11 = = 6 4 = 1. MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 25/9

MAT1120 Oppgaver til plenumsregningen torsdag 25/9 MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon:

EKSAMENSOPPGAVE. to A4 ark egne notater og Rottmanns tabeller. Kontaktperson under eksamen: Professor Andrei Prasolov. Telefon: EKSAMENSOPPGAVE Eksamen i: Mat 4 Lineær algebra Dato: Torsdag 4 juni 25 Tid: Kl 9: 3: Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Godkjent kalkulator, to A4 ark egne notater og Rottmanns tabeller Oppgavesettet

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =

2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M = Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Vi tar utgangspunkt i Teorem 8 fra avsn. 4.4 i boka. For ordens skyld gjentar vi teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n } er en (ordnet) basis

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012. Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

Oppgaver til seksjon med fasit

Oppgaver til seksjon med fasit Oppgaver til seksjon.6-. med fasit Oppgaver til seksjon.6. Skriv b som en lineærkombinasjon av a og a når a = ( ( a = og b =.. Skriv b som en lineærkombinasjon av a, a og a når a = a =, a = og b = 5. (.

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

MA1201 Lineær algebra og geometri Høst 2017

MA1201 Lineær algebra og geometri Høst 2017 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA1201 Lineær algebra og geometri Høst 2017 Løsningsforslag Øving 1 Med forbehold om feil. Kontakt gjerne mads.sandoy@ntnu.no

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

MAT-1004 Vårsemester 2017 Obligatorisk øving 6

MAT-1004 Vårsemester 2017 Obligatorisk øving 6 MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag

Eksamen, høsten 13 i Matematikk 3 Løsningsforslag Eksamen, høsten 3 i Matematikk 3 Løsningsforslag Oppgave. a) Fra ligningen x 5 + y 3 kan vi lese ut store og lille halvakse a 5 og b 3. Fokus til senter avstanden er da gitt ved c a b 5 3 5 9 6 4. ermed

Detaljer

Tidligere eksamensoppgaver

Tidligere eksamensoppgaver Tillegg B Tidligere eksamensoppgaver Her følger et kronologisk utvalg av tidligere ekamensoppgaver innenfor temaet lineær algebra gitt i tilsvarende kurs som MAT1001 ved UiO. Utvalget er gjort med hensyn

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer