Newtons lover i to og tre dimensjoner
|
|
- Lars-Erik Endresen
- 7 år siden
- Visninger:
Transkript
1 Newons loer i o og re dimensjoner Innleeringsfris oblig 1: Tirsdag, 9.Feb. kl.18 Innleering kun ia: hps://deilry.ifi.uio.no/ Fellesinnleeringer (N 3): Alle må bidra il besarelsen i sin helhe. Definer en gruppe i Deilry Skri ydelig på besarelsen hem du leerer med FYS-MEK
2 Beegelse i re dimensjoner Beegelsen er karakeriser ed posisjon, hasighe og akselerasjon. Vi må bruker ekorer: posisjon: r() = x i + y j + z()k hasighe: akselerasjon: = dr d = dx dy dz i + j + d d d k = x i + y j + z ()k a = d d = d x d i + d y d j + d z d k = a x i + a y j + a z ()k hasighe: () far: ( ) ( ) kraf akselerasjon NL inegrasjon hasighe, posisjon FYS-MEK
3 Fri-legeme diagram i 3 dimensjoner Tegn e fri-legeme diagram for den øerse ballen. sysem: øre ballen omgielse: nedre ballen, kare konakpunker konakkrefer: normalkraf fra egg på ball normalkraf fra nedre ball på øre ball langrekkende kraf: graiasjon sysem er i ro: Fex Nw Nb G ma N b N w G FYS-MEK
4 FYS-MEK hp://pingo.upb.de/ access number: En kjede fese il bilen holder bilen i ro på den friksjonsfrie rampen (inkel ). Rampen uøer en normalkraf på bilen. Hor sor er normalkrafen N i forhold il eken W a bilen? an cos sin W N W N W N W N W N T sin cos W T W N W T N
5 Relaibeegelse og referansesysemer En person kjører med konsan hasighe i en åpen bil og kaser en ball re opp. Hordan il en annen person som sår på gaen beskrie beegelsen? (Vi ser bor fra lufmosand.) Se fra bilen (sysem S ): ballen beeger seg re opp og faller re ned igjen. Se fra gaen (sysem S): beegelsen beskries som en skrå kas S y y S r ' R r x x posisjon i gae-sysem S: r () posisjon i bil-sysem S : r '( ) posisjon a bilen i gae-sysem: R () r( ) R( ) r'( ) FYS-MEK
6 S y y S r r( ) R( ) r'( ) ' R x r dr d dr dr ' ( ) R( ) r'( ) u '( d d d d x d d d' a( ) u '( ) a'( ) d d d ) Bilen beeger seg med konsan hasighe u akselerasjonene er de samme i begge sysemer. Sysemer som beeger seg med konsan hasighe er inerialsysemer. Samme krefer og akselerasjon i begge sysemer. Hordan beskrie i beegelsen a ballen? fra bilen (sysem S ): enese kraf er graiasjon: G = mgj iniialbeingelse: = = j fra gaen (sysem S): enese kraf er graiasjon: G = mgj iniialbeingelse: = u + = ui + j FYS-MEK
7 Eksempel: Du ror en bå oer en el. Elen srømmer med hasighe. Hilken inkel bør du holde for å komme re oer elen? Sysem fese på elebredden: S Sysem fese il anne: S hasighe il anne i sysem S: hasighe il båen i sysem S : hasighe il båen i sysem S: u = i b = b sin θ i + b cos θ j b = u + b = i b sin θ i + b cos θ j For å komme re oer elen må hasighe i x rening ære null i sysem S b sin θ = sin( ) b sin( ) 1 b Du kan bare klare de his du ror raskere enn elen srømmer. FYS-MEK
8 hp://pingo.upb.de/ access number: E slagskip skyer samidig o skudd mo fiendeskip. Iniialfaren er de samme for begge skudd, men inklene mo horison er forskjellige. Granaene følger de parabolske banene is. Hilke skip blir ruffe førs? skip A skip B skipene blir ruffe samidig FYS-MEK
9 Skrå kas E prosjekil skyes u fra bakkeniå med far og inkelen mo horisonale. sysem: prosjekil omgielse: luf koordinasysem: x horisonal, y erikal iniialbeingelser: r = = = cos α i + sin α j konakkrefer: lufmosand langrekkende kraf graiasjon nyig å egne hasighesekoren i fri-legeme diagram. ikke bland ekorer for hasighe og kraf! Hasighesekoren må ikke berøre syseme. FYS-MEK
10 Forenkel modell: i ser bor fra lufmosanden: (Vi inkludere lufmosanden senere.) F D y ĵ enese kraf: graiasjon: G = mgj î x Newons andre lo: Fne = G = mgj = ma a = gj i komponener: a a x y g kas uen lufmosand: ingen akselerasjon i x rening FYS-MEK
11 akselerasjon: a g ˆj iniialbeingelse: = = cos α i + sin α j hasighe: = a d = gj d = gj = gj = cos α i + ( sin α g)j i komponenform: x y ( ) ( ) cos( ) sin( ) g konsan hasighe x x sørre for små inkel men skip A ligger nærmere... FYS-MEK
12 hasighe: = gj iniialbeingelse: r ) r ( posisjon: r r = d = gj d r = 1 g j = cos α i + sin α 1 g j i komponenform: x( ) y( ) cos( ) sin( ) 1 g FYS-MEK
13 hp://pingo.upb.de/ access number: E slagskip skyer samidig o skudd mo fiendeskip. Iniialfaren er de samme for begge skudd, men inklene mo horison er forskjellige. Granaene følger de parabolske banene is. Hilke skip blir ruffe førs? skip A skip B skipene blir ruffe samidig FYS-MEK
14 posisjon som funksjon a iden: x( ) y( ) cos( ) sin( ) 1 g skipe skyer ed id = prosjekile reffer ed id 1 : y( 1 ) 1 sin( ) g sin( ) 1 g 1 sin( ) g iden 1 er korere for små inkel skip B blir ruffe førs. FYS-MEK
15 Vi har bruk oppskrifen: finn iniialbeingelser idenifiser krefer, løs beegelsesligninger... rygg meode, sikker å finne sare Argumenasjon som renger li erfaring: beegelsen i x og y rening er koble fra herandre: konsan hasighe i x rening, beegelse med konsan akselerasjon i y rening parabelbane er symmerisk: de ar like lang id å komme opp som ned jo høyere den maksimale høyden jo lengre id ar de å falle ned FYS-MEK
16 Hilken inkel bør du elge for å skye lengs mulig? kulen reffer bakken ed iden 1 : 1 sin( ) g x( ) y( ) cos( ) sin( ) 1 g x komponen a posisjon ed id 1 : x( 1) 1 cos( ) sin( )cos( ) g i derierer for å finne maksimum: dx d (cos sin ) g cos sin an 1 45 Prosjekile kommer lengs med =45. FYS-MEK
17 FYS-MEK Numerisk løsning for små idsseg : a ) ( ) ( ) ( a ) ( ) ( ) ( i Malab: for hasighe: r r ) ( ) ( ) ( r r ) ( ) ( ) ( i Malab:
18 Numerisk løsning FYS-MEK
19 [ ] Som forene kommer prosjekile lengs når i elger 45. Prosjekile kommer like lang ed og 9 : x( 1) sin( )cos( ) g men iden 1 er forskjellig FYS-MEK
20 hp://pingo.upb.de/ access number: Hilken inkel bør du elge for å komme lengs mulig his du kaser en ball fra ake a en bygning? (Vi ser forsa bor fra lufmosand.) > 45 = 45 < 45 FYS-MEK
21 Kommer prosjekile også lengs med 45 his i skyer fra en høyde h >? De er anskelig å regne u analyisk: finn id 1 når: y( 1 ) h 1 sin( ) g 1 1 sin( ) g sin g ( ) 1 h g x ) cos( ) og så må i finne maksimum... ( 1 1 De er le å gjøre numerisk: FYS-MEK
22 His du skyer fra en høyde h oer bakken: r = r = hj iniialbeingelser: y m m/s [ ] Vi kan finne den maksimale lengden ed ariasjon a : x max max m FYS-MEK
23 Skrå kas med lufmosand Vi har allerede diskuer o modeller for iskøs kraf: for små hasighe: eksempler: fallskjermhopp grus i anne... F k for sørre hasighe: F eksempler: sku a en kanonkule ballkas bil, og, fly D spesialfall: r ( ) r h ˆ j ( ) endimensjonal, ball faller ned med graiasjon, bremse a lufmosanden y G F D Lufmosandskrafen øker med hasighe il den blir like sor som graiasjonskrafen: F ne D mg ˆj akselerasjonen blir null og D ballen oppnår erminalhasighe: ay T g m meode for å finne lufmosandskoeffisien: måling a erminalhasighe D mg T FYS-MEK
24 Skrå kas med lufmosand Fri-legeme diagram: Fne = F D + G = D mgj NL: Fne = ma a = F ne m = D m gj hor x y komponener: a x d x d D m x x y a y d y d D m y x y g koble beegelse: a a, ) a a, ) x x( x y y y( x y i kan ikke løse beegelsesligningen for her komponen separa, i må løse beegelsesligninger for x og y rening samidig de gjører i bes numerisk FYS-MEK
25 Numerisk løsning for skrå kas med lufmosand Fne = F D + G = D mgj Fne = ma funksjon norm(a) beregner lengden il ekoren A norm(a) = sqr(do(a,a)) FYS-MEK
26 Numerisk løsning for skrå kas med lufmosand FYS-MEK
27 Resula D =.49 kg/m D = kg/m iniialbeingelser: h m m/s 35 prosjekile beeger seg ikke lenger på en parabel bane ikke anskelig å implemenere lufmosanden numerisk, men analyisk løsning blir mege kompliser. ha beyr lufmosand for den bese inkelen? FYS-MEK
28 [ ] x max max m obs: Vi har funne bese inkelen for gi iniialbeingelser og parameer: h,, D! FYS-MEK
29 Hilken inkel burde jeg bruke for å kase lengs fra Prekesolen? (Samme iniialhasighe og lufmosand, men h = 6 m.) [ 1 3] x max max m His høyden er sor må du bruke en mindre inkel for å komme lengs. På sluen faller ballen ned erikal oer en iss høyde er max konsan. Den enese måe å kase lenger er å øke. FYS-MEK
Newtons lover i to og tre dimensjoner
Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon
DetaljerNewtons lover i to og tre dimensjoner 09.02.2015
Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars
DetaljerNewtons lover i to og tre dimensjoner
Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +
DetaljerBevegelse i én dimensjon (2)
Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,
DetaljerGo to and use the code Hva var viktig i siste forelesning? FYS-MEK
Go o www.meni.com and use he code 65 37 7 Ha ar ikig i sise forelesning? FYS-MEK 111.1.18 1 FYS-MEK 111.1.18 Beegelse i én dimensjon ().1.18 Ukesoppgaer og oblig 1 er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/18/maeriale/maeriale18.hml
DetaljerArbeid og kinetisk energi
Arbeid og kineisk energi 6..4 oblig 5: mideis hjemmeeksamen forusening for å a slueksamen krees indiiduell innleering blir lag u mandag 3. mars innleeringsfris mandag. mars Samale mellom sudener og lærer
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 21.1.215 FYS-MEK 111 21.1.215 1 Lærebok kan henes på ekspedisjonskonore. Lenke il bealingsside: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/15/bok.hml FYS-MEK 111 21.1.215
DetaljerBetinget bevegelse
Beinge beegelse 13.0.017 FYS-MEK 1110 13.0.017 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =
DetaljerBetinget bevegelse neste uke: ingen forelesning (17. og 19.2) ingen data verksted (19. og 21.2) gruppetimer som vanlig
Beinge beegelse 0.0.04 nese ke: ingen forelesning (7. og 9.) ingen daa erksed (9. og.) grppeimer som anlig Mandag, 7.. innleering oblig 3 Mandag, 4.. ingen innleering sjanse for repeisjon FYS-MEK 0 0.0.04
DetaljerBetinget bevegelse
Beinge beegelse 15.0.016 FYS-MEK 1110 15.0.016 1 epeisjon: ball som spreer lfmosand: F D = D () normalkraf: = +k y j 0 y y > graiasjon: G = mgj nmerisk beregning: hensiksmessig alg a idsseg = 0.001 s =
DetaljerBevegelse i én dimensjon
Beegelse i én dimensjon 17.1.213 Forelesningsplan: hp://www.uio.no/sudier/emner/mana/fys/fys-mek111/13/plan213.hm FYS-MEK 111 17.1.213 1 Mekanikk Kinemaikk Dynamikk læren om beegelser uen å a hensyn il
DetaljerArbeid og kinetisk energi
Arbeid og kineisk energi 5..5 YS-MEK 5..5 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )
DetaljerKrefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013
Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger
DetaljerArbeid og kinetisk energi
Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )
DetaljerBevegelse i én dimensjon
Bevegelse i én dimensjon 15.1.214 FYS-MEK 111 15.1.214 1 Malab: mulig å bruke på egen PC med UiO lisens hjelp med insallasjon på daa-verksed eller i forkurs Forsa ledige plasser i forkurs: Fredag kl.1-13
DetaljerRepetisjon Eksamensverksted i dag, kl , Entropia
Repeisjon 30.05.016 Eksamensverksed i dag, kl. 1 16, Enropia Emneevaluering: dialogmøe nese uke (eer eksamen) a konak med meg hvis du vil være med vikig for oss å få ilbakemelding FYS-MEK 1110 30.05.016
DetaljerArbeid og kinetisk energi
Arbeid og kiisk energi..8 FYS-MEK..8 hp://pingo.upb.de/ access number: 63473 To isbåer, en med masse m og en med masse m, kjører på en friksjonsfri, horisonal, frossen innsjø. Begge båene sarer fra ro,
DetaljerArbeid og potensiell energi
Areid og poensiell energi.3.5 YS-ME.3.5 Areid-energi eorem areid:, ne d kineisk energi,, ne d ne dr d d C ne dr kureinegral langs en kure C sar i r, slu i r uˆ N uˆ N uˆ uˆ N uˆ N uˆ d d ds d d C ds mange
Detaljer, og dropper benevninger for enkelhets skyld: ( ) ( ) L = 432L L = L = 1750 m. = 0m/s, og a = 4.00 m/s.
eegelse øsninger på blandede oppgaer Side - Oppgae Vi kaller lengden a en runde for Faren il joggerne er da: A = m/s = m/s 6 6 + 48 48 = m/s = m/s 7 6 + 4 Når de møes, ar de løp like lenge Da er + 5 m
DetaljerBevegelse i én dimensjon (2)
Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer
DetaljerRepetisjon 20.05.2015
Repeisjon 0.05.015 FYS-MEK 1110 0.05.015 1 Eksamen: Onsdag, 3. Juni, 14:30 18:30 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerBevegelsesmengde og kollisjoner
eegelsesengde og kollisjoner.3.4 FYS-MEK.3.4 Konseraie krefer poensiell energi: U( r U( x, y, z konserai kraf F U y arbeid uahengig a eien x F y D C x ikke-konserai kraf FYS-MEK.3.4 Energibearing energi
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell
DetaljerRepetisjon
Repeisjon 19.05.014 FYS-MEK 1110 19.05.014 1 Eksamen: Tirsdag, 3. Jni, 9:00 13:00 Tillae hjelpemidler: Øgrim og Lian: Sørrelser og enheer i fysikk og eknikk eller* Angell, Lian, Øgrim: Fysiske sørrelser
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 11..16 Oblig e lag u. Innleeing: Tisdag, 3.. FYS-MEK 111 11..16 1 FYS-MEK 111 11..16 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin(
DetaljerE K S A M E N S O P P G A V E : FAG: FYS105 Fysikk LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
HØGSKOLEN I GDER Grisad E K S M E N S O P P G V E : FG: FYS05 Fysikk LÆRER: Per Henrik Hogsad Klasser: Dao:.09.08 Eksaensid, fra-il: 09.00 4.00 Eksaensoppgaen besår a følgende nall sider: 5 inkl forside
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 5..14 FYS-MEK 111 5..14 1 FYS-MEK 111 5..14 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin( ) ( ) cos( ) ( g y x posisjon: Skå kas
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges
DetaljerArbeid og potensiell energi
Areid og poensiell energi 7..7 YS-MEK 7..7 Areid-energi eorem areid:, v ne d kineisk energi K, K K, ne v d ne dr d d C ne dr kurveinegral langs en kurve C sar i r, slu i r uˆ N uˆ N v vuˆ v uˆ N uˆ N vuˆ
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk
DetaljerArbeid og potensiell energi
Areid og poensiell energi 6..3 YS-ME 6..3 areid:, d ne, ne dr areid-energi eorem, ineis energi: areid er ilfør meanis energi ureinegral langs en ure C sar i r slu i r os: generell ahenger areid a eien!
DetaljerSpesiell relativitetsteori
Spesiell relaivieseori 6.05.06 FYS-MEK 0 6.05.06 Einseins posulaene. Fysikkens lover er de samme i alle inerialsysemer.. Lyshasigheen er den samme i alle inerialsysemer, og er uavhengig av observaørens
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 16.1.218 FYS-MEK 111 16.1.218 1 Gruppeundersnng begynner rsdag, 23.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/18/plan218.hm Oppgaer og forelesnngene legges u på semesersden.
DetaljerArbeid og potensiell energi
Areid og poensiell energi 3.3.4 olig 5: midveis hjemmeeksamen forusening for å a slueksamen kreves individuell innlevering lir lag u mandag 3. mars innleveringsfris mandag. mars YS-ME 3.3.4 Areid-energi
DetaljerBevegelse i én dimensjon
Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.
DetaljerArbeid og kinetisk energi
Arbeid og kiik energi..3 YS-MEK..3 arbeid-energi eorem:, K K arbeid er ilfør mekanik energi. kiik energi K m arbeid generel:, (,, ) arbeid hi krafen er bare poijonahengig: d, ( ) d ( ) d alernai formulering
DetaljerPotensiell energi Bevegelsesmengde og kollisjoner
Poensiell energi eegelsesengde og kollisjoner 6.3.27 YS- MEK 6.3.27 Energidiagraer energibearing: E K U K U U du/d..5 du d du d likeekspunk U/U -.5 -. -.5 -.2 iniu i poensiell energi sabil likeekspunk
DetaljerKinematikk i to og tre dimensjoner 29.01.2014
Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 11..15 Oblig : De mangle alledie fo paameene i oppgae k) (fo å skie e pogam). En n esjon ble lag u i gå. Fellesinnleeinge i Deil: De e mulig å definee en guppe. Ski også
DetaljerØving 1: Bevegelse. Vektorer. Enheter.
Lørdagsverksed i fysikk. Insiu for fysikk, NTNU. Høsen 007. Veiledning: 8. sepember kl :5 5:00. Øving : evegelse. Vekorer. Enheer. Oppgave a) Per løper 800 m på minuer og 40 sekunder. Hvor sor gjennomsnisfar
Detaljer2. Bevegelse. Fysikk for ingeniører. Klassisk mekanikk. 2. Bevegelse. Side 2-1.
