TDT4195 Bildeteknikk

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "TDT4195 Bildeteknikk"

Transkript

1 TDT495 Bildeteknikk Grafikk Vår 29 Forelesning 5 Jo Skjermo Department of Computer And Information Science Jo Skjermo, TDT423 Visualisering

2 2 TDT495 Forrige gang Attributter til grafiske primitiver Farger Linje- og kurveattributter Flateattributter Flling av flater Scanlinjealgoritmen Boundar-fill Flater med irregulære kanter Antialiasing

3 3 TDT495 - I dag Geometriske transformasjoner, del Basistransformasjoner Skalering Rotasjon Translasjon Kort om grunnelementene Punkt, skalarer og vektorer Problemer å løse Affine rom Koordinatsstemer og rammer Homogene koordinater

4 4 Geometriske transformasjoner Konstruksjon i lokale koordinatsstemer Transformasjon til verdenskoordinatsstemet l l l

5 5 Geometriske transformasjoner Objekter i eget lokalt (modellerings- koordinatsstem Fltting Rotasjon Skalering Sette sammen objekter av del-objekter Modelleringstransformasjoner -bgg opp objekter av deler (plassert i forhold til et felles origo for det objekter -bruker navnet modelleringstransformasjoner for å skille i bruk (men er også geometriske trans. Transformasjon til verdenskoordinatsstem Geometriske transformasjoner -plasser og fltt objekter (med hvert sitt lokale koordinatsstem rundt om i verden i forhold til hverandre Er koordinattransformasjoner

6 6 Geometriske transformasjoner Skalering Rotasjon Basistransformasjoner Translasjon Skjærtransformasjoner Refleksjon kjekt å ha:

7 7 Plan Basistransformasjonene Problem: Konstatere problemer Løse problemene Grunnleggende for transformasjoner i grafikken Basistransformasjonene på ntt Rotasjoner rundt vilkårlig akse Quat

8 8 Skalering 2 3 Skalering relativt origo. (Referansepunkt: origo

9 9 Skalering retningen i skalering retningen skalering i retningen skalering i På matriseform:

10 Rotasjon Rotasjonsvinkel: Rotasjon i planet om origo. (Referansepunkt: origo

11 Rotasjon Ser på rotasjon av ett punkt: φ ρ ρ (, (, cos( sin( cos( sin( sin( cos( sin( cos( sin( sin( cos( cos( sin( cos( sin( cos( φ ρ φ ρ φ ρ φ ρ φ ρ φ ρ φ ρ φ ρ

12 2 Rotasjon På matriseform: cos( sin( sin( cos( Rotasjon i --planet kan sees på som rotasjon om -aksen med konstant. I 3D blir da matriseformen: cos( sin( sin( cos(

13 3 Rotasjon På samme måte: rotasjon om -aksen: cos( sin( sin( cos( Rotasjon om -aksen: cos( sin( sin( cos(

14 4 Rotasjon Sklisk ombtting som grunnlag for rotasjonsmatrisene om - og -aksene: -> -> -> -> -> -> -> -> ->

15 5 Rotasjon Enhver rotasjon kan sees på som sammensatt av en rotasjon om hver av koordinataksene i tur og orden

16 6 Translasjon (, (,

17 7 Translasjon På vektorform: + PROBLEM: lar seg ikke skrive på matriseform ved hjelp av en 33-matrise!!

18 8 Geometriske bestanddeler Geometriske modeller bgges opp av: Linjer Flater Volumer Bggeredskaper : Punkt Vektorer Skalarer

19 9 Geometriske bestanddeler Punkt: Et punkt P er et sted i rommet Ingen utstrekning Eksisterer uavhengig av referanse og målesstem Referanse og mål koordinatsstem I fsikken: inertialsstem universets sentrum UTM-sstemet sstem for kartframstilling på jorda Koordinatsstemer i grafikk: Modellkoordinater Verdenskoordinater Kamerakoordinater.

20 2 Vektorer Punkt Vektorer: Har lengde og retning Er IKKE stedfestet Eksisterer uavhengig av referanse- og målesstem De tre røde vektorene er ekvivalente

21 2 Vektorrom En mengde av vektorer med gldige operasjoner: addisjon skalar multiplikasjon og med følgende egenskaper: u + u (nullvektor a + ( -a (invers vektor u + v v + u (kommutativ ( u + v + w u + ( v + w (assosiativ u u ß ( u + v ß u + ß v (distributiv ( ß + µ u ß u + µ u (distributiv ß ( µ u ( ß µ u (assosiativ u, v og w er vektorer. ß og µ er skalarer

22 22 Vektorrom Et vektorrom av dimensjon n har en basis bestående av n lineært uavhengige vektorer v, v 2,, v n. Disse vektorene er slik at: v + v v L + v n n bare kan oppflles dersom alle k.

23 23 Koordinatsstemer e Et kartesisk koordinatsstem er et vektorrom spent ut av en basis bestående av tre ortonormale vektorer. e e Måler koordinater langs aksene For å kunne angi koordinater, har vi i tillegg et origo

24 24 Skalarer Reelle tall som i vår sammenheng brukes angivelse av mål, skaleringsfaktorer inklusive Punkt Skalering av punkt: MENINGSLØST Fltte punkt Angivelse av koordinater Vektorer Angivelse av lengde Angivelse av retning Skalering

25 25 Skalarer Lengde Vektorer Retning v 3v Skalering

26 26 Linjer, flater og volumer I likhet med punkt og vektorer: Eksisterer uavhengig av referanse- og målesstem Linjer og flater Kan beskrives ved analtiske matematiske uttrkk Kan behandles av eksisterende grafikksstemer Volumer Kan beskrives matematisk ved hjelp av en kombinasjon av analtiske matematiske uttrkk og logiske uttrkk Eksisterende grafikksstemer behandler volumer som skall bestående av flater

27 27 Problemer å løse Uttrkke translasjon på matriseform Behandle alle transformasjoner med samme formalisme Slå sammen transformasjoner i en matrise Finne fram til enhetlig notasjon og operasjoner som skiller mellom punkt og vektorer

28 28 Affine rom Ved hjelp av homogene koordinater: Skiller mellom de geometriske entitetene: punkt og vektorer Ordner opp med translasjons-problemet

29 29 Vektorrom og affine rom Vektorrom: Vektorrom av dimensjon n har en basis bestående av n lineært uavhengige vektorer: v, v 2, v 3,, v n Affine rom: For affine rom inngår i tillegg et referanse-punkt slik at basis blir: v, v 2, v 3,, v n, P

30 3 Affine rom Har alle egenskapene som vektorrom har Tilleggsegenskap for affine rom: v P - Q (punkt-punkt subtraksjon gir en vektor Q v + P (vektor-punkt sum gir et punkt Begrepet koordinatsstem erstattes med begrepet ramme (frame

31 3 Affine rom Punkt i det affine rommet: P v + 2v2 + K+ nvn + P med representasjonen: [ K ] T p 2 n

32 32 Affine rom Vektorer i det affine rommet: v v + 2v2 + K+ nvn + P med representasjonen: [ K ] T v 2 n

33 33 Homogene koordinater Punkt: Vektorer: p v δ δ δ

34 34 Skalering retningen i skalering retningen i skalering retningen i skalering P S P S,, ( På matriseform med homogene koordinater:

35 35 Rotasjon Rotasjon av et punkt om -aksen: cos( sin( + sin( cos(

36 36 Rotasjon Om -aksen på matriseform i homogene koordinater: P R P R ( cos( sin( sin( cos(

37 37 Rotasjon Rotasjon om -aksen i homogene koordinater: P R P R ( cos( sin( sin( cos( Rotasjon om -aksen i homogene koordinater: P R P R ( cos( sin( sin( cos(

38 38 Translasjon På matriseform i homogene koordinater: P T P T,, ( Vi har løst translasjonsproblemet!!

39 39 Egenskaper ved skalering Invers transformasjon: To skaleringer etter hverandre:,, (,, ( S S,, (,, (,, ( res S S S S

40 4 Egenskaper ved rotasjon Invers transformasjon: Ri ( Ri ( i, eller R T i Ri To rotasjoner om samme akse etter hverandre: R res Ri i ( 2 Ri ( R ( + 2

41 4 Egenskaper ved translasjon Invers transformasjon: To translasjoner etter hverandre:,, (,, ( T T,, (,, (,, ( res T T T T + + +

42 42 Konkatenering Sammenslåing av transformasjoner Eks.: Punktet p gjennomgår transformasjonene A, B og C i nevnte rekkefølge: p Ap p Bp BAp p Cp CBAp Resultattransformasjon: MCBA TRANSFORMASJONENE KONKATENERES I MOTSATT REKKEFØLGE I FORHOLD TIL REKKEFØLGEN DE UTFØRES I

43 43 Skalering relativt et vilkårlig punkt Ønsker Har (,,. Translere slik at punktet (,, faller i origo 2. Skalere 3. Translere tilbake

44 44 Rotasjon om punkt utenfor origo Rotasjonsakse parallell med -aksen gjennom punktet (,, (,,. Translere slik at rotasjonsaksen faller langs -aksen 2. Rotere 3. Translere tilbake

45 45 Refleksjon Refleksjon om et plan Rf

46 46 Refleksjon Refleksjon om en akse Rf

47 47 Refleksjon Refleksjon om et punkt Rf o

48 48 Refleksjon l Refleksjon om linjen l: m+b Ett eksempel: -Transler linjen slik at den passerer origo -Roter slik at linjen sammenfaller med akse -Reflekter om plan gjennom aksen -Roter og transler tilbake

49 49 Neste gang Geometriske transformasjoner, del 2 Refleksjon* Skjærtransformasjoner Rotasjon om en vilkårlig akse Eulervinkler Stive og affine transformasjoner Ortogonale matriser

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til elesninger over: Kapittel 5: Viewing i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 Torbjørn Hallgren Institutt datateknikk

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 9 (ni) sider. Norges Informasjonstekonlogiske Høgskole RF5100 Lineær algebra Side 1 av 9 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

TDT4195 Bildeteknikk

TDT4195 Bildeteknikk D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo Jo.skjrmo@idi.ntn.no Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014 Oppgaver MAT500 Fredrik Meyer 9. august 04 Oppgave. Bruk cosinus-setningen til å se at definisjonen av vinkel i planet blir riktig. Løsning. Dette er en litt rar oppgave. Husk at cosinus-setningen sier

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y.

2D Transformasjoner (s. 51 i VTK boken) Translasjon. Del 2 Grafisk databehandling forts. Rotasjon. Skalering. y x = x + d x, y = y + d y. 2D Transformasjoner (s. i VTK boken) Translasjon Del 2 Grafisk databehandling forts. (, ) = + d, = + d På matriseform: d d (, ) P =, P =, T = d d P = P + T 24/2-3 IN229 / V3 / Dag 6 2 Skalering Rotasjon

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling INF 230 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen 05.02.203 INF230 Temaer i dag Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

Oppgaver MAT2500 høst 2011

Oppgaver MAT2500 høst 2011 Oppgaver MAT2500 høst 2011 31. oktober 2011 Oppgaver avsnitt 1 Oppgave 1. Bruk cosinussetningen til å se at definisjonen av vinkel i planet blir riktig. Oppgave 2. Vis at d(x, y) = 0 hvis og bare hvis

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

En rekke av definisjoner i algebra

En rekke av definisjoner i algebra En rekke av definisjoner i algebra Martin Strand, martin.strand@math.ntnu.no 11. november 2010 Definisjonene som er gitt her, kommer i MA2201 Algebra og MA3201 Ringer og moduler. Forhåpentligvis blir det

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

INF Kap og i DIP

INF Kap og i DIP INF 30 7.0.009 Kap..4.4 og.6.5 i DIP Anne Solberg Geometriske operasjoner Affine transformer Interpolasjon Samregistrering av bilder Geometriske operasjoner Endrer på pikslenes posisjoner o steg:. Finn

