Newtons tredje lov. Kinematikk i to og tre dimensjoner

Størrelse: px
Begynne med side:

Download "Newtons tredje lov. Kinematikk i to og tre dimensjoner"

Transkript

1 Newons ede lo Knemkk o og e dmensone husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK

2 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende e lld lk, og mos ee. f A på B f B på A Newons ede lo fobnde kefe mellom legeme: Hs eg de på eggen, de eggen lbke på meg med lke so kf. essensell fo å beske sseme som beså flee legeme kefe komme p: kf og mokf kefene pe ke på foskellge legeme YS-MEK

3 Eksempel: En kloss lgge o på bkken. N f J på K Oppskf: kloss egn lle legeme som sepe sseme fnn lle kefe på lle obeke W f K på J ukk kefene som A på B fnn kf mokf p sekk: he kf h en unk mokf W f J på K oden N f K på J YS-MEK

4 Eksempel N f B på A 2 sblee klosse N f J på B A B W f J på A W f A på J W f B på J N f A på B oden W f J på B N f B på J I pkss egne dgmme be fo de legemene e neesse beegelsen. V klle esen omgelse og egne kke kefene på omgelsen. YS-MEK

5 Eksempel: Mnn som gå beegelse femoe på gunn fksonskf: mnnen de oden bkoe oden de mnnen femoe YS-MEK

6 Eksempel: knemsk bengelse: ble e konk B B B A A A L En bl de en lsebl med konsn kf. A N A B på A B A på B N B W A W B N2L fo A: m m A A N A m B på A A g N2L fo B: m m B B N A på B B m B g N3L: B på A A på B ma mb B på A A på B B på A A på B Ssem oppføe seg som e legeme med msse m A m B V enge kke se på nde kefe, be på kefe mellom sseme og omgelsen. YS-MEK

7 Eksempel m K En knne ekke på en kse med en sno. V dele ssem o legeme: kse og sno N K T S på K T K på S W S W K V se kun på beegelse enng. Knemsk bengelse: snoen e sm: S K N2L kse: m N2L sno: N3L: T T S på K S på K ms T T K T S på K K på S K på S T T K på S T m K m m S K T T m S << m T K msseløs sno YS-MEK

8 Beegelse o og e dmensone YS-MEK

9 Beegelsesdgm o dmensone he e beegelsen odmensonl kn beske posson med med enhesekoe, 1 YS-MEK z k z possonseko e dmensone: fo eksempel 18.9m 29.8m 1.s

10 odmensonl beegelsesdgm: nlsee beegelsen dee: hsghe? kseleson? kn se på og he fo seg hsghe og kseleson og enng: YS-MEK , d d d d, d d d d

11 gennomsnshsghe: henge. momennhsghe: lm YS-MEK lm

12 hsgheseko: lm k z d d k z d d k d dz d d d d hsghe: f: YS-MEK kselesonseko: lm k z d d k d d z k d d d d d d z

13 4 s 5 s 3 s 6 s 7 s 2 s s 1 s s m 15m 1s 19.3 m 15.9 m 2s 34.1 m 22.3m.5s 19.3 m/s.9 m/s 1s 14.8 m/s.5s 6.4 m/s 4.5 m/s 5.5 m/s 2 2 YS-MEK

14 Beegnngslgnnge e dmensone L oss n h g og kku de smme som én dmenson be må buke ekoe og de e gldg fo he komponen YS-MEK

15 Eksempel: En kf 1 N 2 N ke på en kse som så på en skåpln med hellngsnkel θ2. Hlke kf ke lngs plnen? V buke elemenæ geome: α α θ nα ' ' cos α θ len: V fnne føs enhesekoe koodnssem S cosθ snθ snθ cosθ ' ' ' sn α θ ' cosθ snθ N YS-MEK

16 Eksempel: E fl beege seg med konsn f på 5 km/h og en nkel på 3 mo hosonen. H e possonen ee 2 s? V beske possonen l fle med en eko ho ksen lgge hosonl og ksen ekl enng. Ved s e possonen. smmenheng mellom f og hsghe: fnne hsghesekoen geomesk: cos θ 5 km/h cos3 25 km/h snθ 5 km/h sn3 433km/h løse beegelseslgnng: d 25km/h 433km/h 2s 139m 246m YS-MEK

17 Vekoe pogmme - eksempel Du h mål hsgheen og enng som funkson den og skee esulene en bell. nn possonen. 1, n n n YS-MEK

18 Relbeegelse og efensesseme En peson se en åpen bl og kse en bll e opp. Hodn l en nnen peson som så på gen beske beegelsen? V se bo f lufmosnd. Se f blen ssem S : bllen beege seg e opp og flle e ned gen. Se f gen ssem S: beegelsen beskes som en skå ks S R S ' posson ge-ssem S: posson bl-ssem S : ' posson blen ge-ssem: R R ' YS-MEK

19 S R S ' R ' d d dr d ' R ' u ' d d d d d d d' u ' ' d d d Blen beege seg med konsn hsghe u kselesonene e de smme begge sseme. Sseme som beege seg med konsn hsghe e nelsseme. Newons loe e gldg fskken e de smme begge sseme. Hodn beske beegelsen bllen? f blen ssem S : enese kf e gson nlbengelse: f gen ssem S: enese kf e gson nlbengelse: u ' u YS-MEK

20 Eksempel: Du se e og som køe 36 km/h og du se på e helkope. o deg se de u som helkopee beege seg e opp med konsn hsghe f bkken l en bo som e 1 m hø. De 2 s. H e hsgheen l helkopee se f bkken? S R S ' koodnssem fese l oge e S koodnssem fese på bkken e S hsghe oge ssem S: u dr d 36 km/h 1 m/s hsghe helkopee ssem S : 1 m ' 5 m/s 2s hsghe helkopee ssem S: u ' 1 m/s 5 m/s 1 m/s 5 m/s m/s YS-MEK

21 Eksempel: Du o en bå oe en el. Elen sømme med hsghe. Hlken nkel bø du holde fo å komme e oe elen? Ssem fese på elebedden: S Ssem fese l nne: S hsghe nne ssem S: hsghe båen ssem S : hsghe båen ssem S: u b b sn θ b u b b cos θ b sn θ b cos θ Hs du skl komme e oe elen, så må du kke h hsghe enng ssem S sn θ b snθ b sn θ 1 b Du kn be kle de hs du o skee enn elen sømme. YS-MEK

Kinematikk i to og tre dimensjoner 29.01.2014

Kinematikk i to og tre dimensjoner 29.01.2014 Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..3 oblige innleees mndg kl. bel fo læeboken FYS-MEK 5..3 Beegelse i e dimensjone Beegelsen e kkeise ed posisjon, hsighe og kselesjon. Vi må buke ekoe: posisjon: i j z k

Detaljer

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12.

BASISÅR I IDRETTSVITENSKAP 2010/2011. Utsatt individuell skriftlig eksamen. 1BA 111- Bevegelseslære 2. Mandag 22. august 2011 kl. 10.00-12. BASISÅR I IDRETTSVITENSKAP 1/11 Us indiiduell skiflig eksmen i 1BA 111- Beegelseslæe Mndg. ugus 11 kl. 1.-1. Hjelpemidle: klkulo og elle i fysikk Eksmensoppgen eså 3 side inklude fosiden Sensufis: 1. sepeme

Detaljer

Krefter og betinget bevegelser 14.02.2013

Krefter og betinget bevegelser 14.02.2013 Krefer og benge beegeler 4..3 FYS-MEK 4..3 Benge beegele beegele: r bane: r beegele lang banen: haghe: r r u r u angenalekor: far lang een: akeleraon: a u u u u angenalakeleraon: enrpealakeleraon: a a

Detaljer

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner

[ ] [ ] [ ] [ ] [ ] [ ] [ ] Kap 03 Bevegelse i to eller tre dimensjoner Kp Beegele o elle e denone. Ben SRel/SVdeo l å ulee følgende pkkel-beegele udee hghe og keleon -d: Sulengen fnne du på fgden elg Vdeo elle h denne URL-deen: hp://gd.u.no/pehh/phh/mric/srel/no/srelp/aa_/srel_phc_k_vel

Detaljer

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS121 Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVERSITETET I GDER Gad E K S M E N S O P P G V E : FG: FYS Fkk LÆRER: Fkk : Pe Henk Hogad Klae: Dao:.5. Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: Tllae

Detaljer

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold

FAG: FYS120 Fysikk LÆRER: Fysikk : Per Henrik Hogstad Margrethe Wold UNVEEE DE ad E K M E N O P P V E : F: FY Fkk ÆE: Fkk : Pe Henk Hogad Magehe Wold Klae: Dao:..5 Ekaend, fa-l: 9.. Ekaenoppgaen beå a følgende nall de: 6 nkl. fode nall oppgae: nall edlegg: llae hjelpedle

Detaljer

Newtons lover i to og tre dimensjoner 09.02.2015

Newtons lover i to og tre dimensjoner 09.02.2015 Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars

Detaljer

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten.

(b) Ekmanstrøm: Balanse mellom friksjonskraft og Corioliskraft. der ν er den kinematiske (eddy) viskositeten. Oppgae 1. Fgu 6.11 læeboka se den nodgående enegfluksen atosfæen ( petawatt esus beddegad på den nodlge halkulen (opp tl 75 gade, ålg dlet. Fguen se også egne plott fo tansente edde, totalt bdag fa edde

Detaljer

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013

Krefter og betinget bevegelser Arbeid og kinetisk energi 19.02.2013 Krefer og beinge beegelser Arbeid og kineisk energi 9..3 YS-MEK 9..3 obligaoriske innleeringer programmering er en esenlig del a oppgaen i kan ikke godkjenne en innleering uen programmering analyiske beregninger

Detaljer

Potensiell energi Bevegelsesmengde

Potensiell energi Bevegelsesmengde Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14.

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Øving 9. Veiledning: 18. oktober. Innleveringsfrist: 23. oktober kl 14. TFY404 Fysikk. Institutt fo fysikk, NTNU. Høsten 203. Øving 9. Veiledning: 8. oktobe. Innleveingsfist: 23. oktobe kl 4. Oppgve ) Figuen vise et unifomt elektisk felt (heltukne linje). Lngs hvilken stiplet

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.

Detaljer

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME

EKSAMEN I EMNE TFE 4120 ELEKTROMAGNETISME Noges teknisk ntuitenskpelige uniesitet Institutt fo elektonikk og telekommuniksjon ide 1 8 Bokmål/Nynosk Fglig/fgleg kontkt unde eksmen: Johnnes k (48497352) Hjelpemidle: C - pesifisete tykte og håndskene

Detaljer

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk

bedre læring Handlingsplan for bærumsskolen mot 2020 Relasjons- og ledelseskompetanse/vurdering for læring/digital didaktikk bee læng Hanlngsplan fo bæumsskolen mo 2020 Relasjons- og leelseskompeanse/vueng fo læng/gal akkk fe uvklngsomåe skolemelngen pesenee fe uvklngsomåe Længsoppage Den ykge læe bee læng Skolemelng fo bæumsskolen

Detaljer

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23

Kap. 23 Elektrisk potensial. Eks. 1, forts. av: Hvor stor er 1 coulomb? Kap 23 Kp 23 Kp. 23 Elektsk potensl Skl defnee på gunnlg v elektsk felt E: Elektsk potensell eneg, U Elektsk potensl, V (Ketsteknkk: El. potenslfoskjell spennng) Aed keves fo å føe smmen ldnnge Påføt ed g potensell

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S =

Løsningsforslag TFE4120 Elektromagnetisme 24. mai = 2πrlɛE(r) = Q innenfor S = Norges teknisk nturvitenskpelige universitet Institutt for elektronikk og telekommuniksjon Side 1 v 5 Løsningsforslg TFE4120 Elektromgnetisme 24. mi 2011 Oppgve 1 ) Av symmetrigrunner må det elektriske

Detaljer

Bevegelse i én dimensjon

Bevegelse i én dimensjon Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges

Detaljer

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering

SERVICEERKLÆRING 1. Innledning 2. Demokrati, samarbeid og medvirkning 3. Generell informasjon 4. Internasjonalisering SERVICEERKLÆRING 1. Innlednngg 2. Demokt, smbed og medvknng 3. Geneell nomsjon b 4. Intensjonlseng e 5. Studestt 6. Studegjennomøngen 7. Bblotek 8. IT l 9. Studentveled 1. Innlednng g 2. Demokt, smbed

Detaljer

Løsning øving 9 ( ) ( ) sin ( )

Løsning øving 9 ( ) ( ) sin ( ) nsttutt fo fskk, NTNU Fg SF 4 Elektomgnetsme og MNFFY Elektstet og mgnetsme Høst Løsnng øvng 9 Oppgve Ktesske koodnte: Enhetsvektoen stå nomlt på, som dnne en vnkel med -ksen. Det et t dnne en vnkel med

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loer i o og re dimensjoner 3..4 Innleering: på papir på ekspedisjonskonore: bruk forsiden elekronisk på froner én pdf fil nan på førse side egenerklæring med signaur innleeringsboks på ekspedisjon

Detaljer

Leif Agaard Ole Christian Moen. Re: Formannsliste OSS

Leif Agaard Ole Christian Moen. Re: Formannsliste OSS ef d Oe Chn Men Re mnne OSS Sm de fem de ede ene mk. "" "B" mne f fmenn ene 1891, 190 197. Medemnb beke m eedende, d de kn eee e enen de ep. me ee kendee u. en ke deuen mme. (bunde h knke nen bede?) 188

Detaljer

Friluftsleir. Sommerferieaktiviteter. Male på vann

Friluftsleir. Sommerferieaktiviteter. Male på vann N. 6 Jni 2014 19. ågang Filfslei Sommefeieakiviee Male på vann In o nh ld Filfslei Kjæe lese! Nå så sommeen fo døen, og da e de ekke aangemen d kan dela på! Hva med filfslei med mange gøye akiviee? D kan

Detaljer

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad

FAG: FYS Fysikk LÆRER: Fysikk : Per Henrik Hogstad UNIVEITETET I GDE Gid E K M E N O G V E : FG: FY Fikk LÆE: Fikk : e Henik Hogd Kle: Do:.5.6 Ekenid, f-il: 9. 4. Ekenoppgen beå følgende nll ide: 6 inkl. foide nll oppge: 4 nll edlegg: Tille hjelpeidle

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsoslg kpittel 3 3.1 ) Uttykket o (den konigusjonelle) entopien S e gitt ved S k ln W, de W uttykke ntll skillbe mikotilstnde. Siden kystllen inneholde n vknse odelt ove N N! N! tomplsse e W og S

Detaljer

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdgsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 007. Veiledning: 9. september kl 1:15 15:00. Øving 4: oulombs lov. Elektrisk felt. Mgnetfelt. Oppgve 1 (Flervlgsoppgver) ) Et proton med hstighet

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 11..15 Oblig : De mangle alledie fo paameene i oppgae k) (fo å skie e pogam). En n esjon ble lag u i gå. Fellesinnleeinge i Deil: De e mulig å definee en guppe. Ski også

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newons loe i o og e dimensjone 5..14 FYS-MEK 111 5..14 1 FYS-MEK 111 5..14 Skå kas uen lufmosand akseleasjon: g y x ) sin( ) ( ) cos( ) ( j g a ˆ hasighe: 1 ) sin( ) ( ) cos( ) ( g y x posisjon: Skå kas

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x.

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1 En funksjon f er gitt ved f ( x) ( x 2) e x. UNIVERSITETET I BERGEN De maemaisk-nauvienskapelige fakule Eksamen i emne MAT Bukekus i maemaikk Fedag 8 febua, kl 9-4 BOKMÅL Tillae hjelpemidle: Læebok og kalkulao i samsva med fakulee sine egle Oppgave

Detaljer

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn

Modul 1 15 studiepoeng, internt kurs Notodden/Porsgrunn Høgskole i Telemk Avdelig fo estetiske fg, folkekultu og læeutdig BOKMÅL 4. mi 007 EKSAMEN I MATEMATIKK 3 Tid: 6 time Modul 5 studiepoeg, itet kus Notodde/Posgu Oppgvesettet e på 7 side (ikludet fomelsmlig).

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s

Detaljer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer

Bevegelsesmengde og kollisjoner Flerpartikkelsystemer eegelsesengde og kollsjoner lerparkkelsyseer 6.3.5 YS-MEK 6.3.5 Meseksaen: 6.3. kl. 3 6 oppgaer a sae ype so ukesoppgaer (kke sor prosjekoppgae so oblgene en oppgae kreer e le sykk Malab eller Pyhon kode

Detaljer

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar.

Øving 6. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme. Veiledning: Uke 7 Innleveringsfrist: Mandag 19. februar. Institutt fo fsikk, NTNU TFY4155/FY1003: Elektisitet og mgnetisme Vå 2007 Veiledning: Uke 7 Innleveingsfist: Mndg 19. febu Øving 6 Oppgve 1 z Figuen ove vise en gussflte (dvs lukket flte) S fomet som en

Detaljer

Levanger kommune, Foreløpig registrering, pr. 9. des. 2005

Levanger kommune, Foreløpig registrering, pr. 9. des. 2005 240.001 Levanger og Frosta, PPT Klienter A F ca. 1964 ca. 1984 404.6.6 362 240.002 Levanger og Frosta, PPT Klienter G K ca. 1965 ca. 1985 404.6.6 363 240.003 Levanger og Frosta, PPT Klienter L R ca. 1966

Detaljer

14.1 Doble og itererte integraler over rektangler

14.1 Doble og itererte integraler over rektangler Kapittel Mltiple Integals I dette apitlet sal i se på integale a fnsjone a to aiable f og a te aiable f z.. Doble og iteete integale oe etangle Vi ønse å integee en ontinelig fnsjon f oe et etangel. :

Detaljer

Newtons lover i én dimensjon

Newtons lover i én dimensjon Newtons love i én dimensjon 4.01.013 kaft akseleasjon hastighet posisjon YS-MEK 1110 4.01.013 1 Hva e kaft? Vi ha en intuitivt idé om hva kaft e. Vi kan kvantifisee en kaft med elongasjon av en fjæ. Hva

Detaljer

Rotasjonsbevegelser 13.04.2015

Rotasjonsbevegelser 13.04.2015 Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen

Detaljer

DEN NORSKE MEDIEFESTIVAL. TV-dekning av Tippeligaen LANDSOMFATTENDE OMNIBUSS 8. - 10. APRIL 2002

DEN NORSKE MEDIEFESTIVAL. TV-dekning av Tippeligaen LANDSOMFATTENDE OMNIBUSS 8. - 10. APRIL 2002 DEN NORSKE MEDEFESTVAL TV-dekning av Tippeligaen LANDSOMFATTENDE OMNBUSS 8. - 10. APRL 2002 n i \ 1 fl i! : \. \, l Begen: Tlf5554 1050 Fax 55541051 Postadesse: Pb 714, Sentum 5807 Begen Besøksadesse:

Detaljer

Prop. 65 L (2012-2013) Endringer i åndsverkloven (tiltak mot krenkelser av opphavsrett m.m. på Internett)