Beegelse Side - Beegelse Vi skal nå a for oss beegelse Vi skal definere de grunnleggende begrepene posisjon, hasighe (og far), og akselerasjon Dee er begrep som du benyer il daglig, men i må presisere
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
DetaljerNewtons lover i to og tre dimensjoner
Newons loe i o og e dimensjone 5..3 oblige innleees mndg kl. bel fo læeboken FYS-MEK 5..3 Beegelse i e dimensjone Beegelsen e kkeise ed posisjon, hsighe og kselesjon. Vi må buke ekoe: posisjon: i j z k
DetaljerBevegelse i én dimensjon (2)
Beegelse én dmensjon..4 Gruppeundersnng begynner denne uken. Oppger fnner du på semesersden: hp://www.uo.no/suder/emner/mn/fys/fys-mek/4/merle/merle4.hml FYS-MEK..4 Sudenrepresenner for FYS-MEK kurse lbkemeldng
DetaljerKrefter og betinget bevegelser 14.02.2013
Krefer og benge beegeler 4..3 FYS-MEK 4..3 Benge beegele beegele: r bane: r beegele lang banen: haghe: r r u r u angenalekor: far lang een: akeleraon: a u u u u angenalakeleraon: enrpealakeleraon: a a
DetaljerFiktive krefter
Fiktie krefter 5.04.013 FYS-MEK 1110 5.04.013 1 Fiktie krefter problem: Newtons loer gjelder bare i inertialsystemer hordan analyserer i en beegelse i et akselerert system? z z x y transformasjon transformasjon
DetaljerFlerpartikkelsystemer Rotasjonsbevegelser
lerparkkelsysemer Roasjonsbevegelser.4.6 Resulaer fra mveseksamen på semesersen: hp://www.uo.no/suer/emner/mana/fys/ys-mek/v6/beskjeer/fysmekmev6resula.pf YS-MEK.4.6 lerparkkelsysemer j y k neokraf på
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 6.3.5 YS-MEK 6.3.5 Meseksaen: 6.3. kl. 3 6 oppgaer a sae ype so ukesoppgaer (kke sor prosjekoppgae so oblgene en oppgae kreer e le sykk Malab eller Pyhon kode
DetaljerFYSIKK-OLYMPIADEN 2012 2013
Norsk Fysikkærerforening Norsk Fysisk Seskaps faggruppe for underisning FYSIKK-OLYMPIADEN 0 0 Andre runde: 7/ 0 Skri øers: Nan, fødsesdao, e-posadresse og skoens nan Varighe: kokkeimer Hjepemider: Tabe
DetaljerLøsningsforslag eksamen TFY des 2013
Løsningsforslag eksamen TFY416 18 des 1 Ins for fysikk, NTNU Oppgae 1 a) Toal mekanisk energi er bear når sylinderne ruller ned skråplane fordi de kun er konseraie krefer som irker. Den oale mekaniske
DetaljerFiktive krefter
Fiktie krefter 8.04.014 FYS-MEK 1110 8.04.014 1 Fiktie krefter proble: Newtons loer gjelder bare i inertialsysteer hordan analyserer i en beegelse i et akselerert syste? z z x y transforasjon transforasjon
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 7.3.4 YS-EK 7.3.4 YS-EK 7.3.4 Kollsjoner bearng a beegelsesengde:,,,, p p p p elassk kollsjon bearng a energ,,,,,,,,,, fullsendg uelassk kollsjon:,,,,,, resusjonskoeffsen:
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerRotasjonsbevegelser
Roasjonsbevegelser 3.3.4 FYS-EK 3.3.4 assesener y r V R rd r( r) dv V d R V d V d R z x Newons. lov: F ex d P d V yre kraf: akselerasjon l assesenere ndre krefer: ngen påvrknng på assesenere FYS-EK 3.3.4
DetaljerStyringsteknikk. Kraner med karakter. ABUS kransystemer målrettet krankjøring. setter ting i bevegelse. Kransystemer. t t v. max.
Kraner med karaker max. 0 ABUS kransysemer målree krankjøring Syringseknikk Kransysemer seer ing i beegelse Konakorsyre moorer den raskese eien fra A il B Erfarne kranførere er forrolig med oppførselen
DetaljerØving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagserksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 22. september kl 2:5 5:. Øing 3: Impuls, beegelsesmengde, energi. Bearingsloer. Oppgae a) Du er ute og sykler på en stor parkeringsplass.
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerKinematikk i to og tre dimensjoner
Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger
DetaljerRotasjonsbevegelser 13.04.2015
Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen
DetaljerBevegelsesmengde og kollisjoner Flerpartikkelsystemer
eegelsesengde og kollsjoner lerparkkelsyseer 07.04.06 esealuerng: hps://neskjea.uo.no/answer/7744.hl YS-EK 0 07.04.06 YS-EK 0 07.04.06 Kollsjoner,, 0, p p p p elassk kollsjon bearng a energ,,,, ) ( ) (
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 16.0.017 ingen gruble-gruppe inntil iere FYS-MEK 1110 16.0.017 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor:
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerKap 5 Anvendelser av Newtons lover
Kap 5 Anendelser a Newtons loer 5.7 En stor kule holdes på plass a to lette stålkabler. Kulens asse er 49 kg. a) este strekket (kraften) T i kabelen so danner en inkel på 4 ed ertikalen. b) este strekket
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 7..13 innleveing: buk iktige boks! FYS-MEK 111 7..13 1 Skått kast kontaktkaft: luftmotstand langtekkende kaft: gavitasjon initialbetingelse: () v() v v cos( α ) iˆ +
DetaljerRepetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
DetaljerFiktive krefter
Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 18.0.015 FYS-MEK 1110 18.0.015 1 Betinget beegele beegele: r (t) bane: r () beegele lang banen: (t) hatighet: r r ( t) uˆ ( t) t t r uˆ tangenialektor: ( t) art lang eien: (
DetaljerVåren Ordinær eksamen
Våren - Ordinær ekaen. Vi enker a en parikkel beeger eg lang en re linje (-aken. Parikkelen arer i r i pijn =. ed iden =. Parikkelen haighe funkjn a iden er gi ed: ( hr.. a eregn parikkelen akelerajn a
DetaljerFAG: FYS117 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS7 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 Ekaenid, fra-il: 9.. Ekaenoppgaen beår a følgende Anall
DetaljerFYS3220 Oppgaver om Fourieranalyse
FYS3220 Oppgaver om Fourieranalyse Innhold Enkle fourieranalyse oppgaver... 1 1) egn frekvensspeker for e sammensa sinus signal... 1 2) Fra a n og b n il c n og θ... 2 Fourier serieanalyse... 2 3) Analyse
DetaljerFAG: FYS105 Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNVERSTETET AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS5 Fyikk LÆRER: Fyikk : Per Henrik Hogad Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenogaen beår a følgende Anall ider: 4 inkl. foride Anall
DetaljerPotensiell energi Bevegelsesmengde
Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
Detaljert [0, t ]. Den er i bevegelse langs en bane. Med origo menes her nullpunktet
FAO 9 Forberedelse il skoleprøve Del Prakisk bruk av inegral Oppgave parikkelfar Hasigheen il en parikkel ved iden er gi ved v () = i m/min. Tiden er ( + ) + regne i min, for angivelse av posisjon. [,
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerFAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad
UNIVESITETET I AGDE Grimsd E K S A M E N S O P P G A V E : FAG: FYS Fysikk LÆE: Fysikk : Per Henrik Hosd Klsse(r): Do:.. Eksmensid, fr-il: 9. 4. Eksmensoppen besår følende Anll sider: 4 (inkl. forside)
DetaljerTFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18
TFY4104 Fysikk Eksamen 18. desember 2013 Side 1 av 18 1) Panamagikkoffisiel over frausgallons il lier den30. apriliår. Bensinprisenvardaca4USdollar prus gallon. Hva ilsvarer dee i kroner prlier, når 1
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 4..4 Samale mellom uener og lærer i y-mek : orag, 7.eb., kl. 4:, rom Ø443 YS-MEK 4..4 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N :
DetaljerBevegelsesmengde og kollisjoner
eegelsesengde og kollisjoner 4.4.6 Midteisealuering: https://nettskjea.uio.no/answer/7744.htl Oblig 4: nye initialbetingelser i oppgaedel i og j FYS-MEK 4.4.6 Konseratie krefter potensiell energi: U r
DetaljerBetinget bevegelse og friksjon
Betinget beegele og rikjon 1.0.014 nete uke: ingen orelening (17. og 19.) ingen ata erkte (19. og 1.) gruppetimer om anlig Manag, 17.. innleering oblig 3 Manag, 4.. ingen innleering jane or repetijon FYS-MEK
DetaljerLøsning: V = Ed og C = Q/V. Spenningen ved maksimalt elektrisk felt er
Gruppeøving 6 Elekrisie og magneisme Flervalgsoppgaver 1. Dersom en kondensaor har en kapasians på på 7.28 µf, hvor mye må plaene lades opp for a poensialdifferansen mellom plaene skal bli 25.0 V?. 15
DetaljerLøsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk øsningsforslag til eksamen FY0001 Brukerkurs i fysikk Torsdag 3 juni 2010 Oppgae 1 a) His i elger nullniå for potensiell energi ed bunnen a skråningen, har du i utgangspunktet
DetaljerFAG: FYS116 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVERSITETET I AGDER Griad E K S A M E N S O P P G A V E : FAG: FYS6 Fikk/Kjei LÆRER: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:.. Ekaenid, fra-il: 9. 4. Ekaenoppgaen beår a følgende Anall
DetaljerRepetisjonsoppgaver kapittel 3 - løsningsforslag
Repetisjonsoppgaer kapittel 3 - løsningsforslag Krefter Oppgae 1 a) De tre setningene er 1. En kraft irker på et legeme fra et annet legeme.. En kraft som irker på et legeme, kan endre beegelsen til legemet
DetaljerForelesning nr.9 INF 1410
Forelesning nr.9 INF 141 29 espons il generelle C- og -kreser 3.3.29 INF 141 1 Oversik dagens emaer Naurlig espons respons il generelle C- og -kreser på uni-sep funksjonen Naurlig og vungen respons for
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerLøsningsforslag til eksempeloppgave 2 i fysikk 2, 2009
Fysikk Eksempeloppgae Løsningsfoslag il eksempeloppgae i fysikk, 9 Del Oppgae Rikige sa på flealgsoppgaene a x e: a) C b) D c) B d) C e) C f) D g) C h) D i) B j) C k) A l) B m) A n) D o) B p) D q) D )
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerFiktive krefter
Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L
DetaljerKeplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
DetaljerFYS 105 Fysikk Ordinær eksamen vår 2005
FYS 5 Fyikk Ordinær ekaen år 5. En bil kjører lang en re linje (-aken og paerer origo ed haigheen 7. k/h ( =. / i poii -rening ed iden =. Haigheen o unkjon a iden er gi ed: hor (.6. a ee bilen akelerajon
DetaljerArbeid og kinetisk energi
Arbei og kineik energi 9..6 YS-MEK 9..6 rikjon empirik lo or aik rikjon:, ma N : aik rikjonkoeiien empirik lo or ynamik rikjon: N : ynamik rikjonkoeiien kra irker moa beegelerening: N YS-MEK 9..6 hp://pingo.upb.e/
DetaljerFysikkonkurranse 1. runde november 2001
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for underisning Fysikkonkurranse. runde 5. - 6. noember 00 Hjelpemidler: Tabeller og formler i fysikk og matematikk Lommeregner Tid: 00 minutter
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
DetaljerFiktive krefter. Gravitasjon og ekvivalensprinsippet
iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en
DetaljerLGU11005 A Naturfag 1 emne 1
Indiiduell skriftlig eksamen i LGU11005 A Naturfag 1 emne 1 ORDINÆR EKSAMEN: 4.12.2013 BOKMÅL Sensur faller innen: 6.1.2014 Resultatet blir tilgjengelig på studentweb første irkedag etter sensurfrist,
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:
DetaljerNewtons tredje lov. Kinematikk i to og tre dimensjoner
Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerFAG: FYS115 Fysikk/Kjemi LÆRER: Fysikk : Per Henrik Hogstad Kjemi : Turid Knutsen
UNIVRSITTT I AGDR Griad K S A M N S O P P G A V : FAG: FYS5 Fikk/Kjei LÆRR: Fikk : Per Henrik Hogad Kjei : Turid Knuen Klaer: Dao:..3 kaenid, fra-il: 9. 4. kaenoppgaen beår a følgende Anall ider: 6 inkl.
Detaljer