Detaljer

15 Hovedprinsippet for vektorrom med et indre produkt

15 Hovedprinsippet for vektorrom med et indre produkt Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl.

LØSNINGSFORSLAG. Universitetet i Agder Fakultet for Teknologi og realfag. Dato: 03. desember 2009 Varighet: Antall sider inkl. Universitetet i Agder Fakultet for Teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato: 3. desember 29 Varighet: 9-3 Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = =

5.5.1 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger. Løsningsforslag + + = = til oppgavene i avsnitt 55 til oppgaver i avsnitt 55 551 Bruk matriseregning til å vise at en rotasjon er produktet av to speilinger cos( u + v) sin( u + v) cosu sin u u+ v u = sin( u v) cos( u v) sin

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Leksjon G2: Transformasjoner

Leksjon G2: Transformasjoner Programmering grunnkurs TDAT: Grafikkdel Leksjon G: Transformasjoner Fra modell til tegning på skjerm side Modell Plantransformasjoner/translasjon side 3 Modell Plantransformasjoner/skalering side 4 Modell

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF330 Metoder i grafisk databehandling og diskret geometri Eksamensdag: 3. desember 010 Tid for eksamen: 14.30 18.30 Oppgavesettet

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling

Temaer i dag. Geometriske operasjoner. Anvendelser. INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG

EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL LØSNINGSFORSLAG Side 1 av 11 EKSAMEN I EMNE TDT4230 VISUALISERING FREDAG 10. DESEMBER 2010 KL. 09.00 13.00 LØSNINGSFORSLAG OPPGAVE 1 Kubiske Bézier-kurver og flater a) Sammenhengen mellom vektoren av blandefunksjoner

Detaljer

MAT Grublegruppen Notat 11

MAT Grublegruppen Notat 11 MAT1100 - Grublegruppen Notat 11 Jørgen O. Lye Matrisegrupper Den store gruppen vi skal se på er GL(n, K) = {inverterbare n n matriser med koesienter i K} Forkortelsen står for den generelle lineære gruppen

Detaljer

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Fjerde samling Runar Ile 1 Kroppsutvidelser og geometriske konstruksjoner 1.1 Hva har kroppsutvidelser med geometriproblemer å gjøre? Avsnitt 29: Kroppsutvidelser Stoff: Utvidelseskropper

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Løsning til utvalgte oppgaver fra kapittel 12 (15).

Løsning til utvalgte oppgaver fra kapittel 12 (15). Løsning til utvalgte oppgaver fra kapittel (5) Oppgave 7 ( 5) Vi skal btte integrasjonsrekkefølgen i integralet dd Når vi btter integrasjons- rekkefølgen må integrasjonsområdet beskrives på ntt Dobbelintegralet

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Velkommen til MA1103 Flerdimensjonal analyse

Velkommen til MA1103 Flerdimensjonal analyse Velkommen til MA1103 Flerdimensjonal analyse Foreleser: 14. januar 2013 Kursinformasjon Nettside: wiki.math.ntnu.no/ma1103/2013v/start Foreleser: (mariusi@math.ntnu.no) Start emne i epost med MA1103 Treffetid:

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene:

Oppgave 14 til 9. desember: I polynomiringen K[x, y] i de to variable x og y over kroppen K definerer vi undermengdene: HJEMMEOPPGAVER utgave av 8-12-2002): Oppgave 15 til 16 desember: La H være mengden av alle matriser på formen A = a 1 a 12 a 13 a 1n 0 a 2 0 0 0 0 a 3 0 0 0 a n der a 1 a 2 a n 0 Videre la SH være matrisene

Detaljer

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning Eksamen i SOD 165 Grafiske metoder Klasse : 3D Dato : 15. august 2000 Antall oppgaver : 4 Antall sider : 4 Vedlegg : Utdrag fra OpenGL Reference Manual

Detaljer

LØSNINGSANTYDNING EKSAMEN

LØSNINGSANTYDNING EKSAMEN Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSANTYDNING EKSAMEN Emnekode: Emnenavn: DAT Grafisk Databehandling Dato: 5. desember Varighet: 9 - Antall sider inkl. forside 8 Tillatte hjelpemidler:

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

Grublegruppe 19. sept. 2011: Algebra I

Grublegruppe 19. sept. 2011: Algebra I Grublegruppe 19. sept. 2011: Algebra I Ivar Staurseth ivarsta@math.uio.no Innledning, definisjoner Vi har så langt jobbet med mengder, X, hvor vi har hatt et avstandsbegrep og hvor vi har vært i stand

Detaljer

9 Spenninger og likevekt

9 Spenninger og likevekt 9 Spenninger og likevekt Innhold: Volumkrefter og flatekrefter Traksjonsvektoren Spenningsmatrisen Retningscosinuser Cauchs ligning Hovedspenninger og hovedspenningsretninger Spenningsinvarianter Hdrostatisk

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

OPPGAVER FOR FORUM

OPPGAVER FOR FORUM OPPGAVER FOR FORUM 2007-2008 MERK!: Du skal først skrive hele oppgaveteksten for hver oppgave, og deretter svaret på oppgaven. Hvert svar skal være detajert, og skrevet i et klart og tydelig matematisk

Detaljer

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet

Kompleks eksponentialform. Eulers inverse formler. Eulers formel. Polar til kartesisk. Kartesisk til polar. Det komplekse signalet Komplekse tall Vi definerer det komplekse tallet z C. Komplekse eksponentialer og fasorer Det komplekse planet Kartesisk og polar form Komplekse eksponentiale signaler Roterende fasor Addisjon av fasorer

Detaljer

LØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT

LØSNINGSANTYDNING. HØGSKOLEN I AGDER Fakultet for teknologi. DAT 200 Grafisk Databehandling. Ingen. Klasse(r): 2DTM, 2DT, 2 Siving, DT HØGSKOLEN I AGDER Fakultet for teknologi LØSNINGSANTYDNING EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 5.2.5 Eksamenstid, fra-til: 9. - 3. Eksamensoppgaven

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

EKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 2011 KL Løsningsforslag

EKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 2011 KL Løsningsforslag Side 1 av 1 EKSAMEN I EMNE TDT4195 BILDETEKNIKK TORSDAG 9. JUNI 011 KL. 09.00 13.00 Løsningsforslag OPPGAVE 1 Grafikk Planet a) En terning med hjørner som angitt har sidekant 1 og ligger i første oktant

Detaljer

LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy

LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy Tid: Onsdag 17.01.2007, kl: 09:00-12:00

Detaljer

RF3100 Matematikk og fysikk Leksjon 1

RF3100 Matematikk og fysikk Leksjon 1 RF3100 Matematikk og fysikk Leksjon 1 Lars Sydnes, NITH 30. august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Ved NTNU: Doktorgrad i Matematikk 2012, Siv.ing. Industriell

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG

KONTINUASJONSEKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 9. AUGUST 2005 KL LØSNINGSFORSLAG Side 1 av 8 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap KONTINUASJONSEKSAMEN I EMNE TDT430 VISUALISERING

Detaljer

Eksamen i TMA4190 Mangfoldigheter fredag 30 mai, 2014

Eksamen i TMA4190 Mangfoldigheter fredag 30 mai, 2014 Eksamen i TMA4190 Mangfoldigheter fredag 30 mai, 2014 LØYSINGSFORSLAG Oppgåve 1 å sette Vi definerer funksjonane F : R 4 R 2 og G : R 2 R 4 ved F : (x, y, z, w) (u, v) = (xy, zw) G : (u, v) (u, u 2, v,

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold Geometriske avbildninger og symmetri A2A/A2B Høgskolen i Vestfold 6. november 2009 Innhold 1. Symmetri 2. Avbildninger 3. Isometrier 4. Egenskaper ved avbildninger 5. Symmetrigrupper Kilde for forelesningen:

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren (964) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER

Detaljer

Leksjon G2: Transformasjoner

Leksjon G2: Transformasjoner Programmering grunnkurs TDAT: Grafikkdel Leksjon G: Transformasjoner Fra modell til tegning på skjerm side Modell Plantransformasjoner/translasjon side 3 Modell Plantransformasjoner/skalering side 4 Modell

Detaljer

EKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG

EKSAMEN I EMNE TDT4230 VISUALISERING TIRSDAG 18. DESEMBER 2007 KL LØSNINGSFORSLAG Side 1 av 10 NTNU Norges teknisk-naturvitenskapelige universitet Fakultet for fysikk, informatikk og matematikk Institutt for datateknikk og informasjonsvitenskap EKSAMEN I EMNE TDT40 VISUALISERING TIRSDAG

Detaljer

Løsning 1 med teori, IM3 høst 2012.