Prop. 65 L (2012-2013) Endringer i åndsverkloven (tiltak mot krenkelser av opphavsrett m.m. på Internett) Nosk mal: Saside (ilak mo kenkelse av opphavse m.m. på Inene) Sian Fagenæs og Espen Anebeg Bøse Opphavsesfoeningen elg. 1 Poposisjon om ilak mo opphavseskenkelse på Inene Inngå som del av helhelig evisjon

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt

Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt Hdn bd md mny 46-53% Rø snm/ sommol od.ps 74,84,/ f fsdsn jld Tlbd -onsd mnd 55% 7 od.ps 17,/s Nyll yllnlå Gndos Snd spm f msp so l so l % 50-57% GJELDER HELE APRIL 1 od.ps 32,/s GRØNNSAKER OG URTER od.ps

Detaljer

n_angle_min.htm

n_angle_min.htm Kp 9 Rotjon 9.1 En ptikkel beege eg i en ikelbne ed kontnt inkelhtighet lik 1. -1. Siule, ål og beegn ho to inkel diuekto h beeget eg i løpet.. Mek: Mek i checkboken D lik t du ende iuleingen f 3D til

Detaljer

Knøttene: Med barnet i sentrum

Knøttene: Med barnet i sentrum Knttene: Med brnet i sentrum Om oss: Læringsverkstedet Knttene brnehge er en 2-bse brnehge, med 5 lders-delte brnegrupper. Brnehgen er privt og hr c 110 plsser. På Knttene legger vi vekt på: Omsorg/vennskp

Detaljer

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A

Midtsemesterprøve onsdag 7. mars 2007 kl Versjon A Institutt fo fysikk, NTNU FY1003 lektisitet og mgnetisme I TFY4155 lektomgnetisme Vå 2007 Midtsemestepøve onsdg 7. ms 2007 kl 1300 1500. Løsningsfoslg. Vesjon 1) Hvilken påstnd om elektisk potensil e feil?

Detaljer

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator

Emnekode: LO270 B. Dato: 27.05.04 Eksamenstid: 09.00 - - I ~ ~ ~~ ~ k.. Enkel ikke-programmerbar kalkulator G høgskolen i oslo nne: Mterillære og husbyggingsteknikk Gruppe(r): BC, BB ogtba Emnekode: LO270 B Fglig veiieder:- Morten Opshl. Dto: 27.05.04 Eksmenstid: 09.00 - Eksmensoppgven består v: r- : -- Antll

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner.3.4 YS-MEK.3.4 Energidiagraer energibearing: E K K d d d d likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell energi usabil likeekspunk

Detaljer

Oppgaven dekker ideell opamp, bodeplot og resonans.

Oppgaven dekker ideell opamp, bodeplot og resonans. Lønngfrlg fr ktvt flter gve FYS3 H9 Uke 4 H.Blk Aktvt flter Ogven ekker eell m, elt g renn. Dette flteret er ert å en relerng v et Sllen ey flter. Ref : Sllen, R. P.; E. L. ey 955-3. "A Prtl Meth f Degnng

Detaljer

Løsningsforslag FY105-eksamen 15. januar 2004

Løsningsforslag FY105-eksamen 15. januar 2004 Løsgsfoslag FY5-esae 5. jaua 4 Oppgae a) Newos.lo på losse g x x x+ x ed få x+ x Isa x() dffeesallgge: A s( + ϕ) + As( + ϕ) so se a x () As( ϕ) + e e løsg. Fa x ( ) Asϕ ϕ få : x() () A b) Toaleege l sysee

Detaljer

Kap. 23 Elektrisk potensial

Kap. 23 Elektrisk potensial Kp. 23 Elektisk potensil Skl definee på gunnlg v elektisk felt E: Elektisk potensiell enegi, U Elektisk potensil, V (Ketsteknikk: El. potensilfoskjell = spenning) Potensilgdient og elektisk felt. Ekvipotensilflte

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

Newtons lover i to og tre dimensjoner

Newtons lover i to og tre dimensjoner Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 8. a = e m E TFY414 Fysikk. Institutt for fysikk, NTNU. Høsten 16. Løsningsforslg til øving 8. Oppgve 1. ) C F = E = m Newtons. lov. Her er = e, så elektronets kselersjon blir = e m E ltså mot venstre. b) C Totlt elektrisk

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVEITETET I DE imsa E K M E N O P P V E : : M-9 Maemaikk LÆE: Pe enik ogsa Klasse: Dao:.. Eksamensi a-il: 9.. Eksamensoppgaen beså a ølgene nall sie: 6 inkl. osie elegg nall oppgae: nall elegg: Tillae

Detaljer

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.

Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler. Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor

Detaljer

Bevegelse i én dimensjon (2)

Bevegelse i én dimensjon (2) Beegelse i én dimensjon () 5..6 Daa-lab i dag: Hjelp med Pyhon / Malab insallasjon Førse skri Oblig er lag u: hp://www.uio.no/sudier/emner/mana/fys/fys-mek/6/maeriale/maeriale6.hml Innleeringsfris: Tirsdag,

Detaljer

Gravitasjon og planetenes bevegelser. Statikk og likevekt

Gravitasjon og planetenes bevegelser. Statikk og likevekt Gavtasjon og planetenes bevegelse Statkk og lkevekt 05.05.04 FYS-MEK 0 05.05.04 Ekvvalenspnsppet gavtasjonelle masse = netelle masse F G m m F ma på joden: F hvo: mg m g G R J J Galleo: Alle legeme falle

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Løsningsforslag til øving 11

Løsningsforslag til øving 11 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn

Detaljer

R1 kapittel 1 Algebra

R1 kapittel 1 Algebra Løsninger til oppgvene i ok R1 kpittel 1 Alger Løsninger til oppgvene i ok Oppgve 1.1 1 8 4 ( ) 15 5 (4 ) 7 1 7 ( ) d ( )( ) ( 4)( ) ( ) ( 4) ( )( 1) Oppgve 1. 49 7 ( 7)( 7) 5 5 5 5 1y 75 (4y 5) ( y) 5

Detaljer

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e

I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a

Detaljer

R2 - Heldagsprøve våren 2013

R2 - Heldagsprøve våren 2013 Løsningsskisser HD R R - Heldgsprøve våren 0 Løsningsskisser Viktigste oppsummeringer: Må skrive med penn på eksmen! Slurv og regnefeil, både med tll og bokstver, er hovedproblemet. Beste måten å fikse

Detaljer

Løsningsforslag til øving 9 OPPGAVE 1 a)

Løsningsforslag til øving 9 OPPGAVE 1 a) Høgskole i Gjøvik vd for ek, øk og ledelse aemaikk 5 Løsigsforslag il øvig 9 OPPGVE ) Bereger egeverdiee: de I) ) ) ) Egeverdier: og ) ) Bereger egevekoree: vi ivi ii) vi ed λ : ) ) v Velger s som gir

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

Bjerkreim kyrkje 175 år. Takksemd. Tekster av Trygve Bjerkrheim Musikk av Tim Rishton

Bjerkreim kyrkje 175 år. Takksemd. Tekster av Trygve Bjerkrheim Musikk av Tim Rishton Bjerkreim kyrkje 175 år Takksemd Tekster av Trygve Bjerkrheim Musikk av Tim Rishton Takk for det liv du gav oss, Gud 5 5 Takk for det liv du gav oss, Gud, Hi-mlen som hvel - ver seg 5 5 9 9 o - ver! Takk

Detaljer

Inn led ning...13 Bo kens inn hold og opp byg ning...16. For plik tel ses ba sert ver sus kon troll ori en tert HR... 23 Hva er så ef fek tiv HR?...

Inn led ning...13 Bo kens inn hold og opp byg ning...16. For plik tel ses ba sert ver sus kon troll ori en tert HR... 23 Hva er så ef fek tiv HR?... Innhold Ka pit tel 1 Inn led ning...13 Bo kens inn hold og opp byg ning...16 Del 1 HR som kil de til lønn som het... 21 Ka pit tel 2 For plik tel ses ba sert ver sus kon troll ori en tert HR... 23 Hva

Detaljer

FAG: MA-209 Matematikk 3 LÆRERE: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRERE: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gimsad E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk ÆRERE: Pe Heik Hogsad Klasse: Dao: 9.5.9 Eksamesid fa-il: 9. 4. Eksamesoppgave beså av følgede Aall side: 4 ikl. foside vedlegg

Detaljer

Integralregning. Mål. for opplæringen er at eleven skal kunne

Integralregning. Mål. for opplæringen er at eleven skal kunne 8 Integrlregning Mål for opplæringen er t eleven skl kunne gjøre rede for definisjonen v estemt integrl som grense for en sum og uestemt integrl som ntiderivert eregne integrler v de sentrle funksjonene

Detaljer

Transistor brukt som forsterker

Transistor brukt som forsterker anssto ukt so fosteke se på Såsnalodelle ha sett hodan ha. en etteotstand kan stalsee fostekeens aedspunkt - lle etaktnne så lant e jot ed en D odell a fostekeen. n statsk eennsodell Men hodan ke fostekeen

Detaljer

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark)

EKSAMEN. ANTALL SIDER UTLEVERT: 7 (innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN FAGNAVN: Mtemtikk FAGNUMMER: REA EKSAMENSDATO: 5. desember 6 KLASSE:. klssene, ingenørutdnning. TID: kl. 9... FAGLÆRER: Hns Petter Hornæs ANTALL SIDER UTLEVERT: 7 (innkl. forside

Detaljer

Parkering 48 stk m2. Gard. 30 m2 28 m2. Sykkelp. 90 stk. Kontor. Lager 593 m2. Kontor 892 m2. kontor m2

Parkering 48 stk m2. Gard. 30 m2 28 m2. Sykkelp. 90 stk. Kontor. Lager 593 m2. Kontor 892 m2. kontor m2 7 7 2 9 8 7 7 7 2 9 77 9 7 7 2 9 8 7 8 7 4 4,4 : 7 7 2 9, 77 9 7 7 2 9 5 m2 ager 59 m2 Parkering 48 stk HC HC HC Sykkelp. 9 stk 4 kontor 4 m2 Gard. m2 28 m2 5 8 9 4 Mulig inngang 7 7 2 9 7 7 2 9 7, Parkering

Detaljer

a 2πf(x) 1 + (f (x)) 2 dx.

a 2πf(x) 1 + (f (x)) 2 dx. MA 4: Anlyse Uke 44, http://home.hi.no/ svldl/m4 H Høgskolen i Agder Avdeling for relfg Institutt for mtemtiske fg Om lengde v kurver. Noen få formler der integrsjon brukes for å beregne lengder, reler

Detaljer

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur:

Transistorkonfigurasjoner: Det er tre hovedmåter å plassere en FET/BJT i en arkitektur: 0. Foseke akiekue Nå e asiso skal bukes il e foseke, oscillao, file, seso, ec. så vil de væe behov fo passive elemee som mosade, kodesaoe og spole ud asisoe. Disse vil søge fo biasig slik a asisoe få ikig

Detaljer

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark)

EKSAMEN. 1. klassene, ingenørutdanning og flexing. ANTALL SIDER UTLEVERT: 5(innkl. forside og 2 sider formelark) KANDIDATNUMMER: EKSAMEN EMNENAVN: Mtemtikk EMNENUMMER: REA4 og REA4f EKSAMENSDATO:. ugust 9 KLASSE:. klssene, ingenørutdnning og fleing. TID: kl. 9... FAGANSVARLIG: Hns Petter Hornæs ANTALL SIDER UTLEVERT:

Detaljer

BASISÅR I IDRETTSVITENSKAP 2011/2012. Individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Fredag 25. mai 2012 kl

BASISÅR I IDRETTSVITENSKAP 2011/2012. Individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Fredag 25. mai 2012 kl BASISÅR I IDRETTSVITENSKAP 11/1 Individuell skriflig eksmen i IDR 13- Funksjonell nomi Fredg 5. mi 1 kl. 1.-13. Hjelpemidler: ingen Eksmensoppgven esår v 4 sider inkluder forsiden Sensurfris: 15. juni

Detaljer

Regulering av termineringspriser i telebransjen

Regulering av termineringspriser i telebransjen Reguleng temnenge telebnen Een Llloe-Olen Mteoge Mteogen e leet fo å fullføe gden Pofeontudum mfunnøkonom Unetetet Begen, Inttutt fo økonom Deembe 00 Food Food Jeg l tkke mn elede Sten Vgtd fo gode åd

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESIEE I AGDE Gimsa E K S A M E N S O P P G A V E : FAG: MA-9 Maemaikk LÆE: Pe Henik Hogsa Klasse: Dao:..5 Eksamensi a-il: 9.. Eksamensoppgaven beså av ølgene Anall sie: 5 inkl. osie velegg Anall oppgave:

Detaljer

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig

c) etingelsen fo at det elektiske feltet E e otasjonsinvaiant om x-aksen e, med E og ee som denet ovenfo, at e E = E. Dette skal gjelde fo en vilkalig Eksamen i klassisk feltteoi, fag 74 5, 4. august 995 Lsninge a) Koodinatene x; y; z tansfomees slik x 7 bx = x; y 7 by = y cos, z sin ; z 7 by = y sin + z cos Den invese tansfomasjonen e en otasjon en

Detaljer

2.2.1 Grunnleggende betraktninger

2.2.1 Grunnleggende betraktninger 38 C2 BJELKER eksentrisk plssering på lgrene eller skjevt innstøpte løftebøyler. Bjelken vil dermed få en sideutbøyning som kn skpe et stbilitetsproblem. Det er en prinsipiell forskjell på de to tilfellene.

Detaljer

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010

INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m

Detaljer

Eksamen 3FY våren 2002. Løsningsforslag

Eksamen 3FY våren 2002. Løsningsforslag CAPPELE LØSIGSORSLAG EKSAME 3Y VÅRE 00 Eken 3Y åen 00. Løningfolg Oge 1 ) Kften å tikkelen e gitt e qb 3, 10 19 5 15 C 5,1 10 / 0,050 T 8, 10 Kften tå inkelett å feltet og å ften, e figuen neenfo. b) Vi

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsa E K S A E N S O P P G A V E : FAG: A-9 aemaikk ÆE: Pe Heik Hogsa Klasse: Dao: 5.. Eksamesi, fa-il: 9.. Eksamesoppgave beså av følgee Aall sie: 5 ikl. fosie Aall oppgave: 5 Aall

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVESITETET I AGDE Gimsad E S A M E N S O P P G A V E : AG: MA-9 Maemaikk LÆE: Pe Henik Hogsad lasse: Dao: 6.5. Eksamensid a-il: 9.. Eksamensoppgaven beså av ølgende Anall side: 5 inkl. oside vedlegg

Detaljer

Heinco Flex mufferørdeler

Heinco Flex mufferørdeler Heico Fex muffeøee Fo PVC og uktie ø 13-01/01-2013 13 Sie 1 av 5 Buksomåe og spesiee egeskape Buksomåe: Va Avvikig: Maks 11,5o i ett pa vetikat ee hoisotat (eksempevis ska stoppekaste stå vetikat ve hoisota

Detaljer

F r o d e E r i k s e n/ s / S v e i n G u n n a r G as k a/ s / R o a r L a u r i t z e n / s /

F r o d e E r i k s e n/ s / S v e i n G u n n a r G as k a/ s / R o a r L a u r i t z e n / s / I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o rs am l i n g i F j e l l hu s h a u g e n B o l i g s e l s k a p A / S a v h o l d e

Detaljer

Potensiell energi Bevegelsesmengde og kollisjoner

Potensiell energi Bevegelsesmengde og kollisjoner Poensiell energi eegelsesengde og kollisjoner 9.3.5 FYS-MEK 9.3.5 Energidiagraer energibearing: E K x U x K x U x Ux du dx F du dx likeekspunk iniu i poensiell energi sabil likeekspunk aksiu i poensiell

Detaljer

ORDINÆR GENERALFORSAMLING 2010 AS TØYENPARKEN BOLIGSELSKAP TORSDAG 6. MAI 2010 I CAFE EDVARD MUNCH, MUNCHMUSEET

ORDINÆR GENERALFORSAMLING 2010 AS TØYENPARKEN BOLIGSELSKAP TORSDAG 6. MAI 2010 I CAFE EDVARD MUNCH, MUNCHMUSEET _ O R D I R N G E Æ N E R A L F O R S A M L I N G 2 0 1 0 A S T Ø Y E N P A R K E N B O L I G S E L S K A P T O R S D A G 6. M A I I C A F E E D V A R D M U N C H, M U N C H M U S E E T _ I n n k a l l

Detaljer

NARF årsmøte 2012. 14. - 15. juni Radisson Blu Atlantic Hotel Stavanger

NARF årsmøte 2012. 14. - 15. juni Radisson Blu Atlantic Hotel Stavanger NARF åsøte 2012 14. - 15. juni Rdisson Blu Atlntic Hotel Stvnge T e Velkoen til åsøte 2012 Vi skl utvikle oss ot en stekee, e synlig og ttktiv bnsje. NARFs Åsøte 2012 sette ed disse odene søkelyset på

Detaljer

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13.

BASISÅR I IDRETTSVITENSKAP 2012/2013. Utsatt individuell skriftlig eksamen. IDR 130- Funksjonell anatomi. Onsdag 28. august 2013 kl. 10.00-13. BASISÅR I IDRETTSVITENSKAP 1/13 Us individuell skriflig eksmen i IDR 13- Funksjonell nomi Onsdg 8. ugus 13 kl. 1.-13. Hjelpemidler: klkulor og formelsmling som lir del u på eksmen Eksmensoppgven esår v

Detaljer

Martin Ødegaard. "Ein vanleg arbeidsmann"

Martin Ødegaard. Ein vanleg arbeidsmann Mrtn Ødegrd "En vnleg rbedsnn" ortrett v oeten Olv H. Hge (2011) or 9 steer (SSSAATTBB) og elektrokstkk rghet: 12' 30'' Bestlt v rnenborg oklenseble erornce notes; xnoteheds: whser the text, not s the

Detaljer

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A)

Løsningsforslag, Midtsemesterprøve fredag 13. mars 2009 kl Oppgavene med kort løsningsforslag (Versjon A) Institutt for fysikk, NTNU FY100 Elektrisitet og mgnetisme TFY4155 Elektromgnetisme Vår 2009 Løsningsforslg, Midtsemesterprøve fredg 1. mrs 2009 kl 1415 1615. Fsit side 10. Oppgvene med kort løsningsforslg

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA

Realstart og Teknostart ROTASJONSFYSIKK. PROSJEKTOPPGAVE for BFY, MLREAL og MTFYMA FY1001 og TFY4145 Mekanisk fysikk Institutt fo fysikk, august 2014 Realstat og Teknostat ROTASJONSFYSIKK PROSJEKTOPPGAVE fo BFY, MLREAL og MTFYMA Mål Dee skal i denne posjektoppgaen utfoske egenskape til

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

Sem 1 ECON 1410 Halvor Teslo

Sem 1 ECON 1410 Halvor Teslo Løsningsforslg til seminr i ECON : Internsjonl økonomi.seminruke V ) Den økonomien vi her står ovenfor produserer re to goder, tø og vin. Altså vil lterntivkostnden for den ene vren nødvendigvis måles

Detaljer

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse

4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse 4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,

Detaljer