Løsning 1 med teori, IM3 høst 2012. Løsning med teori, IM3 høst Oppgae a) Vi obsererer at ttrkket er bestemt og i ndersøker det først langs koordinataksene Langs - aksen er Innsatt gir dette sin( ), Langs - aksen er Innsatt gir dette sin(

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

TMA4105 Matematikk 2 vår 2013

TMA4105 Matematikk 2 vår 2013 TMA4105 Matematikk vår 013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavene er fra læreboka Merk: I løsningene til alle oppgavene fra seksjon

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder.

Motivasjon. Litt sett-teori. Eksempel. INF Mesteparten av kap i DIP Morfologiske operasjoner på binære bilder. 1 Motivasjon INF 2310 Mesteparten av kap 9.1-9.5 i DIP Morfologiske operasjoner på binære bilder Basis-begreper Fundamentale operasjoner på binære bilder Sammensatte operasjoner Eksempler på anvendelser

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

E K S A M E N S O P P G A V E

E K S A M E N S O P P G A V E HØGSKOLEN I AGDER Fakultet for teknologi E K S A M E N S O P P G A V E EMNE: FAGLÆRER: DAT 2 Grafisk Databehandling Morgan Konnestad Klasse(r): 2DTM, 2DT, 2 Siving, DT Dato: 8.2.6 Eksamenstid, fra-til:

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Løsning, Trippelintegraler

Løsning, Trippelintegraler Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8

Detaljer

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid:

Eksamen i fag FY1004 Innføring i kvantemekanikk Tirsdag 22. mai 2007 Tid: Side 1 av 6 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk Faglig kontakt under eksamen: Navn: Jan Myrheim Telefon: 73 59 36 53 (mobil 90 07 51 72) Sensurfrist: Tirsdag 12. juni 2007

Detaljer

EKSAMEN RF5100, Lineær algebra

EKSAMEN RF5100, Lineær algebra Side av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF500, Lineær algebra Tillatte hjelpemidler: Godkjent kalkulator og utdelt formelark Varighet: 3 timer Dato: 4. oktober 04 Emneansvarlig: Lars Sydnes

Detaljer

TMA 4140 Diskret Matematikk, 4. forelesning

TMA 4140 Diskret Matematikk, 4. forelesning TMA 4140 Diskret Matematikk, 4. forelesning Haaken Annfelt Moe Department of Mathematical Sciences Norwegian University of Science and Technology (NTNU) September 9, 2011 Haaken Annfelt Moe (NTNU) TMA

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

INF 2310 Digital bildebehandling

INF 2310 Digital bildebehandling Temaer i dag INF 310 Digital bildebehandling Forelesning 3 Geometriske operasjoner Fritz Albregtsen Geometriske operasjoner Lineære / aine transormer Resampling og interpolasjon Samregistrering i av bilder

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner

Notat 05 for MAT Relasjoner, operasjoner, ringer. 5.1 Relasjoner Notat 05 for MAT1140 5 Relasjoner, operasjoner, ringer 5.1 Relasjoner Når R er en relasjon som er veldefinert på A B, slik at R(x, y) er en påstand når x A og B B, tenker vi på relasjonen som noe som lever

Detaljer

INF februar 2017 Ukens temaer (Kap og i DIP)

INF februar 2017 Ukens temaer (Kap og i DIP) 1. februar 2017 Ukens temaer (Kap 2.4.4 og 2.6.5 i DIP) Geometriske operasjoner Lineære / affine transformer Resampling og interpolasjon Samregistrering av bilder 1 / 30 Geometriske operasjoner Endrer

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer